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Abstract The present work introduces new scalar and fermionic degrees of freedom to the
Standard Model. While the scalar sector is augmented by a complex scalar triplet and a
doubly charged scalar singlet, the fermionic sector is extended by two copies of vector-like
leptons. Of these, one copy is an SU (2)L singlet, while the other, an SU (2)L doublet. We
explain how this combination can offer a solution to the muon g-2 anomaly and also lead to
nonzero neutrino masses. In addition, it is also shown that the parameter regions compliant
with the two aforementioned issues can stabilise the electroweak vacuum till the Planck scale,
something not possible within the Standard Model alone.

1 Introduction

The discovery of the Higgs boson of mass 125 GeV [1,2] at the Large Hadron Collider (LHC)
completes the particle spectrum of the Standard Model (SM). Moreover, the interactions
of the boson with SM fermions and gauge bosons are increasingly in agreement with the
corresponding SM values. Despite this success, certain pressing inconsistencies within the
SM on both theoretical and experimental fronts continue to vouch for beyond-the-SM (BSM)
dynamics. That the SM alone cannot stabilise the electroweak (EW) vacuum up to the Planck
scale is one such theoretical shortcoming. More specifically, the SM Higgs quartic coupling
turns negative during renormalisation group (RG) evolution, thereby destabilising the vacuum
and the energy scale where that happens can vary several orders of magnitude depending upon
the t-quark mass chosen [3–7]. However, additional bosonic degrees of freedom over and
above the SM ones can potentially offset this destabilising effect coming from the t-quark
(see the references in [8]). This calls for extending the scalar sector of the SM.

One crucial shortcoming of the SM on the experimental side is its inability to predict
nonzero neutrino masses. In addition, the longstanding deviation in the experimentally mea-
sured value of the muon anomalous magnetic moment from its SM prediction also necessitates
BSM dynamics. A 3.7σ discrepancy exists between theoretical calculations within the SM
and experimental data, quoting [9–14]
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�aμ = (2.706 ± 0.726) × 10−9. (1)

This deviation is seen as an evidence of the presence of BSM dynamics. One must note that
the discrepancy will be put to further tests at the FNAL [15] and J-PARC [16] experiments
in the near future.

Appropriately augmenting the SM by additional fields can lead to a nonzero neutrino
mass via the seesaw mechanism. Of these, the popular Type-II seesaw [17–19] employs a
complex scalar SU (2)L triplet and is also known to be attractive from the perspective of
baryogenesis and collider signatures. In fact, it has also been shown to address the vacuum
instability problem [20–22]. However, despite such enticing aspects, the Type-II seesaw
model is known to generate a negative contribution to the muon g-2 [23], and hence, cannot
account for the observed discrepancy. And this can be attributed to the completely left-chiral
Yukawa interactions of the scalar triplet.

New physics (NP) models comprising vector-like leptons (VLLs) have interesting phe-
nomenological implications. Having novel origins such as Grand Unification [24,25], the
SM suitably augmented by VLLs can in fact explain the muon g-2 anomaly [26–29]. How-
ever, the minimal VLL scenario does not offer solutions to the neutrino mass and vacuum
instability problems. Moreover, it gets rather constrained by the measurements of the Higgs
to dimuon decay made by ATLAS [30] and CMS [31]. Some recent solutions to the muon
anomaly involving together vector leptons and additional scalar multiplets can be seen in
[32–36].

In this work, we extend the Type-II seesaw model by an doubly charged SU (2)L singlet
scalar and VLLs. A doubly charged scalar is an ingredient of certain classes of NP models,
the minimal left-right symmetric model (LRSM) augmented with scalar triplets being an
example. That is, the triplets �L (1,3,1,2) and �R (1,1,3,2) are introduced under the LRSM
gauge group SU (3)c × SU (2)L × SU (2)R × U (1)B−L [37], over and above the minimal
field content. On the other hand, some investigations involving a scalar triplet and VLLs
are [38–40]. We thus have two doubly charged scalars in this scenario instead of one as in
the case of ordinary Type-II seesaw.1 The VLLs include both doublets and singlets under
SU (2)L , the latter carrying one unit of electric charge. We explain how a positive contribution
of the requisite magnitude to the muon g-2 can be obtained in this framework by virtue of
a nonzero mixing of the two doubly charged bosons. We also demonstrate that tuning the
Yukawa interactions and the triplet vacuum expectation value (VEV) correctly can help evade
the constraints coming from the non-observation of charged lepton flavour violation (CLFV)
[42]. In addition, we compute the one-loop RG equations corresponding to this model and
subsequently show that the combined results of neutrino mass, muon g-2 and LFV comply
with a stable EW vacuum till the Planck scale.

This paper is organised as follows. We introduce the theoretical framework in Sect. 2
and list the various constraints in Sect. 3. Section 4 demonstrates the role of chirality-flip
in generating a positive contribution to muon g-2 while predicting nonzero neutrino masses
and suppressing CLFV. Section 5 presents an analysis combining vacuum stability, muon g-2
and the various relevant constraints. We summarise in Sect. 6. Various important formulae
are relegated to Appendix.

1 [41] presents explanations the muon anomaly in models featuring a two doubly charged scalars but no
additional fermions over and above the SM ones.
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2 Model description

In this model, the scalar sector of the SM is augmented by an SU (2)L complex scalar triplet
� and a doubly charged scalar singlet k++. In addition, the following VLL multiplets are
also included:

LL ,R =
(
NL ,R

EL ,R

)
; E ′

L ,R . (2)

The quantum numbers of the various relevant fields are shown in Table 1.
As for how the additional fields interact, we first show the scalar potential below:

V = V2 + V3 + V4, (3)

where Vn for n = 2,3,4 describes dimension-n scalar operators. Thus,

V2 = μ2
φ(φ†φ) + M2

�Tr(�†�) + M2
S |k++|2, (4a)

V3 = μ1 φT (iσ2)�
†φ + μ2 Tr

(
�†�†)k++ + h.c. (4b)

V4 = λ

2
(φ†φ)2 + λ1

2
[Tr(�†�)]2 + λ2

2

(
[Tr(�†�)]2 − Tr(�†��†�)

)
+ λ3

2
|k++|4

+ λ4φ
†φTr(�†�) + λ5φ

†[�,�†]φ + λ6φ
†φ|k++|2 + λ7Tr(�†�)|k++|2

+ λ8

(
φ̃†�φk−− + h.c.

)
. (4c)

We choose all parameters in the scalar potential to be real to annul CP-violation. To state
the obvious, the scalar interactions involving k++ are the additional ones w.r.t. the ordinary
Type-II case. The scalar doublet and the triplet can be parameterised as under.

φ =
(

φ+
1√
2
(v + φ0 + iη0)

)
, � =

(
δ+√

2
δ++

1√
2
(v� + δ0 + iχ0) − δ+√

2
.

)
(5a)

Here, v and v� denote the VEVs acquired by the CP-even neutral components of φ and �,
respectively. The scalar potential leads to the following mixings in the CP-even, CP-odd and
singly charged sectors.

(
φ0

δ0

)
=

(
cosα sinα

−sinα cosα

) (
h
H

)
(6a)

(
η0

χ0

)
=

(
cosβ sinβ

−sinβ cosβ

) (
G0

A

)
(6b)

(
φ+
δ+

)
=

(
cosγ sinγ

−sinγ cosγ

)(
G+
H+

)
(6c)

Table 1 Quantum numbers of
the relevant fields under the SM
gauge group

Field SU (3)c × SU (2)L ×U (1)Y

� (1, 3, 1)

k++ (1, 1, 2)

LL ,R (1, 2, −1/2)

E ′
L ,R (1, 1,−1)

123



 1183 Page 4 of 25 Eur. Phys. J. Plus        (2021) 136:1183 

We note that the aforementioned mixings are identical to what happens in the ordinary Type-II
case. The mixing angles α, β, γ are determined to be

tanα = −4v�

v

M2
� + 1

2λ1v
2
�

M2
� + 3

2λ1v
2
� + 1

2 (λ4 − λ5 − 2λ)v2
, (7a)

tanβ = −2v�

v
, (7b)

tanγ = −
√

2v�

v
. (7c)

We choose to adopt the v� << v limit throughout wherein the expressions for the physical
masses simplify to

M2
h � λv2, (8a)

M2
H = M2

A � M2
� + 1

2
(λ4 + λ5)v

2, (8b)

M2
H+ = M2

� + 1

2
λ4v

2. (8c)

In addition to the above, the doubly charged scalars also mix for λ8 �= 0. The mass terms
have the following form for v� << v and μ2 << λ8v:

L++
m = (

δ−− k−−) (
M2

� + 1
2λ4v

2 1
2λ8v

2

1
2λ8v

2 M2
S + 1

2λ6v
2

) (
δ++
k++

)
(9a)

Diagonalising Eq. (9a) by rotating (δ++, k++) by an angle θ leads to the mass eigenstates
H++

1,2 with masses M++
1,2 . Thus,

(
δ++
k++

)
=

(
cosθ sinθ

−sinθ cosθ

) (
H++

1
H++

2

)
(10)

We also list below the expressions for the masses of H++
1,2 and θ for v� << v:

(M++
1,2 )2 = 1

2

[
(A + B) ±

√
(A − B)2 + 4C2

]
, (11a)

tan2θ = 2C

B − A
, where (11b)

A = M2
� + 1

2
λ4v

2 , (11c)

B = M2
S + 1

2
λ6v

2 , (11d)

C = 1

2
λ8v

2 . (11e)

We now come to discussing the fermionic interactions. First, the bare mass terms of the
VLLs and their interactions with the Higgs doublet φ read

LVLL
Y,φ = −MLLLR − M ′E ′

L E
′
R − y4LLφE ′

R − y′
4LRφE ′

L + h.c. (12)

123



Eur. Phys. J. Plus        (2021) 136:1183 Page 5 of 25  1183 

We neglect here the mixings of the VLLs with the SM leptons for simplicity.2 The mass
terms of the VLLs then take the form

LVLL
Y,φ ⊃ −

(
ER E ′

R

)(
M

y′
4v√
2

y4v√
2

M ′

) (
EL

E ′
L

)
+ h.c. (13)

The non-Hermitian matrix in Eq. (13) is diagonalised by a bi-unitary transformation of the
form

UR
†MVUL = Md

V , (14)

where

MV =
⎛
⎝ M

y′
4v√
2

y4v√
2

M ′

⎞
⎠ , Md

V =
(
M1 0
0 M2

)
, UL(R) =

(
cosαL(R) sinαL(R)

−sinαL(R) cosαL(R)

)
. (15)

Therefore, the VLLs in the mass basis, i.e. EL(R)1 and EL(R)2 , are obtained by rotating the
flavour basis as (

EL(R)

E ′
L(R)

)
= UL(R)

(
EL(R)1

EL(R)2

)
. (16)

Next, denoting an SM lepton doublet (singlet) as LαL (lαR), Yukawa interactions with the
triplet � can be written as

LY,� = LSM
Y,� + LVLL

Y,� , (17a)

LSM
Y,� = −

∑
α,β=e,μ,τ

yαβ
� Lc

αL iσ2� LβL + h.c., (17b)

LVLL
Y,� = −2

∑
α=e,μ,τ

yα4
� Lc

αL iσ2� LL − y44
� Lc

L iσ2� LL + h.c. (17c)

One notes that the term LSM
Y,� parameterises the interactions involving the SM leptons and �

and is also present in the minimal Type-II model. On the other hand, LVLL
Y,� describes how

the VLLs interact with � and is an addition over the minimal Type-II. Finally, we describe
the Yukawa interactions involving k++ below.

LY,k++ = LSM
Y,k++ + LVLL

Y,k++ , (18a)

LSM
Y,k++ = −

∑
α,β=e,μ,τ

yαβ
S lcαR lβRk

++ + h.c., (18b)

LVLL
Y,k++ = −2

∑
α=e,μ,τ

yα4
S lcαR E ′

Rk
++ − y44

S E ′c
R E ′

Rk
++ + h.c. (18c)

It is convenient to describe the present framework in terms of masses and mixing angles.
The following scalar quartic couplings can be solved in terms of physical scalar masses and
the mixing angle θ as under.

2 The mixings, even if allowed, are rendered small from the nonobservation of CLFV. This has been explicitly
demonstrated in [43] for VLLs having quantum numbers identical to the present scenario. Therefore, they
anyway do not majorly modify the muon g-2 prediction in this model, thereby justifying the choice. Other
constraints on such mixings, although subleading to CLFV, stem from the measurement of pp → h → μμ

[27] and pp → h → 4l [44].

123



 1183 Page 6 of 25 Eur. Phys. J. Plus        (2021) 136:1183 

λ = M2
h

v2 , (19a)

λ4 = 2(M2
H+ − M2

�)

v2 , (19b)

λ5 = 2(M2
H − M2

H+)

v2 , (19c)

λ6 = 2
[
(M++

1 )2sin2θ + (M++
2 )2cos2θ − M2

S

]
v2 , (19d)

λ8 = 2sinθcosθ
[
(M++

2 )2 − (M++
1 )2

]
v2 . (19e)

The independent parameters in the scalar sector are therefore {v, v�,μ2, Mh, MH , M+
H ,

M++
1 , M++

2 , M�, MS, λ1, λ2, λ3, λ7}. Of these, we fix Mh = 125 GeV and v � 246 GeV
for v� << v.

A nonzero v� leads to nonzero neutrino-mass elements of the form mαβ
ν = √

2yαβ
� v�.

This necessitates yαβ
� to be complex. All other Yukawa couplings are taken real since they

do not participate in neutrino mass generation. One can also eliminate y4, y′
4 in favour of the

VLL masses and αL , αR as

y4 =
√

2

v
(M2sinαL cosαR − M1cosαL sinαR), (20a)

y′
4 =

√
2

v
(M2cosαL sinαR − M1sinαL cosαR). (20b)

The neutral member of the VLL multiplet, N , then has the mass

MN = M = M1cosαLcosαR + M2sinαLsinαR . (21)

The independent parameters in the fermionic sector are therefore {mαβ
ν , yα4

� , y44
� , yαβ

S ,

yα4
S , y44

S , M1, M2, αL , αR} of which mαβ
ν are sharply constrained by the neutrino-oscillation

data.
To this end, one could think of a spin-off scenario sharing a similar field content as the

present one. An additional Y = 0 SU (2)L singlet scalar S (say) can be additionally introduced
(see [45] and the references therein for a discussions on the scalar singlet-assisted scotogenic
model) and a Z2 symmetry can be further invoked under which {S,�, k++, LL ,R, E ′

L ,R} →
{−S,−�,−k++,−LL ,R,−E ′

L ,R}, while the SM fields are even. Such a construct has several

implications. First, it enforces V3, LSM
Y,�, LSM

Y,k++ → 0 and also obviates mixing between
the SM leptons and the VLLs. Secondly, the lightest neutral particle in the Z2-odd sector
can be a candidate for dark matter (DM). Thirdly, a nonzero neutrino mass in this case is
realised at one-loop with the VLLs and Z2-odd scalars circulating in the loop. Therefore, the
model introduced in this paper can be a precursor to a future study involving DM that would
essentially retain the main mechanism responsible for the muon g-2 enhancement as detailed
in this study.

3 Possible constraints

We list in this section various constraints on the present framework from both theory and
experiments.

123



Eur. Phys. J. Plus        (2021) 136:1183 Page 7 of 25  1183 

3.1 Theoretical constraints

The bounds |λi | ≤ 4π, |yi | <
√

4π ensure that the theory remains perturbative, where λi (yi )
denotes a generic quartic(Yukawa) coupling.

The following conditions ensure that the scalar potential remains bounded from below
(BFB) for large field values of the constituent scalar fields:

V1 ≡ λ > 0, (22a)

V2 ≡ λ1 > 0, (22b)

V3 ≡ 2λ1 + λ2 > 0, (22c)

V4 ≡ λ3 > 0, (22d)

V5 ≡ λ4 − λ5 + √
λλ1 > 0, (22e)

V6 ≡ λ4 + λ5 + √
λλ1 > 0, (22f)

V7 ≡ λ4 + λ5 + V8 ≡
√

λ
(
λ1 + λ2

2

)
> 0, (22g)

V9 ≡ λ4 − λ5 +
√

λ
(
λ1 + λ2

2

)
> 0, (22h)

V10 ≡ λ6 + √
λλ3 > 0, (22i)

V11 ≡ λ7 + √
λ1λ3 > 0, (22j)

V12 ≡ λ7 +
√

λ3
(
λ1 + λ2

2

)
> 0. (22k)

A given condition in the aforementioned set comes from demanding the scalar potential
remains BFB in a given direction in the field space.

Additional constraints on the quartic couplings come from unitarity. A tree-level 2 → 2
scattering matrix can be constructed between various two particle states consisting of charged
and neutral scalars [46,47]. Unitarity demands that the absolute value of each eigenvalue of
the aforementioned matrix must be bounded from above at 8π . The conditions for the present
scenario are3

|λ1 + λ2| ≤ 8π, (23a)

|λ4 − 2λ5| ≤ 8π, (23b)

|λ4 ± λ5| ≤ 8π, (23c)

|2λ1 + 3λ2| ≤ 16π, (23d)(
λ + λ1 − λ2 ±

√
(λ − λ1 + λ2)2 + 16λ2

5

)
≤ 16π, (23e)

(
λ + λ7 ±

√
(λ − λ7)2 + 8λ2

8

)
≤ 16π, (23f)

(
λ4 + 2λ5 + λ6 ±

√
(λ4 − 2λ5 − λ6)2 + 24λ2

8

)
≤ 16π. (23g)

In addition, these bounds obtained from demanding perturbativity and a BFB as well as
unitary scalar potential must be imposed at each energy scale while evolving the quartic
couplings under RG.

3 The expressions have been checked with [48] in the appropriate limit.
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3.2 Neutrino mass

The UPMNS matrix diagonalises the neutrino mass matrix mν , i.e.,

mν = U∗
PMNS mdiag

ν UT
PMNS , (24a)

with UPMNS = VPMNS × diag(1, eiα21/2, , eiα31/2) and (24b)

VPMNS =

⎛
⎜⎜⎝

c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13eiδCP c12c23 − s12s23s13eiδCP s23c13

s12s23 − c12c23s13eiδCP −c12s23 − s12c23s13eiδCP c23c13

⎞
⎟⎟⎠ , (24c)

where si j = sin θi j , ci j = cos θi j , δCP is the Dirac phase, and α21 and α31 are the Majorana
phases. We fix the neutrino oscillation parameters to their central values [49] as

sin2θ12 = 0.307 , sin2θ23 = 0.510 , sin2θ13 = 0.021 ,

�m2
21 = 7.45 × 10−5 GeV2 , �m2

32 = 2.53 × 10−3 GeV2 ,

δCP = 1.41π , α21 = α31 = 0 . (25)

The mass of the lightest neutrino and Majorana phases are assumed to vanish in the present
analysis.

3.3 Collider limits on VLL masses

Limits on the VLL masses are weak for negligible mixing of the VLLs with the SM leptons
which is the case here. A limit in case of an heavy charged lepton from colliders reads
M, M ′ > 102.6 GeV [50]. A weak limit ∼ O (MeV) on masses neutral leptons comes from
Big Bang Nucleosynthesis (BBN) [50]. We therefore take MN , M1, M2 > 110 GeV for the
subsequent analysis.

3.4 T -parameter

We derive the contribution of the VLLs to the electroweak T -parameter [51] following
[32,52].

�TVLL = 1

4πs2
wc

2
w

(
2h+(r1, rN ) + (sin2αL + sin2αR)[−h+(r1, rN ) + h+(r2, rN )]

+ 2cosαLcosαR h−(r1, rN ) + 2sinαLsinαR h−(r2, rN )
)
, (26)

where

h+(x, y) = x + y

2
− xy

x − y
log

( x
y

)
; x �= y,

= 0; x �= y. (27a)

h−(x, y) = √
xy

[
x + y

x − y
log

( x
y

)
− 2

]
; x �= y,

= 0; x �= y. (27b)

Also, rN =
(
MN
MZ

)2
and r1,2 =

(
M1,2
MZ

)2
. As for any scalar contribution, the T -parameter has

a counter term at quantum level unlike the SM and its multi-doublet Higgs extensions. This
additional counter term stems from the renormalisation of v�. In order to fit the experimental
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data, potentially large contribution due to the mass splittings to T can be absorbed by the
counterterm. Hence, after renormalisation, we do not expect stringent constraints on scalar
mass splittings. The scalar contribution is therefore ignored in this work. Taking the global
electroweak fit [50], we impose the limit �TVLL = 0.07 ± 0.12 at 2σ .

3.5 h → γ γ signal strength

The dominant amplitude for the h → γ γ in the SM reads

MSM
h→γ γ = 4

3
A1/2

( M2
h

4M2
t

)
+ A1

( M2
h

4M2
W

)
. (28)

We have neglected the small effect of fermions other than the t-quark in Eq. (28). The presence
of additional charged scalars and leptons implies that additional one-loop contributions to
the hγ γ amplitude shall arise, thereby modifying the corresponding decay width w.r.t. the
SM. The amplitude stemming from the charged scalars H+, H++

1,2 reads [53–55]

MCS
h→γ γ = λhH+H−v

2M2
H+

A0

(
M2

h

4M2
H+

)
+

2λhH++
1 H−−

1
v

(M++
1 )2

A0

(
M2

h

4(M++
1 )2

)

+
2λhH++

2 H−−
2

v

(M++
2 )2

A0

(
M2

h

4(M++
2 )2

)
, (29)

where

λhH+H− = λ4v, (30a)

λhH++
1 H−−

1
= v

{
(λ4 − λ5)c

2
θ + λ6s

2
θ − 2λ8sθcθ

}
, (30b)

λhH++
1 H−−

2
= v

{
(λ4 − λ5)s

2
θ + λ6c

2
θ + 2λ8sθcθ

}
. (30c)

Similarly, the VLLs contribute the following to the amplitude

MVLL
h→γ γ =

∑
i=1,2

yhEi Ei A1/2

( M2
h

4M2
i

)
. (31)

with

yhE1E1 = 1

2v

[
M1

(
− 1 + cos(2αL )cos(2αR)

)
+ M2

(
sin(2αL )sin(2αR)

)]
, (32a)

yhE2E2 = 1

2v

[
M2

(
− 1 + cos(2αL )cos(2αR)

)
+ M1

(
sin(2αL )sin(2αR)

)]
. (32b)

The total amplitude and the decay width then become

Mh→γ γ = MSM
h→γ γ + MCS

h→γ γ + MVLL
h→γ γ , (33)

�h→γ γ = GFα2
emM

3
h

128
√

2π3
|Mh→γ γ |2. (34)

where GF and αem denote, respectively, the Fermi constant and the QED fine-structure
constant. The various loop functions are listed below [54].

A1/2(x) = 2

x2

(
(x + (x − 1) f (x)

)
, (35a)

A1(x) = − 1

x2

(
(2x2 + 3x + 3(2x − 1) f (x)

)
, (35b)
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A0(x) = − 1

x2

(
x − f (x)

)
, (35c)

with f (x) = arcsin2(
√
x); x ≤ 1

= −1

4

[
log

1 + √
1 − x−1

1 − √
1 − x−1

− iπ

]2

; x > 1. (35d)

where A1/2(x), A1(x) and A0(x) are the respective amplitudes for the spin- 1
2 , spin-1 and

spin-0 particles in the loop. The signal strength for the γ γ channel is defined as

μγγ = σ(pp → h)BR(h → γ γ )[
σ(pp → h)BR(h → γ γ )

]
SM

(36)

Given the new scalars and VLLs do not modify the pp → h production rate,

μγγ = BR(h → γ γ )[
BR(h → γ γ )

]
SM

, (37)

� �SM
h→γ γ

�h→γ γ

(38)

The latest 13 TeV results on the diphoton signal strength from the LHC read μγγ = 0.99+0.14
−0.14

(ATLAS [56]) and μγγ = 1.18+0.17
−0.14 (CMS [57]). Upon using the standard combination of

signal strengths and uncertainties, we obtain μγγ = 1.06 ± 0.1 and impose this constraint
at 2σ .

4 Neutrino mass, �aμ and charged lepton flavour violation

We reiterate at the beginning that δ++ and k++, respectively, couple to only left chiral and
right chiral leptons. However, in the mass eigenbasis, a doubly charged scalar couples to both
chiralities. That is, the interactions of muons with the VLLs and H++

1,2 can be expressed as

L = 2
∑
i=1,2

∑
j=1,2

μc(yi jL PL + yi jR PR)Ei H
++
j + h.c., (39)

where

y11
L = yμ4

� cosαLcosθ, (40a)

y11
R = −yμ4

S sinαRsinθ, (40b)

y12
L = yμ4

� cosαLsinθ, (40c)

y12
R = yμ4

S sinαRcosθ, (40d)

y21
L = yμ4

� sinαLcosθ, (40e)

y21
R = yμ4

S cosαRsinθ, (40f)

y22
L = yμ4

� sinαLsinθ, (40g)

y22
R = −yμ4

S cosαRcosθ. (40h)
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We assume ye4
� , yτ4

� , y44
� , yαβ

S , ye4
S , yτ4

S , y44
S to be vanishingly small.4 The one-loop muon

g-2 �aμ has the following three distinct components in this limit:

�aμ = (
�a+

μ

)
Type-II + (

�a++
μ

)
Type-II + (

�a++
μ

)
VLL. (41)

In Eq. (41),
(
�a+

μ

)
Type-II (

(
�a++

μ

)
Type-II) denotes the contribution from the one-loop

amplitude involving SM leptons + singly (doubly) charged scalars. The expression for(
�a+

μ

)
Type-II is given by [23]

(
�a+

μ

)
Type-II = − m2

μ

8π2

v2

v2 + 2v2
�

∑
α=e,μ,τ

(
y†
�U

∗
PMNS

)
μα

(
UT

PMNSy�
)
αμ

∫ 1

0
dx

x2(1 − x)

m2
μx

2 + (M2
H+ − m2

μ − m2
α)x + m2

α

, (42a)

� −
(
m2

ν

)
μμ

96π2

m2
μ

v2
�M2

H+
. (42b)

Also,

(
�a++

μ

)
Type-II = − m2

μ

8π2

∑
i

∑
α

bi
(
y†
�

)
μα

(
y�

)
αμ

∫ 1

0
dx

[
4x2(1 − x)

m2
μx

2 + ((M++
i )2 − m2

μ − m2
α)x + m2

α

+ 2x2(1 − x)

m2
μx

2 + (m2
α − m2

μ − (M++
i )2)x + (M++

i )2

]
, (43a)

where b1 = c2
θ , b2 = s2

θ

� −
(
m2

ν

)
μμ

12π2

m2
μ

v2
�

(
c2
θ

(M++
1 )2

+ s2
θ

(M++
2 )2

)
. (43b)

The contribution from to �aμ from H+ is identical to the minimal Type-II seesaw. In fact, the
contribution from doubly charged scalars is also qualitatively the same as can be checked from
Fukuyama et al. [23]. In either case, the scalars only couple to the left-chiral components
of the SM fermions and hence no chirality-flip occurs in the muon g-2 amplitudes. Most
importantly, one finds that

(
�a++

μ

)
Type-II < 0 implying that the Type-II-like amplitudes

cannot explain the muon anomaly [23].
The contribution from the VLLs is5

(
�a++

μ

)
VLL

=
∑
i=1,2

∑
j=1,2

[
− m2

μ

4π2

(
{(yi jL )2 + (yi jL )2}I1(Mi , M

++
j ) + 2Mi

mμ

yi jL yi jR I2(Mi , M
++
j )

)

− m2
μ

2π2

(
{(yi jL )2 + (yi jR )2}I3(Mi , M

++
j ) + 2Mi

mμ

yi jL yi jR I4(Mi , M
++
j )

)]
. (44)

4 Demanding �, k++ and the VLLs to be odd under some Z2 symmetry while keeping the SM fields even

under the same necessitates y44
� , yαβ

S , y44
S = 0. We refer to the last paragraph of Sect. 2 for a discussion.

5 An excellent review containing analytical formulae for �aμ for different classes of models is [58].
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The integrals Ia(m1,m2), a = 1, 2, 3, 4 upon neglecting mμ are

I1(m1,m2) =
∫ 1

0
dx

x2(1 − x)

m2
1x + m2

2(1 − x)
, (45a)

I2(m1,m2) =
∫ 1

0
dx

x2

m2
1x + m2

2(1 − x)
, (45b)

I3(m1,m2) =
∫ 1

0
dx

x2(1 − x)

m2
1(1 − x) + m2

2x
, (45c)

I4(m1,m2) =
∫ 1

0
dx

x(1 − x)

m2
1(1 − x) + m2

2x
. (45d)

The integrals Ia(m1,m2), a = 1, 2, 3, 4 are all positive, and their analytical expressions are
given in Appendix. It then follows that the contribution to

(
�a++

μ

)
VLL from the first and third

terms in Eq. (44) is negative. In contrast, a chirality-flip is noted in the second and fourth
terms. To examine this contribution more closely, we define �M ≡ M2 − M1 << M1 and
�M++ ≡ M++

2 − M++
1 << M++

1 and take αL = αR for simplicity. The chirality-flipping
contribution in its lowest order of �M and �M++ then becomes

(
�a++

μ

)cf
VLL � mμ

4π2 y
μ4
� yμ4

S sin(2αR)sin(2θ)
�M�M++

(M++
1 )3

f
( M2

1

(M++
1 )2

)
, (46a)

f (r) = (−35r3 + 15r2 + 27r − 7) + (12r3 + 40r2 − 2r − 1)log(r)

2(r − 1)5
. (46b)

Thus, nonzero mass splittings between E1, E2 and H++
1 , H++

2 and correspondingly nonzero
mixings are necessary to achieve a nonzero chirality-flip for αL = αR .6 More importantly,
Eq. (46a) shows that the chirality-flipped amplitude can be of either sign. In fact, it is enhanced

w.r.t. the chirality preserving part of
(
�a++

μ

)
VLL and the Type-II like terms by an O

(
Mi
mμ

)
factor. It is therefore possible to generate a positive contribution of the requisite magnitude
by choosing the parameters appropriately.

To numerically test the chirality-flipping effect, we plot �aμ versus M1 in Fig. 1 for
�M = M2 − M1 = 30 GeV, 50 GeV; �M++ = M++

2 − M++
1 = 80 GeV, 100 GeV; and;(

yμ4
� , yμ4

S

)
= (0.5, 0.5), (0.7, 0.7). The values chosen for the other parameters are v� =

10−3 GeV, M� = MS = MH+ = M++
1 = 500 GeV, θ = αL = αR = π

4 .
An inspection of Fig. 1 ascertains that the aforementioned chirality-flip can indeed lead

to an explanation of the muon anomaly in this model. We reiterate that in
(
�a++

μ

)
VLL, the

chirality-flipped contribution is enhanced w.r.t the negative terms by O(Mi/mμ). Therefore,
Fig. 1 essentially captures the behaviour of the chirality-flipped amplitude. It is seen that the
larger are the mass splittings �M and �M++, the larger is the size of chirality-flip and hence,
the larger is �aμ. Though Eq. (46a) is derived for �M << M1, �M++ << M++

1 , it still
intuitively indicates a larger muon g-2 value for larger mass splittings, thereby explaining
the said behaviour in Fig. 1. Equation (46a) also shows that the chirality-flip is proportional
to the product yμ4

� yμ4
S and this explains the higher in �aμ in the right plot compared to the

left for a given set of �M , �M++ and the mixing angles.
The chirality-flip is further probed by identifying the region in the M1 −M2 plane leading

to the observed �aμ. Figure 2 shows the parameter region allowed by the diphoton and

6 This observation highlights the role of EWSB and the parameters λ8, y4, y′
4 in generating the mass splittings

and ultimately predicting the observed value of �aμ.
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Fig. 1 The variation of �aμ with M1 for different values of �M and �M++ and two sets of
(
yμ4
� , yμ4

S

)
.

The horizontal straight lines correspond to the observed 2σ limit. The values chosen for the other parameters
are given in the text. The colour coding is explained in the legends

T -parameter constraints for specific choices for the other relevant parameters (as seen in the
plots). A smaller region is seen to explain the muon anomaly for each case.

Figure 2 too can be interpreted using Eq. (46a). With �M++ = 100 GeV for each panel, as
M++

1 increases from 500 GeV to 1 TeV keeping the Yukawa couplings and the mixing angles

fixed, the denominator of
(
�a++

μ

)cf
VLL increases and hence �M must accordingly increase to

maintain �aμ in the 2σ band. This is precisely why the band expands upon switching from
the top left to the top right panel. For example, with M2 = 2 TeV, M1 ∈ [1.59, 1.84 TeV]
expands to M1 ∈ [1.35 TeV,1.75 TeV] here. The shrinkage seen while switching from top
left to bottom left, i.e. from yμ4

� = yμ4
S = 0.5 to 1, is also expected since increasing yμ4

� yμ4
S

while keeping the other parameters fixed would cause �M to appropriately constrict (M1 ∈
[1.85, 1.93 TeV], correspondingly).

One also reads from Eq. (46a) that θ = αL = αR = π
4 maximises

(
�a++

μ

)cf
VLL for mixed

masses and Yukawa couplings. Changing the value to π
6 therefore implies a more relaxed

band in the M1 − M2 plane compared to the corresponding one for π
4 . This is concurred by

an inspection of Fig. 3. Each band in this case is broader than the corresponding one for π
4 .

TheO(Mi/mμ) chirality-flipped enhancement does not occur in the lα → lβγ amplitudes

[59] for α �= β due to the assumption that ye4
� , yτ4

� , yβ4
S are vanishingly small.7 Analogously

to
(
�a+

μ

)
Type-II and

(
�a++

μ

)
Type-II, a nonzero la → lβγ amplitude is therefore induced

only by the triplet � that couples to only the left-chiral components of the SM leptons. The
lα → lβγ amplitude is then qualitatively similar to that in the minimal Type-II case [60].
One then finds the corresponding branching ratio in the present model to be

BR(lα → lβγ ) = αem |(m2
ν)αβ |2

12πG2
Fv4

�

(
1

8M2
H+

+ c2
θ

(M++
1 )2

+ s2
θ

(M++
2 )2

)2

BR(lα → lβνανβ).

(47)

7 Even if no such approximation is a priori made, an estimation of the LFV chirality-flipping amplitude using
[58] leads to |yα4

� |, |yα4
S | ∼ O(10−4) for α = e, τ here.
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Fig. 2 Parameter region in the M1 − M2 plane allowed by the diphoton and T -parameter constraint (sky
blue) and leading to �aμ in the observed 2σ limit in addition to satisfying the diphoton and T -parameter
constraints (green). The values taken by the other parameters are shown in the plots

Similarly, the branching ratios of the 3-body CLFV decays are given by8

BR(μ → eee) = |meμ
ν |2|mee

ν |2
16G2

Fv4
�

(
c2
θ

(M++
1 )2

+ s2
θ

(M++
2 )2

)2

BR(μ → eνeνμ), (48a)

BR(τ → lαlβ lγ ) = S
|mτα

ν |2|mβγ
ν |2

16G2
Fv4

�

(
c2
θ

(M++
1 )2

+ s2
θ

(M++
2 )2

)2

BR(τ → μνμντ ).(48b)

In the above, S = 1(2) for β = γ (β �= γ ), BR(μ → eνeνμ) = 100% and BR(τ → μνμντ )

= 17%. The updated CLFV bounds are summarised in Table 2.
We read from Eq. (47) that the size of such branching ratios for all α, β = e, μ, τ

is controlled by v� for fixed scalar masses. Choosing an appropriately large v� therefore
suffices to evade the CLFV bounds.

8 The corresponding formula for the Higgs triplet model is seen in [60,61].
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Fig. 3 Same as Fig. 2 but with θ = αL = αR = π
6

Table 2 Latest upper limits on
LFV branching ratios

LFV channel Experimental bound

μ → eγ < 4.2 ×10−13 [62]

τ → eγ < 1.5 ×10−8 [63]

τ → μγ < 1.5 ×10−8 [63]

μ → eee < 1 ×10−12 [64]

τ → eee < 1.4 ×10−8 [65]

τ → μee < 8.4 ×10−9 [65]

τ → μeμ < 1.6 ×10−8 [65]

τ → eμμ < 9.8 ×10−9 [65]

τ → eμe < 1.1 ×10−8 [65]

τ → μμμ < 1.2 ×10−8 [65]
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5 Analysis combining electroweak vacuum stability

In this section, we look for a stable EW vacuum till the Planck scale within the parameter
space compatible with the observed muon g-2. The boundary scale or the scale from which
the couplings begin to evolve towards high scales is chosen to be the t-pole mass, i.e. Mt

= 173.34 GeV. We first note the following additional terms in the β-function of the Higgs
quartic coupling λ w.r.t. the SM.

βλ = βSM
λ + 6λ2

4 + 4λ2
5 + 2λ2

6 + 4λ2
8 + 4λ

(
y2

4 + (y′
4)

2) − 4y4
4 − 4(y′

4)
4 (49)

A complete set of the one-loop beta functions is given in Appendix. Those for the Yukawa
couplings ye4

� , yτ4
� , y44

� , yαβ
S , ye4

S , yτ4
S and y44

S are however neglected since, for instance,
ye4
� → 0 at the EW scale implies ye4

� → 0 at all scales. The presence of both bosonic and
fermionic terms in βλ − βSM

λ paves the path for an interesting interplay. We throughout take
M� = MS = M+

H = M++
1 as well as λ1 = λ2 = λ7 = 0.01, λ3 = 0.3 at the boundary scale

for simplification. We also take MW = 80.384 and αs(MZ ) = 0.1184 in which case the t-
Yukawa and the gauge couplings at the boundary scale are yt (μ = Mt ) = 0.93690, g1(μ =
Mt ) = 0.3583, g2(μ = Mt ) = 0.6478, g3(μ = Mt ) = 1.1666 [4].

Table 3 Benchmarks to
demonstrate EW vacuum stability
in the present scenario

BP1 BP2

v� 10−3 GeV 10−8 GeV

M1 850.0 GeV 200.0 GeV

M2 920.8 GeV 236.8 GeV

M++
1 200.0 GeV 800.0 GeV

M++
2 270.0 GeV 854.4 GeV

yμ4
� 0.497 0.447

yμ4
S 0.345 0.430

θ 0.158 0.100

αL 0.732 −1.209

αR 0.760 −0.955

�aμ 1.372 × 10−9 1.601 × 10−9

BR(μ → eγ ) 8.562 × 10−35 3.404 × 10−17

BR(τ → eγ ) 8.562 × 10−35 6.064 × 10−18

BR(τ → μγ ) 8.562 × 10−35 1.065 × 10−16

BR(μ → eee) 2.657 × 10−35 1.059 × 10−17

BR(τ → eee) 6.733 × 10−36 2.683 × 10−18

BR(τ → μee) 7.224 × 10−35 2.879 × 10−17

BR(τ → eμe) 1.197 × 10−34 4.774 × 10−17

BR(τ → eμμ) 1.636 × 10−33 6.521 × 10−16

BR(τ → μeμ) 1.285 × 10−33 5.122 × 10−16

BR(τ → μμμ) 1.755 × 10−32 6.997 × 10−15

�TVLL � 0.006 � 0.003

μγγ 0.983 0.930
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Fig. 4 Top figure: RG evolution of λ for BP1 and BP2. Bottom left (right) figure: RG evolutions of Vi for
BP1 (BP2). The colour coding is explained in the legends

We propose two benchmarks in Table 3 in order to gain insight on the evolution under
RG. These benchmarks pass all the relevant constraints and predict �aμ in the 2σ range.

Figure 4 displays the RG running of λ and Vi for BP1 and BP2. Both the benchmarks
are seen to offer a stable EW vacuum till the Planck scale (taken to be � 1019 GeV) since
λ is rendered positive throughout the evolution. Besides, one also finds Vi > 0 for either
benchmark. It is worthwhile to comment on the role of λ8 in stabilising the vacuum. For both
BP1 and BP2, λ4(Mt ) = 0 and λ5(Mt ), λ6(Mt ) = O(0.01). Such small values do not suffice
to ensure λ > 0 till the Planck scale and considering that λ4,5,6 have gentle RG evolution
trajectories, it is actually λ8 that stabilises the EW vacuum. That λ in case of BP2 increases
more rapidly under RG compared to BP1 is also attributed to the different λ8(Mt ) values in
the two cases. While λ8(Mt ) = 0.169 for BP1, it equals 0.297 for BP2 implying a stronger
bosonic push to the RG evolution of λ in case of the latter. And, for either benchmark, the
fermionic contribution coming from y4 and y′

4 is too weak to counter the bosonic effect.
Therefore, it is established that with an appropriate choice of the parameters, the explanation
of the muon anomaly in the current scenario complies with a stable EW vacuum till the
Planck scale.
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Fig. 5 Allowed parameter points in the yμ4
� -yμ4

S plane. The magenta points satisfy all requirements except

vacuum stability, while the green points additionally ensure a stable vacuum and a perturbative theory till 1019

GeV

Next, we try to extract parameter regions consistent with all the constraints, a value of
�aμ within the 2σ range as well as a stable EW vacuum till the Planck scale. We choose
the set (v�, M1, M

++
1 ) to be (10−3 GeV, 500 GeV, 200 GeV) and (10−8 GeV, 200 GeV, 800

GeV) make the following variation of the rest parameters:

0 ≤ �M ≤ 100 GeV, 0 ≤ �M++ ≤ 100 GeV, (50a)

0 ≤ yμ4
� , yμ4

S ≤ √
4π, (50b)

0 ≤ θ ≤ π

2
, −π

2
≤ αL , αR ≤ π

2
. (50c)

A parameter point is selected if it clears all the constraints and leads to a muon g-2 value
within 2σ . Further, all such parameter points are evolved under RG and a subset yielding
a stable vacuum and also abiding by perturbativity and unitarity up to μ = 1019 GeV is
identified. The parameter points are plotted in the yμ4

� -yμ4
S (Fig. 5), αL -αR (Fig. 6) and αL -θ

(Fig. 7) planes.
We find upon inspecting Fig. 5 that the requirement of validity till high scales greatly

constrains yμ4
� and yμ4

S . In fact, |yμ4
� |, |yμ4

� | � 0.5. Above this value, these Yukawa couplings
become nonperturbative at scales lower than the Planck scale irrespective of the values taken
by the other parameters. Therefore, an upper bound is derived from high-scale perturbativity.
However, the lower bound depends on the choice of the other parameters. For instance, the
lower bound yμ4

� � 0.21, yμ4
S � 0.25 for the v� = 10−3, M1 = 500 GeV, M++

1 =
200 GeV configuration is more stringent than that obtained for v� = 10−8 GeV, M1 =
200 GeV, M++

1 = 800 GeV, i.e. yμ4
� , yμ4

S � 0.06.
Figure 6 shows that in the αL > 0, αR > 0 quadrant, the magenta region essentially

comprises a band about the αR = αL straight line. Demanding validity till the Planck scale
constricts the band further. This can be traced to the fact that validity till high scales favours
y4 ∼ y′

4. And for the (M1, M2) values taken in the scan, y4 ∼ y′
4 favours αL ∼ αR

[see Eqs. (20a) and (20b)]. In addition, as corroborated in Fig. 7, a stable vacuum and a
perturbative theory till 1019 GeV imposes an upper bound on θ . This is expected since a
constraint on λ8 from vacuum stability and perturbative unitarity shall always translate to a
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Fig. 6 Allowed parameter points in the αL -αR plane. The colour coding is the same as in Fig. 5

Fig. 7 Allowed parameter points in the αL -θ plane. The colour coding is the same as in Fig. 5

corresponding constraint on θ [see Eq.(19e)]. The bound, i.e. θ ≤ 0.25, is more restrictive
for v� = 10−8 GeV, M1 = 200 GeV, M++

1 = 800 GeV than the corresponding θ < 0.50
for v� = 10−3 GeV, M1 = 500 GeV, M++

1 = 200 GeV.

6 Summary and conclusions

If the Run 1 data of the “MUON G-2” experiment [66] corroborate the existing discrepancy,
the hint of NP contributing to the muon anomalous magnetic moment will get stronger. The
present study puts forth one such NP scenario. In this work, we have extended the minimal
Type-II seesaw scenario by a doubly charged scalar singlet, an SU (2)L doublet of vector-like
leptons and a charged SU (2)L singlet vector-like lepton. While mixing between the newly
introduced vector leptons and the SM leptons is neglected, it is allowed between the VLLs
themselves. Similarly, the scalar potential allows for a mixing between the two doubly charged
scalars in the framework. Therefore, the doubly charged mass eigenstates couple to both
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chiralities of leptons. We have explained how a chirality-flip can then explain the observed
value of the muon g-2, something not possible within the minimal Type-II model alone. A
nonzero neutrino mass and appropriately suppressed CLFV can be predicted at the same time.
Another pertinent issue the present work touches upon is that of EW vacuum stability given
that the scenario features additional scalar degrees of freedom. We have computed the one-
loop RG equations for this model and demonstrated that the parameter region accounting for
a �aμ value in the desired range can also lead to a stable EW vacuum up to the Planck scale.
An interesting follow-up constitutes engineering a similar chirality-flip for �aμ connecting
the doubly charged scalars coming from the LRSM, and such an investigation is presently
underway.9

The following lepton-rich signals can arise at the LHC for this model whenever M1 >

M++
1,2 :

• pp → E+
1 E−

1 → H±±
i H∓∓

j l+l− → 6l,

• pp → E+
1 E−

1 → H±±
i H∓∓

j l+l− → W+W−W+W−l+l− → 6l+ � ET for i, j = 1,2.

We assumed that H±±
i dominantly decays to l±l± and W±W± for the first and second

cascade, respectively. For either case, demanding a total of 6 leptons in the final state can
definitely help suppress the SM background. Moreover, the first signal is not accompanied by
neutrinos and hence the doubly charged scalar masses are fully reconstructible modulo the
combinatorics. A successful reconstruction of the scalar masses in the i �= j case confirms
the presence of two distinct doubly charged scalars, thereby distinguishing this scenario from
the minimal Type-II model, at colliders.
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Appendix

A. Unitarity

We compute here the 2 → 2 scattering matrices and their eigenvalues in the basis of two-
particle states.

Neutral 2-particle states: We take the basis as
{
δ+φ−, φ+δ−, δ++k−−, k++δ−−,

φ0χ0, δ0η0, η0χ0, φ0δ0, φ0η0, δ0χ0, φ+φ−, δ+δ−, δ++δ−−, k++k−−,
η0η0√

2
,

χ0χ0√
2

,
φ0φ0√

2
,

δ0δ0√
2

}
leading to an 18×18 matrix. The 15 eigenvalues analytically obtained are

a1 = a2 = λ1,

a3 = λ1 + λ2,

a4 = a5 = λ4 − 2λ5,

a6 = a7 = λ4 − λ5,

a8 = a9 = λ4 + λ5,

a10 = 1

2

(
λ + λ1 − λ2 +

√
(λ − λ1 + λ2)2 + 16λ2

5

)
,

9 In preparation.
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a11 = 1

2

(
λ + λ1 − λ2 −

√
(λ − λ1 + λ2)2 + 16λ2

5

)
,

a12 = a13 = 1

2

(
λ + λ7 +

√
(λ − λ7)2 + 8λ2

8

)
,

a14 = a15 = 1

2

(
λ + λ7 −

√
(λ − λ7)2 + 8λ2

8

)
. (51)

Singly charged 2-particle states:A 12×12 matrix is constructed in the basis
{
δ+φ0, δ+η0,

δ+δ0, δ+χ0, φ+φ0, φ+η0, φ+δ0, φ+χ0, δ++δ−, δ++φ−, k++δ−, k++φ−}
. Its eigenvalues

are

b1 = a1, b2 = a3, b3 = a4, b4 = a6, b5 = b6 = a8,

b7 = a10, b8 = a11, b9 = a12, b10 = a14,

b11 = 1

2

(
λ4 + 2λ5 + λ6 +

√
(λ4 − 2λ5 − λ6)2 + 24λ2

8

)
,

b12 = 1

2

(
λ4 + 2λ5 + λ6 −

√
(λ4 − 2λ5 − λ6)2 + 24λ2

8

)
. (52)

Doubly charged 2-particle states: We arrange the 2-particle states in the basis
{
δ++φ0,

δ++η0, δ++δ0, δ++χ0, k++φ0, k++η0, k++δ0, k++χ0, δ+φ+, δ+δ+√
2

,
φ+φ+√

2

}
. Amongst the

total 11, 8 eigenvalues can be determined analytically as

c1 = a1, c2 = a3, c3 = 1

2
(2λ1 + 3λ2), c4 = a8, c5 = λ6,

c6 = λ7, c7 = a12, c8 = a14. (53)

Triply charged 2-particle states: A 4×4 matrix is needed to be constructed in the basis,
say, {δ++δ+, δ++φ+, k++δ+, k++φ+}. The eigenvalues read

d1 = a1, d2 = a6, d3 = c5, d4 = c6. (54)

Quadruply charged 2-particle states: A 3×3 matrix constructed in the basis {δ++k++,
δ++δ++√

2
, k++k++√

2
} has the following eigenvalues:

e1 = a1, e2 = c6, e3 = λ3. (55)

The eigenvalues not determined analytically were computed numerically in the parameter
space scans.

B. Muon g-2 functions

Analytical formulae for the integrals in
(
�aμ

)
VLL

are

I1(m1,m2) =
[
m6

1 − 6m4
1m

2
2 + 3m2

1m
4
2 + 2m6

2 + 6m2
1m

4
2log

(
m2

1

m2
2

)]/[
6(m2

1 − m2
2)

4],
(56a)

I2(m1,m2) =
[
m4

1 − 4m2
1m

2
2 + 3m4

2 + 2m4
2log

(
m2

1

m2
2

)]/[
2(m2

1 − m2
2)

3], (56b)

I3(m1,m2) =
[

2m6
1 + 3m4

1m
2
2 − 6m2

1m
4
2 + m6

2 − 6m4
1m

2
2log

(
m2

1

m2
2

)]/[
6(m2

1 − m2
2)

4],
(56c)
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I4(m1,m2) =
[
m4

1 − m4
2 − 2m2

1m
2
2log

(
m2

1

m2
2

)]/[
2(m2

1 − m2
2)

3]. (56d)

C. One-loop beta functions

The one-loop beta function for a quartic coupling λi is split into scalar, gauge and fermionic
terms as βλi = βS

λi
+ β

g
λi

+ βF
λi

. Thus,

16π2βS
λ = 12λ2 + 6λ2

4 + 4λ2
5 + 2λ2

6 + 4λ2
8, (57a)

16π2βS
λ1

= 14λ2
1 + 4λ1λ2 + 2λ2

2 + 4λ2
4 + 4λ2

5 + 2λ2
7, (57b)

16π2βS
λ2

= 12λ1λ2 + 3λ2
2 − 8λ2

5, (57c)

16π2βS
λ3

= 10λ2
3 + 4λ2

6 + 6λ2
7, (57d)

16π2βS
λ4

= 6λλ4 + 8λ1λ4 + 2λ2λ4 + 4λ2
4 + 8λ2

5 + 2λ6λ7 + 4λ2
8, (57e)

16π2βS
λ5

= 2λλ5 + 2λ1λ5 − 2λ2λ5 + 8λ4λ5 − 4λ2
8, (57f)

16π2βS
λ6

= 6λλ6 + 4λ3λ6 + 4λ2
6 + 6λ4λ7 + 12λ2

8, (57g)

16π2βS
λ7

= 4λ4λ6 + 8λ1λ7 + 2λ2λ7 + 4λ3λ7 + 4λ2
7 + 4λ2

8, (57h)

16π2βS
λ8

= 2λλ8 + 4λ4λ8 − 8λ5λ8 + 4λ6λ8 + 2λ7λ8. (57i)

16π2β
g
λ = −3λ(g2

1 + 3g2
2) + 3

4
g4

1 + 3

4
g2

1g
2
2 + 9

4
g4

2, (58a)

16π2β
g
λ1

= −12λ1(g
2
1 + 2g2

2) + 12g4
1 + 24g2

1g
2
2 + 18g4

2, (58b)

16π2β
g
λ2

= −12λ2(g
2
1 + 2g2

2) − 48g2
1g

2
2 + 12g4

2, (58c)

16π2β
g
λ3

= −48λ3g
2
1 + 192g4

1, (58d)

16π2β
g
λ4

= −λ4

(15

2
g2

1 + 33

2
g2

2

)
+ 3g4

1 + 6g4
2, (58e)

16π2β
g
λ5

= −λ5

(15

2
g2

1 + 33

2
g2

2

)
− 6g2

1g
2
2, (58f)

16π2β
g
λ6

= −λ6

(51

2
g2

1 + 9g2
2

)
+ 12g4

1, (58g)

16π2β
g
λ7

= −λ7

(
20g2

1 + 8g2
2

)
+ 48g4

1, (58h)

16π2β
g
λ7

= −λ8

(
11g2

1 + 7g2
2

)
+ 48g4

1 . (58i)

16π2βF
λ = 4λ

(
3y2

t + 3y2
b + y2

τ + y2
4 + (y′

4)
2
)

− 4
(

3y4
t + 3y4

b + y4
τ + y4

4 + (y′
4)

4
)
,

(59a)

16π2βF
λ1

= 16λ1

(
yμ4
�

)2 − 64
(
yμ4
�

)4
, (59b)

16π2βF
λ2

= 16λ2

(
yμ4
�

)2 + 64
(
yμ4
�

)4
, (59c)

16π2βF
λ3

= 16λ3

(
yμ4
S

)2 − 64
(
yμ4
S

)4
, (59d)
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16π2βF
λ4

= λ4

[(
8yμ4

�

)2 + 6y2
t + 6y2

b + 2y2
τ + 2y2

4 + 2(y′
4)

2
]
, (59e)

16π2βF
λ5

= λ5

[(
8yμ4

�

)2 + 6y2
t + 6y2

b + 2y2
τ + 2y2

4 + 2(y′
4)

2
]
, (59f)

16π2βF
λ6

= λ6

[(
8yμ4

�

)2 + 6y2
t + 6y2

b + 2y2
τ + 2y2

4 + 2(y′
4)

2
]
, (59g)

16π2βF
λ7

= λ7

[(
8yμ4

�

)2 +
(

8yμ4
S

)2 + 16y2
4

(
yμ4
�

)2
]
, (59h)

16π2βF
λ8

= λ8

[(
4yμ4

�

)2 +
(

4yμ4
S

)2 + 6y2
t + 6y2

b + 2y2
τ + 2y2

4 + (y′
4)

2
]
. (59i)

We next list the β-functions for the relevant Yukawa couplings below.

16π2βyt = 9

2
y3
t + yt

(
3y2

b + y2
τ + y2

4 + (y′
4)

2 − 17

12
g2

1 − 9

4
g2

2 − 8g2
3

)
, (60a)

16π2βyb = 9

2
y3
b + yb

(
3y2

t + y2
τ + y2

4 + (y′
4)

2 − 5

12
g2

1 − 9

4
g2

2 − 8g2
3

)
, (60b)

16π2βyτ = 5

2
y3
τ + yτ

(
3y2

t + 3y2
b + y2

4 + (y′
4)

2 − 15

4
g2

1 − 9

4
g2

2

)
, (60c)

16π2βy4 = 5

2
y3

4 + y4
(
3y2

t + 3y2
b + (y′

4)
2 − 15

4
g2

1 − 9

4
g2

2

)
, (60d)

16π2βy′
4

= 5

2
(y′

4)
3 + y′

4

(
3y2

t + 3y2
b + y2

4 − 15

4
g2

1 − 9

4
g2

2

)
, (60e)

16π2β
yμ4
�

= 8(yμ4
� )3 + yμ4

�

( y2
4

2
− 3

2
g2

1 − 9

2
g2

1

)
, (60f)

16π2β
yμ4
S

= 8(yμ4
S )3 + yμ4

S

(
y2

4 − 6g2
1

)
. (60g)

Finally, the β-functions for the gauge couplings read

16π2βg1 = 67

6
g3

1, (61a)

16π2βg2 = −13

6
g3

2, (61b)

16π2βg3 = −7g3
3 . (61c)
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