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1 Introduction 

We give characterizations of nondeterministic com- 
plexity classes such as NP and PSPACE and the classes 
in the polynomial time hierarchy in the two-person 
pebble game model [VT89]. These characterizations 
motivate the definitions of these classes using first- 
order sentences extending the results in [Im82]. It is 
shown that the role-switches resource in the pebble 
games closely model the levels of the polynomial hi- 
erarchy. These characterizations are made possible 
by explicitly considering circuit-size in the pebbling 
characterizations and the size of the underlying uni- 
verse in the first-order characterizations. 

A dual interpreted game to model parallel compu- 
tations was defined in [VT89]. They used this game to 
obtain characterizations of parallel complexity classes 
such as LOGCFL and A C 1 .  This paper carries this 
work further to obtain characterizations of the class 
NP and the classes in the polynomial-time hierarchy 
in the game model. A resource called role-swatches 
was used in the dual game [VT89] to capture the dif- 
ference between computations in the classes LOGCFL 
and A @ .  Subsequently, Borodin et al. [BCDRT89] 
showed that constant number of role-switches do not 
help when the underlying circuits have polynomial 
size. We show that role-switches model the alter- 
nating time hierarchy more accurately and thus their 
collapse implies the collapse of hierarchies such as the 
polynomial time hierarchy. Specifically, we show that 
the k-th level of the polynomial-time hierarchy uses 
k - 1 role-switches. In this respect, it is very simi- 
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lar to a recent result in [JK88] that shows that for 
all k 2 1, the k-th level of the polynomial-time 
hierarchy coincides with the (IC + 1)-st level of a cer- 
tain alternating auxiliary pushdown hierarchy. To get 
our results, we generalize the dual game to consider 
both the size and the fan-in of the circuits on which 
the game is played. This makes it possible to ex- 
tend the pebble game to exponential size circuits and 
unbounded fan-in circuits. The extended game pro- 
vides a unified framework in which the earlier peb- 
ble game characterizations of the classes LOGCFL and 
AC1 [VT89] and the new characterizations can be ex- 
pressed. 

We give a uniform first-order sentence characteriza- 
tion of NP and PSPACE. These are definitions over an 
exponential universe. The characterization of PSPACE 
here when compared with the one in [Im82] shows an 
interesting tradeoff between the size of the underly- 
ing universe and the size of a sentence. One of the 
objectives of this work was to explore the relationship 
between twsperson pebble games and expressibility 
using first order sentences. These results suggest that 
the number of variables correspond to the number of 
pebbles and the size of the formula corresponds to 
pebbling time (rounds). 

This work was motivated by the semi-unbounded 
fan-in circuit characterization of NP in [VeSS]. The 
results here illustrate the importance of the notion 
of semi-unboundedness. Semi-unbounded fan-in cir- 
cuits (exponential fan-in for OR gates and polyno- 
mial fan-in for AND gates) of constant depth charac- 
terize NP whereas unbounded fan-in circuits of con- 
stant depth characterize classes in PH. Thus semi- 
unboundedness captcres an essential difference be- 
tween the computations in NP and PH. It is in- 
teresting to note that the circuit characterization of 
PH is one of the first uniform circuit characteriza- 
tions of this very important complexity hierarchy. It 
may also be noted that the classes defined by con- 
stant depth semi-unbounded fan-in circuits (polyno- 
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mial fan-in OR gates and logn fan-in AND gates) 
and unbounded fan-in circuits (polynomial fan-in for 
both OR and AND gates) at the low-level are known 
to be different. 

One of the contributions of this paper is that it 
shows the robustness of all the complexity classes 
which have very similar definitions in the models 
that we have considered, namely, Boolean circuits, 
pebble games and logic. They isolate some model- 
independent abstract properties that the c o m p u h  
tions in these classes seem to possess. 

2 Game Characterizations 

In this section, we present the characterizations of 
the class N P  and the polynomial-time hierarchy us- 
ing the dual interpreted game model of [VT89]. The 
game characterizations use uniform Boolean circuit 
definitions of NP and PH. 

2.1 Definitions 

&-Unbounded fan-in Boolean circuits: This is 
a family of unbounded fan-in circuits in which the 
output is an unbounded fan-in OR gate and along 
any path, from any circuit input to the output gate, 
no more than k - 1 unbounded alternations occur. 
(Note that the gates that do not have unbounded fan- 
in have constant fan-in.) For IC = 1, such a family of 
circuits will be called semi-unbounded fan-in circuits. 
We will assume that any circuit in this family can 
be divided into k distinct layers such that a gate v 
is in layer p iff the maximum number of unbounded 
alternations along any path from the output gate to 
v i s p - 1 .  

A family of &-Unbounded fan-in Boolean cir- 
cuits is defined in a dual fashion. 

We will assume that the circuit families consid- 
ered are all Uo-uniform [Ru81]. See the paper by 
Ruzzo [Ru81] for a definition of this uniformity n e  
tion. 

Let Semiunbounded USIZE,DEPTH ( z ( n ) ,  D(n ) )  de- 
note the class of languages accepted by a uni- 
form family of semi-unbounded fan-in circuits 
with size O(Z(n) )  and depth O(D(n)) .  The 
classes Unbounded USIZE,DEPTH (z(n), D(n) )  are de- 
fined similarly. We will also be interested 
in unbounded fan-in circuit families in which 
the AND gates have polynomial fan-in. Let 

Unbounded USIZE,DEPTH,AND (z(n), D( n) ,  f(n)) de- 
note the class of languages accepted by a uni- 
form family of unbounded fan-in circuits with size 
O(Z(n) ) ,  depth O(D(n))  and, in which, all AND 
gates have fan-in at most f(n). 

2.2 The dual interpreted two-person 
pebble game 

This game, introduced in [VT89], is played by two 
players called Player 0 and Player 1 on the vertices 
of a bounded fan-in Boolean circuit Gn together with 
its input a. The objective of Player 0 (Player 1) is to 
establish that the output of the circuit evaluates to 0 
(1). Thus, a pebble placement or challenge on a gate 
v by Player 0 (Player 1) corresponds to asserting that 
v evaluates to 0 (1). At any point, one of the players 
takes on the role of the Challenger and the other that 
of the Pebbler. The role of a player is automatically 
determined as part of the circuit information as fol- 
lows. The gates in Gn are partitioned into two sets, 
those of “challenge type” 0 and those of “challenge 
type” 1. A challenge placed on a gate of challenge 
type 0 (challenge type 1) causes Player 0 (Player 1) 
to be the Challenger in the next round. It is assumed 
that this additional bit per vertex is available as part 
of the circuit description. 

A challenge by Player 0 (Player 1) will be referred 
to as a 0-challenge (1-challenge). Similarly, a pebble 
placed by Player 0 (Player 1) will be referred to as a 
0-pebble (1-pebble). 

Rules: The initial challenge is on the output gate. 
The game proceeds in rounds with a round consist- 
ing of the following three parts. (a) If the game is not 
over at the currently challenged vertex U according to 
the conditions below, then Player 0 is the Challenger 
for this round if U is of challenge type 0 and the Peb- 
bler otherwise. (b) In the pebbling move, the Peb- 
bler picks up zero or more of its own pebbles from 
vertices already pebbled and places pebbles on any 
nonempty set of vertices. (c) In the challenging move, 
the Challenger either rechallenges the currently chal- 
lenged vertex, or challenges one of the vertices that 
acquired a pebble in the current round. 

Player 1 wins the game if, immediately following 
the Challenger’s move, the current challenged vertex 
is an input with value 1, or an OR gate at least one 
of whose immediate predecessors is 1-pebbled, or an 
AND gate all of whose immediate predecessors are 1- 
pebbled. Player 0 wins if, immediately following the 
Challenger’s move, the current challenged vertex is 
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an input with value 0, or an OR gate all of whose im- 
mediate predecessors are 0-pebbled, or an AND gate 
at least one of whose immediate predecessors is 0- 
pebbled. The winner in an infinite play of the game 
is the player who has been the Pebbler for only finitely 
many rounds. 

Resources: The four resources of interest in a 
play of this game are: space, time, rounds, and role 
switches. 

The game on a circuit G, with input x E L of 
length n is said to use space p ( n )  (time t (n) ,  rounds 
r(n) ,  role switches s (n)  resp.) if and only if there is a 
strategy for Player 1 such that, for all plays by Player 
0, Player 1 wins using at most p(n)  1-pebbles ( t (n)  
1-pebble placements, ~ ( n )  rounds in which Player 1 is 
the Pebbler, s(n) role switches between pebbling and 
challenging roles resp.). Resources when 2 4 L are 
defined by interchanging Player 0 and Player 1. A cir- 
cuit G, with input x is said to be pebbleable in space 
p(n),time t (n) ,  rounds r(n) ,  role switches s(n) if the 
winner has a winning strategy using no more than 
p(n) pebbles, t (n)  pebble placements, ~ ( n )  alterna- 
tions between the players and s (n)  role-switches be- 
tween the pebbling and challenging roles. Note that 
only the winner's resources are counted. 

2.3 Extensions to the dual interpreted 
game 

We now consider extensions of the dual interpreted 
game to facilitate playing the game on Bolean circuits 
that have exponential size and/or unbounded fan-in. 

To extend the game to exponential size circuits, 
we introduce a purely syntactic parameter called 
weight. For our results here, the weight of a peb- 
ble is O(logZ(n)), where Z(n)  is the size of the cir- 
cuit on which the pebble game is played. This helps 
to distinguish between complexity classes which have 
otherwise the same pebbling resource characteristics, 

For playing the dual interpreted game on un- 
bounded fan-in circuits, we will first introduce a sim- 
ple rule about challenge types of gates that is suffi- 
cient for the purposes of this paper. 

Rule (*): Any unbounded fan-in OR (AND)  gate 
is of challenge type 0 (1). 

The modifications needed to extend the game to 
unbounded fan-in Boolean circuits are reflected in the 
way resources are counted. For this purpose, we con- 
sider two possibilities. One possibility is to use rule 
(**) below. This is motivated by the observation that 

a gate with fan-in f can be regarded, for our purposes, 
as a bounded fan-in circuit of depth log f .  

Rule (**): If the game is lost at an unbounded 
fan-in gate, the pebbler of that round is charged 
loglogf rounds and time, where f is the fan-in of 
that gate. 

The other possibility is to not use this rule. In 
other words, the resources for playing the game on 
bounded fan-in Boolean circuits and unbounded fan- 
in Boolean circuits are treated the same way. We will 
refer to this as the unit-cost game model. 

These two variations on counting resources lead to 
two different pebble game characterizations of NP and 
PH. 

2.4 The Characterization Results 

Let C(n) - PB,RND,SW,WT(p(n),r(n), s(n),  w(n))  be 
the class of languages L accepted by a uniform fam- 
ily {G,} of Boolean circuits of size 2O("'(,)), wherein 
Player 1 (Player 0) begins the game as the Pebbler, 
and such that G, is pebbleable in p(n)  pebbles, r (n)  
rounds, and s(n) role switches. 

UC (UII) - PB,RND,SW,WT(p(n), r (n) ,  s(n), w(n))  be 
the class of languages L accepted by a uniform fam- 
ily {G,} of Boolean circuits of size 2O("(")), wherein 
Player 1 (Player 0) begins the game as the Pebbler, 
and such that G, is pebbleable in p(n)  pebbles, r(n)  
rounds and s(n) role switches in the unit-cost model. 

Note: The classes are defined in terms of rounds 
rather than time. This seems more natural when non- 
constant pebbles are used. In the case when constant 
pebbles are used, it is easy to see that the number of 
rounds and the time differ only by a constant factor. 

We drop the C(II) prefix if either player can begin 
the game as the Pebbler. 

Theorem 1 below follows from corollaries 5, 7, 10, 
12, 14 and 15 below. 

Let 

Theorem 1 1. 
NP = C-PB,RND,SW,WT(O(l),logn,O,nO(l)). 

NP = 
uc - P B , R N D , S W , W T ( ~ ~ ( ~ ) ,  0(1), 0, 

Cp, = 
- PB,RND,SW,WT(o(l), logn, k - 1, no(')). 

LOGCFL = 
C - PB,RND,SW,WT(~(~) ,  O(logn),O,O(logn)). 
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5. AC' = 
c - 
PB,RND,SW, WT( O( 1) , O( log n)  , O( log n)  , O( log n))  . 

The pebbling characterization of PH in theo- 
rem 1 above should be contrasted with the results 
in [BCDRT89] where they show that constant role- 
switches may not help when polynomial size circuits 
are considered. 

It is interesting to look at other classes defined by 
uniform families of exponential circuits that are not 
constant depth. Thus, for instance, we can define 
NAC' to be the class of languages recognized by al- 
ternating Turing machines in polynomial space and 
alternation depth O(1ogn). By a result of Cook and 
Ruzzo [Co85], this class is equivalent to the class of 
languages accepted by uniform families of unbounded 
fan-in circuits of size 2"0(1) and depth O(1og n). This 
class which is contained in PSPACE is interesting be- 
cause it contains N P  and is closed under complement. 
A pebbling characterization of N A C ~  is given in the- 
orem 2 below whose proof follows from corollaries 12 
and 14. 

Theorem 2 
NAC' = PB,RND,SW,WT(O(l), log n,log n,  no(')). 

Finally, a pebbling characterization of PSPACE is 
given in theorem 3 below whose proof follows from 
corollaries 5 and 14. 

Theorem 3 PSPACE = PB,WT(O(l), no(')). 

2.5 Pebbling Semi-unbounded Fan-in 
Circuits 

Pebble games on semi-unbounded fan-in circuits are 
interesting because many natural complexity classes 
have definitions using semi-unbounded fan-in cir- 
cuits [ve87, Ve881: 

Facts: 
LOGCFL = SemiUnbounded USIZE,DEPTH 

NP = Semiunbounded USIZE,DEPTH (2"O") , log n). 
NP = 
Unbounded USIZE,DEPTH,AND (2" ,O(1), no(')). 
P = Semiunbounded USIZE,DEPTH (no('), no(')). 
PSPACE = 
Semiunbounded USIZE,DEPTH (2"0(1), no(')). 

Considering a general semi-unbounded fan-in cir- 
cuit family of size Z(n)  and depth D(n) ,  we have the 
following result: 

log n). 

O(1) 

Proof Sketch: We use the following definition of 
NP: Semiunbounded USIZE,DEPTH (2"O(l) ,  log n). All 
gates in the circuit have challenge type 0. Let the 
circuit evaluate to  1 on the given input. Consider a 
depth-first pebbling of a proof in the circuit. Since 
the AND gates are bounded, by Rule (**), the time 
taken by Player 1 to pebble the circuit would be no 
more than "(log log Z(n) ,  D(n ) )  using a constant 
number of pebbles. If the circuit evaluates to 0, the 
Player 0 wins without using any resources. 0 

Considering unbounded fan-in circuits in which the 
OR gates are restricted to have bounded fan-in, it is 
straightforward to prove a dual version of theorem 4 
above. So, we have the following corollaries: 

Corollary 5 1. LOGCFL C 
C - PB,RND,SW,WT(~(I), O(logn),O, O(1ogn)). 

c - PB,RND,SW,WT(O(~), O(1og n),  0, no(')). 

II - PB,RND,SW,WT(O(I), O(logn), 0, no(l)). 

c - PB,RND,SW,WT(O(~), O, 

c - PB,RND,SW,WT(O(~), nO('),O,O(logn)). 

2. NP 

3. CONP c 

4. PSPACE C 

5. P c 

To obtain an alternative pebbleing characterization 
of NP, we have the following theorem: 

Theorem 6 
Unbounded USIZE,DEPTH,AND (z(n), D(n) ,  f(n)) C 
UC - PB,RND,SW,WT(~(~) ,  D(n) ,  0, log Z(n)) .  

Proof Sketch: The proof is similar to that of the- 
orem 4, when the following definition of NP is used: 
Unbounded USIZE,DEPTH,AND (2"0(1), O(1), no(')), 
All gates in the circuit have challenge type 0. Let 
the circuit evaluate to 1 on the given input. Con- 
sider a depth-first pebbling of a proof in the circuit. 
Player 1 can win the game using at most f(n) pebbles 
in D(n)  rounds since the AND gates have fan-in at 
most f(n). If the circuit evaluates to 0, the Player 0 
wins without using any resources. 0 

This theorem yields the following corollary: 
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To obtain a pebbling characterization of the 
polynomial-time hierarchy, we begin with a uniform 
Boolean circuit characterization of the polynomial- 
time hierarchy. 

Theorem 8 Cf = 
O(1) 

c k  - Unbounded USIZE'DEPTH (2" , log n), 

Proof Sketch: Let L be a language in E: and 
M be an NP machine with an NP oracle that accepts 
L.  We will assume that M makes an oracle query 
only once along a computation path. Using the cir- 
cuit characterization of N P  in terms of uniform &- 
Unbounded fan-in circuits and CONP in terms of II1- 
Unbounded fan-in circuits, we can combine them to 
obtain a two-layered circuit that simulates M .  

In the other direction, a uniform &-Unbounded 
fan-in circuit of size 2"0(1) and depth O(1ogn) can be 
evaluated by an NP machine M with an NP oracle as 
follows: M existentially guesses a proof in the circuit 
till it reaches an unbounded AND gate at which point 
it will simulate a CONP machine to verify that this 
AND gate is accepting.0 

The resources for playing the pebble game on the 
circuits defining PH is given by the following theorem: 

Proof sketch: It is clear that only odd (even) 
numbered layers have unbounded fan-in OR(AND, 
respectively) gates. Since all gates in the odd (even) 
numbered layers are assigned challenge type 0 (chal- 
lenge type 1, resp.), the game can be confined to one 
layer using 0(1) pebbles and k-1 role-switches. Since 
any one layer is a semi-unbounded fan-in circuit or its 
dual, the result follows.0 

2.6 Pebbling Unbounded Fan-in Cir- 
cuits 

Considering unbounded fan-in circuits, we can prove 
the following analog of theorem 4: 

The following two corollaries of this theorem are 
now immediate: 

Corollary 12 1. AC1 2 
c - 
PB,RND,SW,WT(~(~),  O(logn), O(l0g n),O(logn)). 

c - 
2. NACl c 

PB,RND,SW,WT(O(I), O(logn), O(log n),nO(l)). 

2.7 Simulating the Game by an Alter- 
nating Turing Machine 

The following theorem, which gives the resources used 
by an alternating Turing machine to simulate the 
game, generalizes theorem 11 in [VT89] and can be 
proved by slightly modifying the proof of that theo- 
rem. 

Theorem 13 If L is accepted by a uniform family 
{Gn} of bounded fan-in circuits of size Z(n)  such 
that G, is pebbleable in p pebbles, t time, and P 
rounds in the dual game, then L is accepted by an al- 
ternating Turing machine within space O(p . w(n)),  
time O(max(t . w ( n ) , w ( n )  . logw(n)) and alterna- 
tions O(max(r,logw(n)). Here, w(n) is taken to  be 
logZ(n). If, in addition, Player 1 is always the Peb- 
bler, then L is accepted within space O(p - w(n))  and 
tree-size max(wZ(n), po(')). 

Proof Sketch: The proof is analaogous to that of 
theorem 11 in PT891. Recall now that the direct 
connection language of the circuits involved can be 
recognized in time O(w(n))  by a deterministic Tur- 
ing machine, since the circuits are Upuniform. But, 
this can be simulated by an alternating Turing ma- 
chine with space O(w(n)) ,  time O(w(n) . logw(n)), 
alternations O(1og w(n))  and tree-size O(w2(n)) .0  

The following corollaries now follow from known 
relations hips. 

Corollary 14 1. 
C - PB,RND,SW,WT(~(I), O(l0g n), o,O(lOg n)) 
C_ LOGCFL. 

2. c - PB,RND,SW,WT(O(~), O(logn),o, nO(l)) 
2 NP. 
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uc - P B , R N D , S W , W T ( ~ ~ ( ~ ) ,  0(1), 0, no(1)) 

II - PB,RND,SW,WT(O(I), O(1og n) ,  0, nO(l))  

c - 
P B , R N D , S W , W T ( ~ ( ~ ) ,  O(logn),O(logn),O(logn)) 

s NP. 

CONP. 

2 AC'. 

c - 
PB,RND,SW,WT(O(I), O(logn), O(10g n), 
2 NAC'.  

The simulation of a k - 1 role switch game in ex- 
machine is captured ponential size circuits by a 

by the following corollary. 

Corollary 15 - 
P B , R N D , S W , W T ( ~ ( ~ ) ,  O(logn),k - l ,n0(l))  s E[. 

Proof sketch: We show this for k = 2. An NP 
machine can simulate the game until a role-switch 
occurs. When the role switch does occur, Player 
0 becomes the Pebbler and there are no more role 
switches. The outcome of the game, given its cur- 
rent configuration, can thus be determined by an NP 
oracle.0 

Remarks: It is straightforward to  give a pebbling 
characterization of the polynomial-time hierarchy in 
the unit-cost game model analogous to such a char- 
acterization of the class NP (see theorem 1). Such a 
characterization is possible because PH can be charac- 
terized as Unbounded USIZE,DEPTH (2n0(1), o(1)). It 
is also not too difficult to define uniform AGO in the 
pebble game model. The details will appear in the 
full version of this paper. 

3 Logic Characterizations 

The main result in this section is the characteriza- 
tion of NP using first order sentences. In [Im82], 
two resources on first order sentences, namely vari- 
ables and size were introduced to obtain character- 
izations of simultaneous resource bounded classes. 
In [Im81, Im82, Im871, it is assumed that all vari- 
ables carry no more than logn bits of information. 
Motivated by the results in the previous section, we 
introduce variables which carry w(n) 2 logn bits of 
information. 

We also define uniformity for first order sentences 
by introducing the notion of a direct connection lan- 
guage analogous to those for Boolean circuits [Ru81]. 
All the symbols in the formula are indexed and since 
a variable may occur in more than one place, the 
index distinguishes them. Note that not more than 
logZ(n) bits are necessary to index a formula with 
at most Z(n)  symbols. Queries such as, "Is variable 
v at position p universally quantified?" can all be an- 
swered by the uniformity machine. In the case where 
constant number of variables are used, the syntactic 
uniformity from pm821 can also be used. 

3.1 The Characterization results 

Let V A R , S I Z E , W T ( ~ ( ~ ) ,  Z(n) ,  W(n))  denote a se- 
quence of uniform first order sentences {F,} where 
F, has V(n)  variables, O(Z(n))  symbols and the 
quantifiers range over a universe whose cardinality is 
2°(w(n)). Let VAR,SIZE,WT (BV)(V(~) ,  ~ ( n ) ,  ~ ( n ) )  
be defined as above except that now the universal 
quantifiers range over a Boolean universe. 

We prove the following theorems whose proofs fol- 
low from corollaries 18, 20 and 22. 

Theorem 16 1, 
N P  = VAR,SIZE,WT (BV)(o(l), O(log n) ,  no(')), 

t. PSPACE = VAR,SIZE,WT(O(I), n0(1), no@)). 

The characterization of PSPACE by Immer- 
man [Im82], when phrased using the weight resource 
would be VAR,SIZE,WT(O(I), 2"0(1), log n). Thus 
these two characterizations of PSPACE provide a 
weight-size tradeoff. 

The characterization results above will be proved 
by relating first order expressibility to alternating 
Turing machine resources. 

Theorem 17 For W(n)  2 logn, S(n )  2 logn, 

VAR,SIZE,WT (sv)(o(*), # * log z (n ) ,  w(n)). 
ASPACE,TREESIZE(S(~), Z ( n ) )  E 

Proof: The proof is adapted from the second in- 
clusion in theorem B.l of [Im82] with modifications 
needed to accomodate the weight resource. The 
space used by the machine is S(n)  and every vari- 
able contains W(n)  bits of information. Hence, no 
more than O ( a )  variables are needed to code 
any configuration. The size of the sentences will be 
O(* * logZ(n)). 0 
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Corollary 18 f. LOGCFL c 
VAR,SIZE,WT (B'd)(O( I), O(bg n),  o ( b g  n)) .  

2. NP 
VAR,SIZE,WT (BV)((O(l), O(l0g n) ,  no(')). 

To characterize PSPACE we consider the rel& 
tionship between first order expressibility and time 
bounded alternating Turing machines. In one direc- 
tion, we have the following theorem. We omit the 
easy proof. 

Theorem 19 For W(n)  >_ logn, S(n) 2 logn, 

ASPACE,TIME((,S)(~),T(~)) C_ 
VAR,SIZE,WT(O(#), ~ ( n ) ,  ~ ( n ) ) .  

Corollary 20 1. P C 
VAR,SIZE,WT(O(I), no(1), O(1og n)) .  

VAR,SIZE,WT(O( I), no(l), no(1)). 
2. PSPACE s 

The containments in the other direction follow from 
the theorem below whose proof is omitted from this 
extended abstract. 

Theorem 21 If L is expressible by a uniform family 
ofsenetences {Fn} that uses V ( n )  variables, T(n)  size 
and W ( n )  weight, then L is accepted by an alternat- 
ing Turing machine within space O(V(n)  e W(n) )  and 
time O(T(n) W(n)) .  If, in addition, the universal 
quanifiers are Boolean, then L is accepted by such a 
machine with treesize cT(") for some constant c. 

Corollary 22 f. 

2. 

9. 

4. 

4 

VAR,SIZE,WT (BV)(O(I), O(log n),  O(log n) )  
C LOGCFL. 

VAR,SIZE,WT (Bv)(O(l), O(lOgn), no(')) 
C NP. 

VAR,SIZE,WT(O( I), no(1), O(1ogn)) 
C P. 

VAR,SIZE,WT((O(I), no('), no(')) 
C PSPACE. 

Open Problems 

We will conclude by stating some open problems. 

Do role switches in two-person pebble games 
help? I t  is known that for certain polynomial 
size circuit hierarchies constant number of role 
switches do not help. But, our characterization 
of PH in terms of role switches suggest that tak- 
ing weight into consideration may alter this situ- 
ation. It would also be quite interesting to iden- 
tify circuits for natural problems for which role 
switches help. 

The circuit characterization of complexity classes 
suggests the definition of new classes. We de- 
fined one such class NAG1 that seemed like a 
good analog of A C 1 .  An interesting question 
here is to identify natural complete problems 
for this and other such classes. In this connec- 
tion, it is worth mentioning that Chandra and 
Tompa [CT88] have shown that a class of short 
two-person games are complete for A @ .  These 
problems may suggest similar problems complete 
for NAG'.  

Semi-unboundedness versus unbounded- 
ness: Semi-unboundedness seems like a useful 
concept to  capture the computations in many 
natural complexity classes [VeSS]. An impor- 
tant question in this area concerns the relation- 
ship between this notion and that of unbounded- 
ness. For instance, in the uniform Boolean cir- 
cuit model, this may shed light on the relation- 
ship between NP and PH. 

First order expressibility versus second order ex- 
pressibility: It is well known that NP is identical 
with the class of second order existential formu- 
las [Fa74]. What is the link between the first 
order characterization of N P  in this paper and 
second order formulas? 

Tradeoffs between weight and size: We have ex- 
hibited a weight and size tradeoff in the first 
order characterizations of PSPACE. What are 
some general tradeoff relations between weight 
and size? 
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