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ABSTRACT
Multiparty Private Set Intersection (mPSI), enables 𝑛 parties, each

holding private sets (each of size𝑚) to securely compute the inter-

section of these private sets. While several protocols are known for

this task, the only concretely efficient protocol is due to the work

of Kolesnikov et al. (KMPRT, CCS 2017), who gave a semi-honest

secure protocol with communication complexity O(𝑛𝑚𝑡_), where
𝑡 < 𝑛 is the number of corrupt parties and _ is the security parame-

ter. In this work, we make the following contributions:

− First, for the natural adversarial setting of semi-honest honest

majority (i.e. 𝑡 < 𝑛/2), we asymptotically improve upon the above

result and provide a concretely efficient protocol with total com-

munication of O(𝑛𝑚_).
− Second, concretely, our protocol has 6(𝑡 + 2)/5 times lesser com-

munication than KMPRT and is up to 5× and 6.2× faster than

KMPRT in the LAN and WAN setting even for 15 parties.

− Finally, we introduce and consider two important variants of

mPSI - circuit PSI (that allows the parties to compute a function

over the intersection set without revealing the intersection itself)

and quorum PSI (that allows 𝑃1 to learn all the elements in his/her

set that are present in at least 𝑘 other sets) and provide concretely

efficient protocols for these variants.
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1 INTRODUCTION
Multiparty PSI. Private set intersection (PSI) [53, 74] enables two

parties 𝑃1 and 𝑃2, with respective input sets 𝑋 and 𝑌 , to learn the

intersection 𝑋 ∩ 𝑌 , without revealing any other information to

any of the parties. General secure multiparty computation proto-

cols [4, 5, 39, 76] have proven to be inefficient to solve this problem

and hence several works have focused on obtaining concretely

efficient specialized protocols [14, 18, 19, 24, 43, 46, 50, 51, 59, 62–

65, 67, 69, 70]. The problem of Multiparty PSI (mPSI) was first in-

troduced in [31] and it generalizes PSI – i.e., 𝑛 parties compute

the intersection of their 𝑛 private data sets, without revealing any

additional information. While the protocol with best asymptotic

communication complexity for mPSI was given in [44], the first

and only known practical realization was provided in [51]. This

protocol is secure in the semi-honest dishonest majority setting
1

(i.e., the adversary can corrupt up to 𝑛 − 1 parties and follows

the protocol specification faithfully) and its total communication

complexity is O(𝑛𝑚𝑡_), where 𝑛 is the number of parties, 𝑡 < 𝑛

is the corruption threshold,𝑚 is the set size of each party and _

is the computational security parameter. While such a high com-

munication overhead might be unavoidable for concretely efficient

dishonest majority protocols (i.e., not based on homomorphic en-

cryption), in many scenarios, security against honest majority (i.e.,

𝑡 < 𝑛/2) is acceptable and widely studied in several practical con-

texts [2, 7, 17, 21, 52, 55, 78]. Hence, it is important to explore the

concrete efficiency of mPSI protocols in this setting. Unfortunately,

even under this relaxation (also considered in [15]), the best known

protocol [51] is no better and has complexity O(𝑛𝑚𝑡_).

1.1 Our Contributions
In this work, we build the first concretely efficient mPSI protocol in

the semi-honest honest majority setting, with total communication

of O(𝑛𝑚_), thus obtaining an O(𝑡)-factor improvement over [51].

While theoretically, this matches the complexity of the protocol

from [44] based on homomorphic encryption
2
, concretely, our pro-

tocol is approximately 6(𝑡 + 2)/5 times more communication frugal

1
The works of [47, 51] also build concretely efficient mPSI in a weaker augmented

semi-honest model (see Section 1.2); here we focus on standard semi-honest security.

2
Although the HE-based mPSI of [44] achieves a communication of O(𝑛𝑚_) in the

semi-honest dishonest majority setting, we compute a rough lower bound on its

concrete complexity that is much higher than ours (see Sections 1.2 and 6.2.1).
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than [51]. This amounts to more than an order of magnitude lesser

communication than [51] when the number of parties > 15 and

𝑡 ≈ 𝑛/2; even when 𝑡 = 1, our protocol has nearly 4× lesser com-

munication than [51]. We also implement our protocol and show

it to be up to 5× and 6.2× faster than [51] in the LAN and WAN

settings, respectively in the honest majority setting considered in

their experiments (as an example for 𝑛 = 15, 𝑡 = 7 and𝑚 = 2
20
, our

protocol executes in under 40s in LAN and 245s in WAN settings).

Next, we consider 2 important variants of the mPSI problem

– circuit PSI and quorum PSI – and provide concretely efficient

semi-honest secure protocols in the honest majority setting.

Circuit PSI. The problem of circuit PSI was introduced in the

2 party setting [45] and enables parties 𝑃1 and 𝑃2, with their private

input sets 𝑋 and 𝑌 , respectively, to compute 𝑓 (𝑋 ∩ 𝑌 ), where 𝑓
is any symmetric function (i.e., 𝑓 operates on 𝑋 ∩ 𝑌 and is oblivi-

ous to the order of elements in it). Circuit PSI allows to keep the

intersection 𝑋 ∩ 𝑌 itself secret from the parties while allowing

to securely compute 𝑓 (𝑋 ∩ 𝑌 ) and has found many interesting

applications such as cardinality, set intersection sum [48, 77], and

threshold cardinality/intersection [3, 10, 31, 35, 36, 42, 66, 79, 80].

Circuit PSI has received a lot of attention and has also shown to be

practically feasible in the 2-party context [13, 16, 26, 64–66]. The

problem of circuit PSI is equally well-motivated in the multiparty

setting. However, to the best of our knowledge, it has remained

unexplored.

In our work, we provide the first multiparty circuit PSI protocol

achieving a communication of approximately O(𝑚𝑛(_^ + log2 𝑛)).
Concretely, its communication is only ≈ 4× the cost of mPSI.

Quorum PSI. We consider another variant of mPSI, called quo-
rum PSI (qPSI), where a leader 𝑃1 wishes to obtain the elements

of his/her set that are also present in at least 𝑘 of the other 𝑛 − 1
parties’ sets. Such a variant lends itself to natural applications -

e.g. in the context of anti-money laundering [27, 28] and checking

if a list of entities is present in multiple blacklists. We provide an

efficient qPSI protocol in the semi-honest honest majority setting

achieving a communication cost of O(𝑛𝑚^ (_ + ^ log𝑛)).
We implement both circuit PSI and qPSI protocols showing that

these protocols are concretely efficient as well. These are the first

implementations of multiparty circuit PSI and quorum PSI.

Protocol blueprint. Our protocols for all three problem settings,

namely, mPSI, circuit PSI and qPSI, broadly have two phases. At a

high level, in the first phase, a fixed designated party, say 𝑃1, inter-

acts with all other parties 𝑃2, . . . , 𝑃𝑛 using 2-party protocols. In the

second phase, all parties engage in 𝑛-party protocols to compute a

circuit to get the requisite output. We describe these phases in the

context of mPSI and then discuss the changes for the other variants.

For mPSI, in the first phase, we invoke a two-party functionality,

which we call weak private set membership (wPSM) functionality,

between a leader, 𝑃1 and each 𝑃𝑖 (for 𝑖 ∈ {2, · · · , 𝑛}). Informally,

the wPSM functionality, when invoked between 𝑃1 and 𝑃𝑖 on their

individual private sets
3
does the following: for each element in

3
Strictly speaking, as is common in PSI protocols, a phase of local hashing is done

before invoking this functionality.

𝑃1’s set, it outputs the same random value to both 𝑃1 and 𝑃𝑖 , if

that element is in 𝑃𝑖 ’s set, and outputs independent random values,

otherwise
4
. By invoking only 𝑛 instances of the wPSM functionality

overall, we ensure that the total communication complexity of this

phase is linear in 𝑛. In the second phase, all the parties together

run a secure multiparty computation to obtain shares of 0 for each

element in 𝑃1’s set that is in the intersection and shares of a random

element for other elements. Having invoked wPSM between 𝑃1 and

every other party, this can be computed using a single multiplication
protocol. We evaluate this multiplication using the MPC protocol

from [21, 52] in the second phase, resulting in the total communi-

cation complexity being linear in 𝑛. In contrast, in [51], each party

interacts in 2𝑡 instances of a wPSM-like functionality, incurring an

additional multiplicative 𝑡 overhead.

In our circuit and quorum PSI protocols, the first phase addition-

ally includes conversion of the outputs from thewPSM functionality

to arithmetic shares of 1 if 𝑃1 and 𝑃𝑖 received the same random

value, and shares of 0, otherwise (this is similar to how 2-party

circuit-PSI protocols work). In the second phase, in circuit-PSI, for

every element of 𝑃1, all parties must get shares of 1 if that element

belongs to the intersection, and shares of 0, otherwise. To do this,

we use the following trick: for every element 𝑥 in 𝑃1’s set, count

the number of other sets 𝑞𝑥 in which element 𝑥 is present (the

first phase of our protocol does indeed give us such a count). Now,

if we compute 𝑤𝑥 = (𝑞𝑥 − (𝑛 − 1))𝑝−1 over F𝑝 , where 𝑝 > 𝑛 is

prime, then 𝑤𝑥 = 0 if 𝑞𝑥 = 𝑛 − 1 (and 1 otherwise), which pre-

cisely gives us whether or not 𝑥 is in the intersection. Hence, one

can compute shares of whether 𝑥 is in the intersection or not by

simply computing this polynomial (which can be securely done

using 2 log 𝑝 multiplications). In the case of qPSI, we appropriately

choose another polynomial such that for each element in 𝑃1’s set,

the polynomial evaluates to 0 if and only if that element belongs to

the quorum intersection, and random otherwise.

Next, we make a few observations on our protocol blueprint. As

already mentioned, this blueprint allows us to get sub-quadratic

complexity in 𝑛 for all our protocols. Moreover, in the first phase,

𝑃𝑖 for 𝑖 ≠ 1 interacts with 𝑃1 alone. As an example, in mPSI, 𝑃𝑖
only engages in one instance of wPSM, whereas 𝑃1 engages in 𝑛− 1
instances of the same. We show that the complexity of phase-one

significantly dominates the overall complexity. With these observa-

tions, our protocols give a desirable property of all-but-1 parties

being light-weight, making them suitable to be used in a client-

server setting, where only one party needs to be computationally

heavy and is played by the server. Unlike prior works in the client-

server setting [1, 54], we allow collusion between the server, 𝑃1,

and any subset of the clients, 𝑃2, . . . , 𝑃𝑛 as long as 𝑡 < 𝑛/2 parties
are corrupt. Finally, the protocol in [51] also had an asymmetry be-

tween load on different parties, and our clients require 7(2𝑡 + 3)/10
times less communication than clients in [51].

To summarize our contributions:

• We give the first concretely efficient protocol for mPSI, with

communication complexity of O(𝑛𝑚_) and constant rounds.

4
This resembles the two-party oblivious programmable pseudorandom function (OPPRF)
functionality [51], and we indeed show that it can be instantiated using an OPPRF.
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• We construct the first multiparty circuit PSI and qPSI protocols

and show them to be concretely efficient.

• Finally, we implement our protocols and show that our mPSI

protocol is up to 5× and 6.2× faster than prior state-of-the-art

[51] in LAN and WAN settings, respectively, even for 15 parties.

Our protocols are semi-honest secure in the honest majority setting.

1.2 Related Work
HE-based mPSI. The state-of-the-art work on HE-based mPSI proto-

cols is that of [44] who provide a threshold additive homomorphic

encryption (HE) based protocol with an asymptotic communication

complexity of 𝑂 (𝑛𝑚_), thus matching ours. While no implementa-

tion is provided in this work, in Section 6.2.1, we estimate a lower

bound on its concrete computation and communication costs, and

show that its expected run-times are much worse than ours.

Threshold PSI. The works of [3, 10, 36] propose protocols for the
problem of multiparty threshold PSI (where the parties learn the

intersection only if its size is greater than a threshold) using HE

schemes. The works of [3] and [10] further use their respective

multiparty threshold PSI protocols to obtain mPSI protocols with

complexities O(𝑛_𝑇 log𝑇 ) and O(𝑛_𝑇 2
log𝑇 ) respectively, where

𝑇 =𝑚 − (size of intersection). As mentioned by the authors them-

selves, these protocols are more suitable for settings when the

intersection size is large and close to𝑚. While this leads to sub-

linear in 𝑚 protocols when 𝑇 is sub-linear in 𝑚, for the general

problem of mPSI, when 𝑇 can be arbitrary (and even 𝑂 (𝑚)), the
complexity of their protocol is super-linear in𝑚, and concretely

worse than that of [44] (and hence our protocol).

Other Related Works. The works of [1, 54] build mPSI protocols in

the server-aided model (which assumes the existence of a server

that does not collude with the clients). Further, [44] as well as the

works of [15, 31, 35, 44, 49, 71, 72] also provide theoretical protocols

for the malicious setting, whose complexities are naturally much

worse than semi-honest protocols.

Augmented semi-honest security.AnmPSI protocol in the augmented

semi-honestmodel was proposed in [51], whose complexitymatches

our semi-honest protocol’s complexity. However, augmented semi-

honest security is much weaker than standard semi-honest security.

In particular, the augmented semi-honest mPSI protocol of [51]

completely leaks the intersection of the honest parties’ sets to the

adversary even in the honest majority setting, which is clearly disal-

lowed by standard semi-honest security (see Appendix A for more

details).

1.3 Organization
We discuss the formal security model and cryptographic primitives

in Section 2. Then, we describe our mPSI protocol in Section 3, our

circuit PSI protocol in Section 4, and our qPSI protocol in Section 5.

Finally, we present our empirical evaluation results in Section 6.

2 PRELIMINARIES
Notations. Let ^ and _ denote statistical and computational security

parameters respectively. For a positive integer 𝑘 , [𝑘] denotes the
set {1, 2, · · · , 𝑘}. For a set 𝑆 , |𝑆 | denotes the cardinality of 𝑆 . For

sets 𝑆 and 𝑆 ′, 𝑆 \ 𝑆 ′ denotes the set of elements that are present in

𝑆 but not in 𝑆 ′. For 𝑥 ∈ {0, 1}∗, |𝑥 | denotes the bit-length of 𝑥 . For

integers 𝑎 and 𝑏 such that (𝑎 < 𝑏), [𝑎, 𝑏] denotes the closed interval
of integers between 𝑎 and 𝑏. We use log to denote logarithms with

base 2. For any 𝑥 ∈ {0, 1}ℓ , we also use its natural interpretation

as an integer in the range {−2ℓ−1, 2ℓ−1 − 1} using 2’s complement

representation. F𝑝 denotes a finite field with prime order 𝑝 .

Secret Sharing. An (𝑛, 𝑡)− secret sharing scheme [6, 73] for 𝑡 < 𝑛 al-

lows to distribute a secret 𝑠 amongst𝑛 parties as shares [𝑠]1, · · · , [𝑠]𝑛 ,
such that any 𝑡 + 1 parties can collectively reconstruct the secret 𝑠

from their shares and no collusion of 𝑡 parties learn any informa-

tion about 𝑠 . We instantiate (𝑛, 𝑡)− secret sharing for a secret 𝑠 ∈ F
with the Shamir secret sharing scheme [73]. Additionally, we make

use of the additive secret sharing scheme, which is an (𝑛, 𝑛 − 1)-
secret sharing scheme. Here, to share 𝑠 ∈ F, shares of 𝑛 parties

⟨𝑠⟩1, · · · , ⟨𝑠⟩𝑛 are chosen uniformly from the field F subject to the

constraint that ⟨𝑠⟩1 + · · · + ⟨𝑠⟩𝑛 = 𝑠 , where + is the addition oper-

ation in F. We use the additive secret sharing both in the general

𝑛-party setting and also more specifically in the 2-party setting. To

secret share a boolean value 𝑏 ∈ {0, 1} between 2 parties, we use

additive secret sharing scheme over the field F2. If a bit 𝑏 is shared

amongst two parties 𝑃𝑖 and 𝑃 𝑗 , the shares are denoted by ⟨𝑏⟩𝐵
𝑖
and

⟨𝑏⟩𝐵
𝑗
respectively. We note that both Shamir secret sharing and

additive sharing are linear schemes. For any 𝑎, 𝑏, 𝑐 ∈ F, 𝑐 · [𝑎] + [𝑏]
(resp. 𝑐 · ⟨𝑎⟩ + ⟨𝑏⟩) represents that, for each 𝑖 ∈ [𝑛], 𝑃𝑖 computes

𝑐 · [𝑎]𝑖 + [𝑏]𝑖 (resp. c ·⟨𝑎⟩𝑖 + ⟨𝑏⟩𝑖 )). Linearity ensures that for any

𝑎, 𝑏, 𝑐 ∈ F, 𝑐 · [𝑎] + [𝑏] = [𝑐 · 𝑎 + 𝑏]. For 𝑎, 𝑐 ∈ F, [𝑎] + 𝑐 and ⟨𝑎⟩ + 𝑐
represent the local computation required to get [𝑎 + 𝑐] and ⟨𝑎 + 𝑐⟩.

2.1 Security Model
We consider the multiparty setting with 𝑛 parties: 𝑃1, · · · , 𝑃𝑛 . We

consider a semi-honest adversary A that corrupts 𝑡 < 𝑛/2 par-

ties and tries to learn as much information as possible from the

protocol execution but faithfully follows the protocol specifica-

tion. This is called the semi-honest honest majority setting. To

capture semi-honest security of a protocol in the simulation based

model [11, 37, 40], we show that for any semi-honest adversary,

there exists a simulator such that the view of a distinguisher in the

following two executions are indistinguishable: one is the view of

the real execution of the protocol in the presence of a semi-honest

adversary and the second is the view of an ideal execution of the

protocol where a simulator interacts with the ideal functionality

(which, given the inputs of all parties, computes the function be-

ing evaluated and returns the outputs). We further also consider

semi-honest security in a hybrid model [11], where, in addition to

communicating as usual in the standard execution of the protocol,

the parties have access to an ideal functionality. Specifically, in

an F -hybrid protocol, the parties may give inputs to and receive

outputs from this functionality F . By the universal composition

theorem [11], if we have any semi-honest secure protocol 𝜋 realiz-

ing the functionality F , then any F -hybrid protocol can be realized

in the standard model, by replacing F with the protocol 𝜋 .

2.2 Cuckoo Hashing
Cuckoo hashing [61] uses 𝐾 random hash functions ℎ1, · · · , ℎ𝐾 :

{0, 1}𝜎 → [𝛽] to map𝑚 elements into 𝛽 bins. The mapping proce-

dure is as follows. An element 𝑥 is inserted into the bin ℎ𝑖 (𝑥), if
this bin is empty for some 𝑖 ∈ [𝐾] (if there are multiple empty bins,
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then we pick the first one in the lexicographic ordering of the bins).

Otherwise, pick a random 𝑖 ∈ [𝐾], insert 𝑥 in bin ℎ𝑖 (𝑥), evict the
item currently in ℎ𝑖 (𝑥) and recursively insert the evicted item. The

recursion proceeds until no more evictions are necessary or until a

threshold number of re-allocations are done. If the recursion stops

because of the latter reason, it is considered as a failure event. This

failure signifies existence of an element that didn’t map to any of

the bins. Some variants of Cuckoo hashing maintain a set called the

stash, to store such elements. Stash-less cuckoo hashing is where

no special stash is maintained.

In stash-less Cuckoo hashing, Pinkas et al. [67] showed that for

𝐾 = 3, 4 and 5 and 𝛽 = 1.27𝑚, 1.09𝑚 and 1.05𝑚 respectively, the fail-

ure probability is at most 2
−40

, by extrapolating their experimental

analysis for the failure probability 2
−30

. When considering stash-

less Cuckoo hashing, to upper bound the overall failure probability

of our protocols to 2
−40

, we require an analysis of the parameters

for the failure probabilities 2
−41/2−42/2−46. Extrapolating, similar

to [67], we get 𝛽 = 1.28𝑚/1.28𝑚/1.31𝑚 to ensure that the failure

probability in stash-less Cuckoo hashing is at most 2
−41/2−42/2−46

respectively, for 𝐾 = 3. Similar to prior works that use Cuckoo

hashing [13, 51, 56, 65, 67, 70] that includes the state-of-the-art in

mPSI, the main description of all our protocols assumes this stash-

less setting. However, our protocols can be extended to the setting

with stash. We describe this extension for mPSI in Section 3.4 while

similar techniques can also be applied for the case of circuit PSI

and qPSI.

2.3 Two-party Functionalities
2.3.1 Equality Test. We use a two-party equality test functionality

F ℓEQ . Here, parties 𝑃1 and 𝑃2 have 𝑎 ∈ {0, 1}ℓ and 𝑏 ∈ {0, 1}ℓ
respectively as private inputs and receive boolean shares of the bit 1

if𝑎 = 𝑏 and 0 otherwise, as the output.We use the protocol from [13]

that builds on the ideas of [23, 32, 68] to realize this functionality.

The concrete communication complexity of this protocol is at most

3ℓ_/4 + 8ℓ and round complexity is log ℓ .

2.3.2 Boolean to Arithmetic Share Conversion. We also use a two-

party functionality F FB2A, which converts boolean shares of a bit to

its additive shares (in a field F). More specifically, the functionality

requires parties 𝑃1 and 𝑃2 to input their boolean shares ⟨𝑏⟩𝐵
1
and

⟨𝑏⟩𝐵
2
respectively and outputs the additive shares ⟨𝑥⟩1 and ⟨𝑥⟩2

of 𝑥 ∈ F for 𝑥 = 𝑏 to 𝑃1 and 𝑃2 respectively. We instantiate this

functionality with the share conversion protocol given in [68] that

uses one correlated OT and has total communication of _+ ⌈log |F|⌉
bits and takes 2 rounds.

We remark here that OT extension using the recent line of work on

SilentOT [9, 75] can be used to improve the communication cost

of both the equality test and boolean to arithmetic share conver-

sion functionalities. Our implementations do not incorporate these

recent optimizations, which would only improve their performance.

2.4 Weak Private Set Membership
We define a 2-party functionality, F 𝛽,𝜎,𝑁wPSM , called weak private set
membership (wPSM) that allows a clean exposition of our protocols.

We note that this functionality is similar in spirit to the batch

oblivious programmable PRF (OPPRF) considered in [65] and as we

discuss later, that is indeed one way to realize this functionality

efficiently. In a single instance of the wPSM, one party holds an

element 𝑞 and another party holds a set 𝑋 . Parties learn the same

random element𝑤 if 𝑞 ∈ 𝑋 , else one party learns 𝑦 and other party

learns𝑤 , where 𝑦 and𝑤 are independent random values. Similar

to [65], we consider a batch version of this functionality, where

the parties do multiple instances of wPSM together as a batch. We

define the functionality F 𝛽,𝜎,𝑁wPSM formally in Figure 1, where 𝛽 is the

batch size, 𝜎 is length of input and output elements, and 𝑁 is the

total size of all sets input by the second party.

𝑃1 and 𝑃2 are the receiver and the sender respectively.

Receiver 𝑃1’s Inputs: The queries 𝑞1, · · · , 𝑞𝛽 ∈ {0, 1}𝜎 .
Sender 𝑃2’s Inputs: Sets {𝑋 𝑗 } 𝑗 ∈[𝛽 ] , where |𝑋 𝑗 (𝑖) | = 𝜎 for

every 𝑗 ∈ [𝛽] and 𝑖 ∈
[
|𝑋 𝑗 |

]
and

∑
𝑗 |𝑋 𝑗 | = 𝑁 .

Output:
• For each 𝑗 ∈ [𝛽], sample𝑤 𝑗 uniformly from {0, 1}𝜎 .
• For each 𝑗 ∈ [𝛽], if 𝑞 𝑗 ∈ 𝑋 𝑗 , set 𝑦 𝑗 = 𝑤 𝑗 , else sample 𝑦 𝑗
uniformly from {0, 1}𝜎 .
• Return {𝑦 𝑗 } 𝑗 ∈[𝛽 ] to 𝑃1 and {𝑤 𝑗 } 𝑗 ∈[𝛽 ] to 𝑃2.

Figure 1: Weak PSM Functionality F 𝛽,𝜎,𝑁wPSM

We consider three instantiations of this functionality using prim-

itives considered in the line of OPPRFs [51]. We provide details on

instantiations in Appendix B and summarize their costs below.

• Polynomial-based batch-OPPRF [65]: Instantiating using the

polynomial-based OPPRF from [65] has the concrete communi-

cation cost of 3.5_𝛽 + 𝑁𝜎 and round complexity of 2.

• Table-based OPPRF [51]: The instantiation using table-based

OPPRF [51] assumes an upper-bound on the size of the individual

sets, which is derived specific to its application. Let 𝑑 ∈ N be

the minimum value such that the aforementioned upper-bound

is bounded by 2
𝑑
. When we instantiate using the table-based

OPPRF, the concrete communication cost is (4.5_ + 2𝑑𝜎)𝛽 and

round complexity is 2.

• Relaxed batch OPPRF: We can instantiate F 𝛽,𝜎,𝑁wPSM functionality

by invoking relaxed batchOPPRF [13] followed5 by an invocation
of table-based OPPRF [51]. The concrete communication of this

case is (8_ + 4𝜎)𝛽 + 1.31𝑁𝜎 and round complexity is 4.

Execution Cost: Instantiations of the F 𝛽,𝜎,𝑁wPSM functionality using

the above 3 approaches provide trade-offs between computation

and communication [13, 51, 65]. Due to this, different protocols are

more efficient in different experimental settings as is evident from

the empirical results given in Section 6.

2.5 Multiparty Functionalities
Our protocols invoke several 𝑛-party functionalities (described

below) in the honest majority setting. The protocols from [21, 52]

can be used to realize these functionalities. Let F(+, ·) be a finite
field. Let 𝑛 be the number of parties and 𝑡 < 𝑛/2 be the corruption
threshold. Recall that for an element 𝑎 ∈ F, [𝑎] denotes its (𝑛, 𝑡)-
5
Relaxed batch OPPRF doesn’t directly realize batch OPPRF functionality and can’t be

used as a standalone primitive to instantiate wPSM. Refer Appendix B for details.
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Functionality Communication Rounds

RandomF𝑛,𝑡 (ℓ)
⌈
ℓ
𝑛−𝑡

⌉
𝑛(𝑛 − 1) ⌈log |F|⌉ 1

< 2ℓ (𝑛 − 1) ⌈log |F|⌉
MultF𝑛,𝑡 ( [𝑎], [𝑏]) 2( 2𝑛𝑛−𝑡 + 3) (𝑛 − 1) ⌈log |F|⌉ 5

(amortized cost) < 14(𝑛 − 1) ⌈log |F|⌉
Reveal𝑛,𝑡 ( [𝑎]) (𝑛 − 1) ⌈log |F|⌉ 1

ConvertShares𝑛,𝑡 (⟨𝑎⟩) 2( 𝑛𝑛−𝑡 + 1) (𝑛 − 1) ⌈log |F|⌉ 3

(amortized cost) < 6(𝑛 − 1) ⌈log |F|⌉
Table 1: Communication costs of 𝑛-party functionalities.
The upper bounds given are for 𝑡 < 𝑛/2.

linear secret sharing and ⟨𝑎⟩ denotes its additive secret sharing.

Since these are linear secret sharing schemes, as discussed, scalar

multiplications and additions can be done by local operations.

• RandomF𝑛,𝑡 (ℓ) : Generates [𝑟1], · · · , [𝑟ℓ ] for uniform elements

𝑟1, · · · , 𝑟ℓ in F.
• MultF𝑛,𝑡 ( [𝑎], [𝑏]): Takes [𝑎], [𝑏] for 𝑎, 𝑏 ∈ F and outputs [𝑎 · 𝑏].

Additionally, we use the following functionalities which can be

realized using techniques from [21].

• Reveal𝑛,𝑡 ( [𝑎]) : Takes [𝑎] where 𝑎 ∈ F and outputs 𝑎 to 𝑃1.

To realize this functionality, 𝑃𝑖 , for all 𝑖 ∈ {2, . . . , 𝑛}, sends [𝑎]𝑖
to 𝑃1, who reconstructs and learns 𝑎.

• ConvertShares𝑛,𝑡 (⟨𝑎⟩) : Takes ⟨𝑎⟩ where 𝑎 ∈ F and outputs [𝑎].
We show how to realize this functionality in Appendix C.

We summarize the communication and round complexity of realiz-

ing the above functionalities as per [21] in Table 1. In our results we

invoke RandomF𝑛,𝑡 on ℓ ≫ 𝑛 and for simplicity we let ⌈ℓ/(𝑛 − 𝑡)⌉
to be ℓ/(𝑛 − 𝑡). In the complexity analysis of our results, for ease

of exposition, we approximate 𝑡/𝑛 with 1/2. This approximation

only overestimates our costs as 𝑡 < 𝑛/2.

2.6 Weak Comparison Functionality
We define a weak form of multiparty comparison functionality,

F 𝑝,𝑘,𝑛,𝑡w-CMP (where 𝑘 is an element in F𝑝 , 𝑛, 𝑡 denotes the number of

parties and corruption threshold). Here 𝑛 parties 𝑃1, · · · , 𝑃𝑛 input

their (𝑛, 𝑡)-shares of some 0 ≤ 𝑎 < 𝑛 and the functionality out-

puts the indicator bit comp, which is 1 iff 𝑎 ≥ 𝑘 , to the leader 𝑃1
and the other parties receive no output. We formally describe this

functionality in Figure 2. We provide two instantiations of this

𝑛 parties 𝑃1, · · · , 𝑃𝑛 . Prime field F𝑝 such that 1 ≤ 𝑘 < 𝑛 < 𝑝 .

Inputs: For each 𝑖 ∈ [𝑛], 𝑃𝑖 holds [𝑎]𝑖 such that 0 ≤ 𝑎 < 𝑛.

Output: If 𝑎 ≥ 𝑘 , set comp = 1, else set comp = 0. Send comp
to 𝑃1. Other parties receive no output.

Figure 2: Weak Comparison Functionality F 𝑝,𝑘,𝑛,𝑡w-CMP

functionality, which offer different trade-offs to our communication

costs, in Section 5.2.

3 MULTIPARTY PSI
We begin by formally defining the multiparty private set intersec-

tion functionality, F𝑛,𝑚PSI in Figure 3 that computes the intersection

of private sets of all the parties.

There are 𝑛 parties 𝑃1, · · · , 𝑃𝑛 .
Inputs: For each 𝑖 ∈ [𝑛], 𝑃𝑖 has a set 𝑋𝑖 of size𝑚.

Output: Return ∩𝑛
𝑖=1
𝑋𝑖 to each 𝑃𝑖 .

Figure 3: Private Set Intersection Functionality F𝑛,𝑚PSI

3.1 Multiparty PSI Protocol
Building blocks: Our protocol uses the weak PSM functionality

F 𝛽,𝜎,𝑁wPSM (Section 2.4) and the multiparty functionalities from Section

2.5 (with 𝑛 parties and corruption threshold 𝑡 < 𝑛/2) as building
blocks. We describe our protocol formally in Figure 4 and provide

an overview below.

Protocol Overview: As discussed in protocol blueprint from Sec-

tion 1.1, our mPSI protocol proceeds in two main phases. In the first

phase (steps 2 and 3 in Figure 4), 𝑃1 and 𝑃𝑖 (for each 𝑖 ∈ [𝑛]\{1})
execute a protocol such that for each element in 𝑃1’s set, they re-

ceive as output the same random value, if the element belongs to

𝑃𝑖 ’s set, and otherwise each receive independent random values.

In the second phase, all the parties execute a secure multiparty

computation (steps 1 and 4 in Figure 4) such that for every element

in the intersection, 𝑃1 obtains a 0 value and otherwise learns a

random value. We now explain the details of each phase below.

On input𝑋𝑖 from party 𝑃𝑖 , for each 𝑖 ∈ [𝑛], the protocol proceeds
in the following steps. First, is the input-independent Pre-processing
step. Here, the parties generate the randomness required in the

Evaluation step that uses the functionalities in Section 2.5. Note

that the size of this randomness only depends on the size of the

input sets and hence, can be generated independent of the inputs.

In the second Hashing step, the parties store their input sets in their

respective tables as follows: Letℎ1, ℎ2, ℎ3 be the hash functions used

to map elements into 𝛽 = 1.28𝑚 bins. Party 𝑃1 hashes its elements

into Table1 using Cuckoo hashing with ℎ1, ℎ2, ℎ3 (see Section 2.2).

Also, 𝑃1 inserts a dummy element in empty bins. With this, each bin

of Table1 has exactly one element. Parties 𝑃𝑖 for 𝑖 ∈ {2, . . . , 𝑛} do
simple hashing of 𝑋𝑖 into Table𝑖 , i.e., insert each element of 𝑋𝑖 into

three locations corresponding to ℎ1, ℎ2 and ℎ3. If for some element

these three locations are not distinct (due to collision of the hash

values), dummy element is inserted into any bin (may be randomly

picked). Each bin in Table𝑖 can have arbitrary number of elements

and in total (including dummies) each Table𝑖 has 3𝑚 elements. To

avoid false positives in the final intersection due to dummies being

inserted, we set it up so that dummy elements are different from real

elements and the dummy element of 𝑃1 is different from dummy

elements inserted by 𝑃𝑖 for 𝑖 ∈ {2, . . . , 𝑛}.
In the third step, for each 𝑖 = 2, · · · , 𝑛, 𝑃1 and 𝑃𝑖 invoke the

F 𝛽,𝜎,𝑁wPSM functionality for 𝑁 = 3𝑚 with 𝑃1 acting as a receiver with

queries Table1, and 𝑃𝑖 acting as the sender with input sets Table𝑖 .

By the definition of F 𝛽,𝜎,𝑁wPSM , for query 𝑗 , 𝑃1 and 𝑃𝑖 receive the

same random element if 𝑃1’s query, i.e., Table1 [ 𝑗] belongs to 𝑃𝑖 ’s
bin/set, i.e., Table𝑖 [ 𝑗] and different random elements, otherwise.

In the Evaluation step, all parties evaluate a circuit for each bin
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Parameters: There are 𝑛 parties 𝑃1, . . . , 𝑃𝑛 with private sets of size𝑚. Let 𝛽 = 1.28𝑚,𝜎 = ^ + ⌈log𝑚⌉ + 3 and 𝑝 > 2
𝜎
is a prime.

Additions and multiplications in the protocol are over the field F𝑝 . Let 𝑡 < 𝑛/2 be the corruption threshold.

Input: Each party 𝑃𝑖 has input set 𝑋𝑖 = {𝑥𝑖1, · · · , 𝑥𝑖𝑚}, where 𝑥𝑖 𝑗 ∈ {0, 1}𝜎 . Note that element size can always be made 𝜎 bits by first

hashing the elements using an appropriate universal hash function.

Protocol:
(1) Pre-processing (Randomness generation required for Step (4)): 𝑃1, · · · , 𝑃𝑛 compute ( [𝑠1], · · · , [𝑠𝛽 ]) ← RandomF𝑛,𝑡 (𝛽).
(2) Hashing: Parties agree on hash functions ℎ1, ℎ2, ℎ3 : {0, 1}𝜎 → [𝛽].

𝑃1 does stash-less cuckoo hashing on 𝑋1 using ℎ1, ℎ2, ℎ3 to generate Table1 and inserts dummy elements into empty bins.

For 𝑖 ∈ {2, · · · , 𝑛}, 𝑃𝑖 does simple hashing of 𝑋𝑖 using ℎ1, ℎ2, ℎ3 into Table𝑖 , i.e., stores each 𝑥 ∈ 𝑋𝑖 at locations ℎ1 (𝑥), ℎ2 (𝑥) and
ℎ3 (𝑥). If the three locations are not distinct, insert dummy elements in Table𝑖 .

(3) Invoking the F 𝛽,𝜎,𝑁wPSM functionality: For each 𝑖 ∈ {2, · · · , 𝑛} , 𝑃1 and 𝑃𝑖 invoke the F 𝛽,𝜎,𝑁wPSM functionality for 𝑁 = 3𝑚 as follows:

• 𝑃𝑖 is the sender with input {Table𝑖 [ 𝑗]} 𝑗 ∈[𝛽 ] .
• 𝑃1 is the receiver with input {Table1 [ 𝑗]} 𝑗 ∈[𝛽 ] .
• 𝑃1 receives the outputs {𝑦𝑖 𝑗 } 𝑗 ∈[𝛽 ] and 𝑃𝑖 receives {𝑤𝑖 𝑗 } 𝑗 ∈[𝛽 ] .

(4) Evaluation: For 𝑗 ∈ [𝛽],
• 𝑃1 computes ⟨𝑎 𝑗 ⟩1 =

∑𝑛
𝑖=2 (−𝑦𝑖 𝑗 mod 𝑝) and for 𝑖 ∈ {2, · · · , 𝑛}, 𝑃𝑖 sets ⟨𝑎 𝑗 ⟩𝑖 = (𝑤𝑖 𝑗 mod 𝑝).

• 𝑃1, · · · , 𝑃𝑛 compute [𝑎 𝑗 ] ← ConvertShares𝑛,𝑡 (⟨𝑎 𝑗 ⟩).
• 𝑃1, · · · , 𝑃𝑛 invoke the following multiparty functionalities:

– [𝑣 𝑗 ] ← MultF𝑛,𝑡 ( [𝑎 𝑗 ], [𝑠 𝑗 ]).
– 𝑣 𝑗 ← Reveal𝑛,𝑡 ( [𝑣 𝑗 ]).

(5) Output: 𝑃1 computes the intersection as 𝑌 =
⋃

𝑗 ∈[𝛽 ]:𝑣𝑗=0
Table1 [ 𝑗] , permutes its elements and announces to all parties.

Figure 4: MULTIPARTY PSI PROTOCOL

such that 𝑃1’s output for bin 𝑗 is 0 if and only if Table1 [ 𝑗] belongs
to the intersection. The circuit is as follows: For each 𝑗 ∈ [𝛽], 𝑃1
adds the negation of the query outputs from its interaction with

each 𝑃𝑖 (for each 𝑖 = 2, · · · , 𝑛) in Step 3 to get its additive share

⟨𝑎 𝑗 ⟩1 and for each 𝑖 = 2, · · · , 𝑛, 𝑃𝑖 sets its additive share ⟨𝑎 𝑗 ⟩𝑖 as its
response from the same interaction of Step 3. Observe that, 𝑎 𝑗 = 0

if and only if 𝑃1’s element Table1 [ 𝑗] belongs to the intersection

(except with a small error probability as explained later). The next

goal is to reveal 𝑣 𝑗 = 𝑠 𝑗 · 𝑎 𝑗 to 𝑃1, where 𝑠 𝑗 ∈ F𝑝 is uniformly

random. This ensures that if 𝑎 𝑗 is 0 then 𝑣 𝑗 is still 0, else 𝑣 𝑗 is a

uniform random element in F𝑝 (except with small probability when

𝑠 𝑗 = 0) and hides 𝑎 𝑗 . To realize this, the parties convert the additive

shares of 𝑎 𝑗 to (𝑛, 𝑡)− shares of 𝑎 𝑗 , using ConvertShares𝑛,𝑡 , and
then invoke the multiplication functionality to multiply with a

random 𝑠 𝑗 that is generated during the Pre-processing step. The

values 𝑣 𝑗 are revealed to 𝑃1 for each 𝑗 ∈ [𝛽]. In the final step 𝑃1
sets 𝑌 =

⋃
𝑗 ∈[𝛽 ]:𝑣𝑗=0

Table1 [ 𝑗], permutes the elements in 𝑌 (to hide

the relative ordering of elements in Table1) and sends it to all the

other parties.

3.2 Correctness and Security Proof

Theorem 3.1. The protocol in Figure 4 securely realizes F𝑛,𝑚PSI

in the F -hybrid model, where F = (F 𝛽,𝜎,𝑁wPSM , ConvertShares𝑛,𝑡 ,
RandomF𝑛,𝑡 ,MultF𝑛,𝑡 , Reveal𝑛,𝑡 ), against a semi-honest adversary
corrupting 𝑡 < 𝑛/2 parties.

Proof. Correctness. Let 𝑌 ∗ = ∩𝑖∈[𝑛]𝑋𝑖 and the output of the

protocol is denoted by 𝑌 . To prove correctness, we wish to show

that 𝑌 = 𝑌 ∗, with all but negligible probability. For the rest of the

proof we assume that the Cuckoo hashing by 𝑃1 succeeds, i.e., all

elements in 𝑋1 get inserted successfully in Table1. For 𝛽 = 1.28𝑚,

this happens with probability at least 1 − 2
−41

, as discussed in

Section 2.2. Now, we prove the following two lemmata.

Lemma 3.2. 𝑌 ∗ ⊆ 𝑌 .

Proof. Let 𝑒 = Table1 [ 𝑗] ∈ 𝑌 ∗. By the property of simple hash-

ing, 𝑒 ∈ Table𝑖 [ 𝑗] for all 𝑖 ∈ {2, · · · , 𝑛}. Now, by correctness of

F 𝛽,𝜎,𝑁wPSM , 𝑦𝑖 𝑗 = 𝑤𝑖 𝑗 for all 𝑖 ∈ {2, · · · , 𝑛}. Finally, by the correct-

ness of the multiparty functionalities from Section 2.5, we have

𝑎 𝑗 = 0 = 𝑣 𝑗 . Hence, 𝑒 ∈ 𝑌 . □

Lemma 3.3. 𝑌 ⊆ 𝑌 ∗, with probability at least 1 − 2−^−1.

Proof. Suppose for some 𝑗 ∈ [𝛽], let 𝑒 = Table1 [ 𝑗] be such that

𝑒 ∈ 𝑌 and 𝑒 ∉ 𝑌 ∗. Since 𝑒 ∈ 𝑌 , it holds that 𝑣 𝑗 = 0. Hence, by

correctness of MultF𝑛,𝑡 , either 𝑎 𝑗 = 0 or 𝑠 𝑗 = 0. The latter happens

with probability 𝐹1 = 𝑝
−1 < 2

−𝜎
. If 𝑎 𝑗 = 0, there are following two

disjoint and exhaustive cases for 𝑒 .

Case 1: 𝑒 ∈ 𝑋1: Since 𝑒 ∉ 𝑌 ∗, there exists 𝑖 ∈ {2, . . . , 𝑛} such that

𝑒 ∉ 𝑋𝑖 . Using the fact that dummy elements are different from real

elements, it implies that 𝑒 ∉ Table𝑖 [ 𝑗]. Now, the probability that

𝑎 𝑗 = 0 when 𝑒 ∉ Table𝑖 [ 𝑗] for some 𝑖 is bounded by 𝐹2 = 2
−𝜎

.

Case 2: 𝑒 ∉ 𝑋1: That is, 𝑒 is a dummy element inserted by 𝑃1. Now,

since dummy elements are different from real elements and are

disjoint for 𝑃1 and 𝑃𝑖 for all 𝑖 ∈ {2, . . . , 𝑛}, it holds that 𝑒 ∉ Table𝑖 [ 𝑗]
for all 𝑖 ∈ {2, . . . , 𝑛}. Hence, same as case 1, the probability that

𝑎 𝑗 = 0 is bounded by 𝐹2 = 2
−𝜎

.

Thus, the probability of false positive happening at bin 𝑗 is upper

bounded by 𝐹 = 𝐹1+𝐹2 < 2·2−𝜎 . Hence, taking a union bound on all
bins,𝑌 ⊈ 𝑌 ∗ with probability at most 𝛽 ·𝐹 < 𝛽 (2·2−𝜎 ) < 2

−^−1
. □

Hence, our protocol gives the correct output with probability at

least (1 − 2−41 − 2−^−1) ≥ 1 − 2−^ for ^ = 40.
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Security. Let 𝐶 ⊂ [𝑛] be the set of corrupt parties (|𝐶 | = 𝑡 < 𝑛/2).
We show how to simulate the view of 𝐶 in the ideal world, given

the input sets 𝑋𝐶 = {𝑋 𝑗 : 𝑗 ∈ 𝐶} and the output 𝑌 ∗ = ∩𝑛
𝑗=1
𝑋 𝑗 . We

consider two cases based on party 𝑃1 being honest or corrupt.

• Case 1 (𝑃1 is honest): To simulate the output of RandomF𝑛,𝑡

in the pre-processing step, the simulator can pick random 𝑠 𝑗 ’s,

generate their shares and give 𝑡 shares to the corrupt parties. The

hashing step is local, and can be executed by the simulator using

{𝑋𝑖 }𝑖∈𝐶 . In step 3, where the F 𝛽,𝜎,𝑁wPSM functionality is executed

by 𝑃1 and 𝑃𝑖 for each 𝑖 ∈ [𝑛]\{1}, the corrupted parties 𝐶 , only

see the sender’s views {𝑤𝑖 𝑗 }𝑖∈𝐶,𝑗 ∈[𝛽 ] , which can all be picked

at random by the simulator (by the definition of F 𝛽,𝜎,𝑁wPSM ). In step

4, besides the local computations, which can all be executed by

the simulator, the parties call functionalities ConvertShares𝑛,𝑡 ,
MultF𝑛,𝑡 and Reveal𝑛,𝑡 . The corrupted parties get at most 𝑡 shares

for the values 𝑎 𝑗 and 𝑣 𝑗 , for each 𝑗 ∈ [𝛽]. The simulator can

generate 𝑡 shares of random values (by security of (𝑛, 𝑡)-secret
sharing), and finally, send the output 𝑌 ∗ to the corrupted parties.

• Case 2 (𝑃1 is corrupt): The simulation of the pre-processing

step and the hashing step is exactly same as in Case 1. In step

3, where the F 𝛽,𝜎,𝑁wPSM functionality is executed by 𝑃1 and 𝑃𝑖 for

each 𝑖 ∈ [𝑛], since 𝑃1 ∈ 𝐶 , the corrupted parties get the receiver’s
view, {𝑦𝑖 𝑗 : 𝑖 ∈ {2, · · · , 𝑛}, 𝑗 ∈ [𝛽]}, in addition to the sender’s

views, {𝑤𝑖 𝑗 }𝑖∈𝐶\{1}, 𝑗 ∈[𝛽 ] . For a corrupted 𝑃𝑖 , the simulator picks

a random 𝑦𝑖 𝑗 = 𝑤𝑖 𝑗 , if Table1 [ 𝑗] ∈ Table𝑖 [ 𝑗], else picks a random
𝑦𝑖 𝑗 and𝑤𝑖 𝑗 independently (by the definition of F 𝛽,𝜎,𝑁wPSM and since

the simulator has both Table1 and Table𝑖 ). For an honest 𝑃𝑖 , the

simulator can pick all 𝑦𝑖 𝑗 ’s at random (again by the definition of

F 𝛽,𝜎,𝑁wPSM ). Step 4 is simulated as follows: The simulator picks the 𝑡

shares of the 𝑎 𝑗 ’s as shares of some random value. Further, for

each 𝑗 ∈ [𝛽], it sets 𝑣 𝑗 to 0∀𝑗 ∈ [𝛽] such that Table1 [ 𝑗] ∈ 𝑌 ∗, and
picks 𝑣 𝑗 uniformly at random otherwise (since 𝑠 𝑗 are uniformly

random given 𝑡 shares of the corrupt parties). It gives 𝑡 shares of

𝑣 𝑗 as output of MultF𝑛,𝑡 and 𝑣 𝑗 as output of Reveal𝑛,𝑡 ,∀𝑗 ∈ [𝛽].

□

3.3 Complexity
For all our protocols, both theoretical and empirical communica-

tion/round complexity calculations, consider the cost of end-to-end

protocol execution, which includes the pre-processing phase. First,

our protocol makes 𝑛 − 1 invocations of wPSM functionality. With

this and using linear complexity of 𝑛-party functionalities from

Section 2.5, our total communication is linear in 𝑛 (irrespective of

the specific instantiation of wPSM used). In contrast, Kolesnikov et
al. [51] makes 𝑛𝑡 calls to OPPRF functionality (which is a primitive

stronger than F 𝛽,𝜎,𝑁wPSM as shown before).

Concretely, instantiating wPSM using polynomial-based con-

struction (that has the least communication) and using complexi-

ties of 𝑛-party functionalities from Table 1, our protocol requires at

most𝑚(𝑛 − 1) (4.5_ + 35(^ + ⌈log𝑚⌉) + 140) bits of communication.

Its round complexity
6
is 8. On the other hand, [51] requires com-

munication of𝑚(𝑛𝑡 + 2𝑛 − 1) (4.5_ + 46(^ + ⌈log𝑚⌉)) and 4 rounds.

In our protocol, as well as in [51], we can see that the communi-

cation load of 𝑃1, the leader, and 𝑃𝑖 , for 𝑖 ∈ {2, · · · , 𝑛}, the clients,
are different. Specifically, the client communication complexity (the

total number of bits sent and received by the client) of our proto-

col is𝑚(4.5_ + 64(^ + ⌈log𝑚⌉) + 256). In comparison, [51] client

communication complexity is𝑚(2𝑡 + 3) (4.5_ + 46(^ + ⌈log𝑚⌉)).
For instance, consider a setting where 𝑚 = 2

20
, _ = 128 and

^ = 40. For this setting our total communication cost and per-

client communication cost are 6(𝑡 + 2)/5 times and 7(2𝑡 + 3)/10
times better than the corresponding costs of [51] respectively.

3.4 Handling stash
The state-of-the-art work in mPSI [51] propose Cuckoo hashing

based protocols only in the stash-less setting, a setting that has

been considered in several Cuckoo hashing based PSI protocols

[13, 65, 67, 70]. Nonetheless, in this section, we discuss how our

protocol above can be adapted to work in the setting when Cuckoo

hashing results in a stash at 𝑃1. Let𝑚𝑠 = 𝑂 (log𝑚) be the bound
on the stash size for input set of size𝑚 [41]. Now, for each element

in stash, 𝑃1 checks for its existence separately in sets of 𝑃𝑖 for

all 𝑖 ∈ {2, · · · , 𝑛} using a private set membership protocol (PSM)

[13, 30] whose complexity is O(𝑚_). Then, we have a procedure to
combine the results from these individual PSMs to compute whether

the element lies in the intersection of all parties or not, using ideas

similar to our mPSI protocol without stash. We provide a formal

description in Appendix D. In the stash setting, our protocol has

cost O(𝑛𝑚_ log𝑚), i.e., we pay an additional multiplicative log𝑚

to handle stash. Finally, we note that similar ideas can naturally be

used to handle the stash in both circuit PSI and qPSI if needed.

4 MULTIPARTY CIRCUIT PSI
The goal of multiparty Circuit PSI is to securely evaluate a symmet-

ric function on the set intersection of private sets of 𝑛 parties. We

formally define this functionality, F𝑛,𝑚,𝑓C−PSI in Figure 5.

There are 𝑛 parties 𝑃1, · · · , 𝑃𝑛 and a symmetric function 𝑓 .

Inputs: For each 𝑖 ∈ [𝑛], 𝑃𝑖 has a set 𝑋𝑖 of size𝑚.

Output: Return 𝑓 (∩𝑛
𝑖=1
𝑋𝑖 ) to each 𝑃𝑖 .

Figure 5: Circuit PSI Functionality F𝑛,𝑚,𝑓C−PSI

4.1 Circuit PSI Protocol
Building blocks: Our protocol uses the two-party functionalities

weak private setmembershipF 𝛽,𝜎,𝑁wPSM (Section 2.4), equality testF 𝜎EQ
6
In this paper, while calculating the round complexity of any protocol, we take into

account any parallelization possible amongst different steps of the protocols and

optimize the total number of rounds. For example, consider the mPSI protocol. Step 2

is only a local computation. The Steps 1 and 3 have no mutual dependence and can

run in parallel contributing to a total of 2 rounds. ConvertShares𝑛,𝑡 executes in 3

rounds, where the first round is independent of its input. So this round can be executed

in parallel with Step 2. Hence up to completion of ConvertShares𝑛,𝑡 execution the

protocol takes 4 rounds. TheMultF𝑛,𝑡 in Step 4 takes 5 total rounds, out of which the

first 3 are independent of input toMultF𝑛,𝑡 and hence can start with the first round of

the protocol. Therefore up until completion ofMultF𝑛,𝑡 our protocol takes 6 rounds.
Finally, Reveal𝑛,𝑡 and intersection announcement by 𝑃1 take one round each.
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Parameters: 𝑛 parties 𝑃1, . . . , 𝑃𝑛 with private sets of size𝑚. Let 𝑡 < 𝑛/2 be the corruption threshold, 𝛽 = 1.28𝑚,𝜎 = ^ + ⌈log𝑚⌉ + 2.
Additions and multiplications are over the field F𝑝 , where 𝑝 > 𝑛 is a prime. Let 𝑑 = ⌈log 𝑝⌉ − 1 and 𝑏𝑑𝑏𝑑−1 · · ·𝑏1𝑏0 denote the binary
representation of 𝑝 − 1. Let S = {𝑖 ∈ ({0} ∪ [𝑑]) : 𝑏𝑖 = 1} and ind𝑘 , . . . , ind1, ind0 be the ascending order of elements in 𝑆 , where

𝑘 = |S| − 1 .
Input: Each party 𝑃𝑖 has input set 𝑋𝑖 = {𝑥𝑖1, · · · , 𝑥𝑖𝑚}, where 𝑥𝑖 𝑗 ∈ {0, 1}𝜎 . Note that element size can always be made 𝜎 bits by first

hashing the elements using an appropriate universal hash function.

Protocol:
(1) Hashing: Parties agree on hash functions ℎ1, ℎ2, ℎ3 : {0, 1}𝜎 → [𝛽].

𝑃1 does stash-less cuckoo hashing on 𝑋1 using ℎ1, ℎ2, ℎ3 to generate Table1 and inserts random elements into empty bins.

For 𝑖 ∈ {2, · · · , 𝑛}, 𝑃𝑖 does simple hashing of 𝑋𝑖 using ℎ1, ℎ2, ℎ3 into Table𝑖 , i.e., stores each 𝑥 ∈ 𝑋𝑖 at locations ℎ1 (𝑥), ℎ2 (𝑥) and
ℎ3 (𝑥). If the three locations are not distinct, random dummy values are inserted in bin with collision.

(2) Invoking the F 𝛽,𝜎,𝑁wPSM functionality: For each 𝑖 ∈ {2, · · · , 𝑛} , 𝑃1 and 𝑃𝑖 invoke the F 𝛽,𝜎,𝑁wPSM functionality for 𝑁 = 3𝑚 as follows:

• 𝑃𝑖 is the sender with inputs {Table𝑖 [ 𝑗]} 𝑗 ∈[𝛽 ] and 𝑃1 is the receiver with inputs {Table1 [ 𝑗]} 𝑗 ∈[𝛽 ] .
• 𝑃𝑖 receives the outputs {𝑤𝑖 𝑗 } 𝑗 ∈[𝛽 ] and 𝑃1 receives {𝑦𝑖 𝑗 } 𝑗 ∈[𝛽 ] .

(3) Invoking the F 𝜎EQ functionality: For each 𝑖 ∈ {2, · · · , 𝑛} and for each 𝑗 ∈ [𝛽], 𝑃1 and 𝑃𝑖 invoke the F 𝜎EQ functionality as follows:

𝑃1 and 𝑃𝑖 send their inputs 𝑦𝑖 𝑗 and𝑤𝑖 𝑗 , resp., and receive boolean shares ⟨𝑒𝑞𝑖 𝑗 ⟩𝐵
1
and ⟨𝑒𝑞𝑖 𝑗 ⟩𝐵𝑖 resp., as outputs.

(4) Invoking the F F𝑝B2A functionality: For each 𝑖 ∈ {2, · · · , 𝑛} and for each 𝑗 ∈ [𝛽], 𝑃1 and 𝑃𝑖 invoke the F
F𝑝
B2A functionality as follows:

𝑃1 and 𝑃𝑖 send their inputs ⟨𝑒𝑞𝑖 𝑗 ⟩𝐵
1
and ⟨𝑒𝑞𝑖 𝑗 ⟩𝐵𝑖 , resp., and receive the additive shares ⟨𝑓𝑖 𝑗 ⟩1 and ⟨𝑓𝑖 𝑗 ⟩𝑖 resp., as outputs.

(5) Converting to (𝑛, 𝑡) shares: For each 𝑗 ∈ [𝛽],
• 𝑃1 computes ⟨𝑎 𝑗 ⟩1 =

∑𝑛
𝑖=2⟨𝑓𝑖 𝑗 ⟩1 and for each 𝑖 ∈ {2, · · · , 𝑛}, 𝑃𝑖 sets ⟨𝑎 𝑗 ⟩𝑖 = ⟨𝑓𝑖 𝑗 ⟩𝑖 .

• 𝑃1, · · · , 𝑃𝑛 compute [𝑎 𝑗 ] ← ConvertShares𝑛,𝑡 (⟨𝑎 𝑗 ⟩).
(6) Computing shares of intersection: For each 𝑗 ∈ [𝛽],
• Compute [𝑣 (0)

𝑗
] = [𝑎 𝑗 ] − 𝑛 + 1.

• For each 𝑖 ∈ [𝑑], compute [𝑣 (𝑖)
𝑗
] ← MultF𝑛,𝑡 ( [𝑣 (𝑖−1)

𝑗
], [𝑣 (𝑖−1)

𝑗
]).

• Let [𝑞 (0)
𝑗
] = [𝑣 (ind0)

𝑗
].

• For 𝑖 ∈ [𝑘], compute [𝑞 (𝑖)
𝑗
] ← MultF𝑛,𝑡 ( [𝑞 (𝑖−1)

𝑗
], [𝑣 (ind𝑖 )

𝑗
]).

• Compute [𝑐 𝑗 ] = 1 − [𝑞 (𝑘)
𝑗
].

(7) Computing the circuit 𝐶𝛽,𝜎,𝑝 : The parties invoke the FMPC functionality parameterized 𝐶𝛽,𝜎,𝑝 by as follows:

• 𝑃1 inputs {[𝑐 𝑗 ]1} 𝑗 ∈[𝛽 ] and Table1. For 𝑖 ∈ {2, · · · , 𝑛}, 𝑃𝑖 inputs {[𝑐 𝑗 ]𝑖 } 𝑗 ∈[𝛽 ] .
• All parties receive the output 𝑇 .

Figure 6: CIRCUIT PSI PROTOCOL

(Sec. 2.3.1), boolean to arithmetic share conversion F F𝑝B2A (Section

2.3.2), and the 𝑛-party functionalities from Section 2.5.

We consider standard multiparty functionality FMPC that is pa-

rameterized by a circuit 𝐶 . The circuit 𝐶 takes as inputs 𝐼𝑖 from

each 𝑃𝑖 , for 𝑖 ∈ [𝑛] and the functionality computes the circuit 𝐶

on these inputs and returns 𝐶 (𝐼1, · · · , 𝐼𝑛). In our construction, to

evaluate a symmetric function 𝑓 , we consider the circuit 𝐶𝛽,𝜎,𝑝 ,

which takes as inputs {[𝑐 𝑗 ]𝑖 } 𝑗 ∈[𝛽 ] from 𝑃𝑖 for each 𝑖 ∈ [𝑛] such
that 𝑐 𝑗 ∈ F𝑝 and 𝑎1, . . . , 𝑎𝛽 ∈ {0, 1}𝜎 from 𝑃1, computes {𝑐 𝑗 } 𝑗 ∈[𝛽 ]

by reconstructing the shares, and computes 𝑇 = 𝑓

( ⋃
𝑗 ∈[𝛽 ]:𝑐 𝑗=1

𝑎 𝑗

)
.

We set things up such that 𝑐 𝑗 = 1, if 𝑎 𝑗 ∈ ∩𝑛𝑖=1𝑋𝑖 ; else 𝑐 𝑗 = 0. Next,

give an overview and describe the protocol formally in Figure 6.

Protocol Overview. On input 𝑋𝑖 from party 𝑃𝑖 , for each 𝑖 ∈ [𝑛],
the protocol proceeds in seven steps: The first two steps of the

protocol, namely the Hashing and Invoking the F 𝛽,𝜎,𝑁wPSM functionality,
are same as Steps 2 and 3 of our mPSI protocol (Figure 4). At the

end of these steps, 𝑃1 holds Table1 of 𝛽 bins containing one element

each and other parties 𝑃𝑖 ’s hold Table𝑖 with 𝛽 bins of arbitrary size.

Moreover, for each 𝑖 ∈ {2, . . . , 𝑛} and 𝑗 ∈ [𝛽], 𝑃1 holds𝑦𝑖 𝑗 ∈ {0, 1}𝜎
and 𝑃𝑖 holds 𝑤𝑖 𝑗 ∈ {0, 1}𝜎 such that 𝑦𝑖 𝑗 = 𝑤𝑖 𝑗 iff Table1 [ 𝑗] ∈
Table𝑖 [ 𝑗] (except with negligible probability). Now, in the next step,

the parties check whether this equality holds or not. Formally, in

Step 3, for each 𝑖 ∈ {2, · · · , 𝑛}, parties 𝑃1 and 𝑃𝑖 invoke the F 𝜎EQ
functionality with inputs 𝑦𝑖 𝑗 and𝑤𝑖 𝑗 , respectively and receive as

outputs, the boolean shares
7
.

Rest of the steps are executed for each bin 𝑗 independently. In

Step 4, for each 𝑖 ∈ {2, · · · , 𝑛}, parties 𝑃1 and 𝑃𝑖 invoke the F
F𝑝
B2A

functionality to convert the boolean shares to additive shares over

F𝑝 , where 𝑝 > 𝑛 is a prime. Next, in Step 5, parties convert these

additive shares between 𝑃1 and 𝑃𝑖 for 𝑖 ∈ [𝑛] \{1} to (𝑛, 𝑡)-shares of
values 𝑎 𝑗 such that 𝑎 𝑗 denotes the number of parties in [𝑛]\{1} that
have the element stored at Table1 [ 𝑗]. In Step 6, the task is to securely
compute shares of whether 𝑎 𝑗 = 𝑛 − 1 or not. Let 𝑣 𝑗 = 𝑎 𝑗 − (𝑛 − 1).
7
Wenote that these four steps of our protocol together follow the blueprint of executing

a circuit PSI protocol [16, 26, 45, 64–66] between 𝑃1 and 𝑃𝑖 (for each 𝑖 ∈ {2, · · · , 𝑛}),
while ensuring a consistent mapping of elements of 𝑃1 (via Cuckoo hashing into

Table1) across all instantiations. To explicitly spell out this consistent hashing, we

make a whitebox use of the circuit-PSI blueprint from [65].
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Now, using property of fields with prime order, 𝑣 𝑗 = 0 (and hence,

𝑎 𝑗 = 𝑛 − 1) if and only if 𝑣
𝑝−1
𝑗

= 0. For this, parties first compute

shares of 𝑣2
𝑖

𝑗
for 𝑖 ∈ {0} ∪ [𝑑] where 𝑑 = ⌈log 𝑝⌉ − 1 (requiring 𝑑

calls toMultF𝑛,𝑡 ) and then multiply shares of appropriate powers

of 𝑣 𝑗 (requiring at most 𝑑 calls to MultF𝑛,𝑡 ). Then, parties locally

compute shares of 𝑐 𝑗 = 1 − 𝑣𝑝−1
𝑗

. It holds that 𝑐 𝑗 is 1 if and only if

𝑎 𝑗 = 𝑛 − 1.
Finally, parties invoke FMPC functionality for circuit 𝐶𝛽,𝜎,𝑝 (de-

scribed above) with shares of 𝑐 𝑗 and Table1 [ 𝑗], for all 𝑗 ∈ [𝛽].

Remark. The well-known/standard definition of circuit-PSI [13,

45, 64–66] outputs shares of 0/1 values (𝑐 𝑗 ) and these are given

as input to the circuit 𝐶𝛽,𝜎,𝑝 . We compute the same in step 6 of

our protocol because it offers the flexibility to compute arbitrary

functions. However, circuits for certain functions might themselves

involve computing equality checks on 𝑐 𝑗 ’s. For such functions, one

can consider an optimization wherein 𝐶𝛽,𝜎,𝑝 takes shares of 𝑎 𝑗 , for

all 𝑗 ∈ [𝛽] (computed in step 5 of the protocol) as input and 𝐶𝛽,𝜎,𝑝
checks if 𝑎 𝑗 = 𝑛 − 1 to determine if the corresponding element is

in the intersection. On the other hand, many functions, such as

cardinality of intersection, can be computed by adding the 𝑐 𝑗 values

and no additional equality checks are needed in 𝐶𝛽,𝜎,𝑝 .

4.2 Correctness and Security Proof
Theorem 4.1. The protocol in Figure 6 securely realizes F𝑛,𝑚,𝑓C−PSI in

the F -hybrid model, where F = (F 𝛽,𝜎,𝑁wPSM ,ConvertShares
𝑛,𝑡 , F 𝜎EQ ,

F F𝑝B2A,MultF𝑛,𝑡 ), against a semi-honest adversary corrupting 𝑡 < 𝑛/2
parties. Our protocol has total communication at most 2𝑚𝑛(_^ +
36(log𝑛)2)with at most 4⌈log𝑛⌉ + ⌈log𝜎⌉ + 6 rounds.

Proof. Correctness: Let 𝑌 =
⋃

𝑗 ∈[𝛽 ]:𝑐 𝑗=1
Table1 [ 𝑗] and 𝑌 ∗ =

∩𝑛
𝑖=1
𝑋𝑖 . For statistical correctness, we need to show that𝑇 = 𝑓 (𝑌 ∗)

with all but negligible probability in ^ . By correctness of the FMPC
(parameterized by the circuit 𝐶𝛽,𝜎,𝑝 ) functionality, whenever 𝑌 =

𝑌 ∗ we have𝑇 = 𝐶 (Table1, {𝑐 𝑗 } 𝑗 ∈[𝛽 ] ) = 𝑓 (𝑌 ) = 𝑓 (𝑌 ∗). So it suffices

to upper bound the probability of 𝑌 ∗ ≠ 𝑌 . For the rest of the proof
we assume that cuckoo hashing by 𝑃1 succeeds which happens with

probability at most 1 − 2−41.
As we will see later, steps 3–6 do not lead to correctness error of

our protocol. We make a few observations about these steps below,

that will be used in both lemmata that follow. For each 𝑗 ∈ [𝛽],
• (Step 3) By correctness of F 𝜎EQ , for each 𝑖 ∈ [𝑛] \ {1}, 𝑒𝑞𝑖 𝑗 equals
1 when 𝑦𝑖 𝑗 = 𝑤𝑖 𝑗 and 0 otherwise.

• (Step 4) By correctness of F F𝑝B2A, for each 𝑖 ∈ [𝑛] \ {1}, 𝑓𝑖 𝑗 = 𝑒𝑞𝑖 𝑗 .

• (Step 5) By correctness of ConvertShares𝑛,𝑡 , 𝑎 𝑗 =
𝑛∑
𝑖=2

𝑓𝑖 𝑗 < 𝑛.

• (Step 6) First, 𝑣
(0)
𝑗

= 𝑎 𝑗 − (𝑛 − 1). Also, let 𝑣 𝑗 = 𝑣
(0)
𝑗

. Next, by

correctness of MultF𝑛,𝑡 for every 𝑖 ∈ [𝑑], it holds that 𝑣 (𝑖)
𝑗
≡

(𝑣 𝑗 )2
𝑖
and 𝑞

(𝑘)
𝑗

= 𝑣
𝑝−1
𝑗

. Finally, 𝑐 𝑗 = 1 − 𝑞 (𝑘)
𝑗

.

Now, using the property of finite fields, we get that 𝑞
(𝑘)
𝑗

= 0, and

consequently, 𝑐 𝑗 = 1, if and only if 𝑣 𝑗 = 0. Hence, 𝑐 𝑗 = 1 if and only

if 𝑎 𝑗 = 𝑛 − 1. This in turn implies that 𝑒𝑞𝑖 𝑗 = 1 for all 𝑖 ∈ {2, . . . , 𝑛}.

To conclude, we have shown that 𝑐 𝑗 = 1 if and only if 𝑒𝑞𝑖 𝑗 = 1 for

all 𝑖 ∈ {2, . . . , 𝑛}. We now prove the following two lemmata.

Lemma 4.2. 𝑌 ∗ ⊆ 𝑌 .

Proof. Let 𝑒 = Table1 [ 𝑗] ∈ 𝑌 ∗. Therefore, for each 𝑖 ∈ {2, · · · , 𝑛},
by the definition of simple hashing 𝑒 ∈ Table𝑖 [ 𝑗]. Hence by correct-
ness of F 𝛽,𝜎,𝑁wPSM guarantees that 𝑦𝑖 𝑗 = 𝑤𝑖 𝑗 (and hence 𝑒𝑞𝑖 𝑗 = 1) for

each 𝑖 ∈ {2, · · · , 𝑛}. Using what we show above, we get that in this

case 𝑐 𝑗 = 1 and hence, 𝑒 ∈ 𝑌 . □

Lemma 4.3. 𝑌 ⊆ 𝑌 ∗ with probability at least 1 − 2−^−1.

Proof. Suppose 𝑒 = Table1 [ 𝑗] ∉ 𝑌 ∗. Since 𝑒 ∉ 𝑌 ∗, let 𝑖∗ ∈
{2, · · · , 𝑛} be such that 𝑒 ∉ 𝑋𝑖∗ . We now show that 𝑒 ∉ Table𝑖∗[ 𝑗]
with the following disjoint and exhaustive scenarios.

• 𝑒 ∈ 𝑋1: Since 𝑒 ∉ 𝑋𝑖∗ and any dummy elements inserted by 𝑃𝑖∗

are distinct from real elements, it holds that 𝑒 ∉ Table𝑖∗ [ 𝑗].
• 𝑒 ∉ 𝑋1: Then, 𝑒 is a dummy element inserted by 𝑃1. Since dummy

elements of 𝑃∗
𝑖
are distinct from dummy elements of 𝑃1, it holds

that 𝑒 ∉ Table𝑖∗ [ 𝑗].
Since 𝑒 ∈ 𝑌 , it holds that 𝑐 𝑗 = 1 and hence, 𝑒𝑞𝑖∗ 𝑗 = 1, i.e.,𝑦𝑖∗ 𝑗 = 𝑤𝑖∗ 𝑗 .

Now, probability that 𝑦𝑖∗ 𝑗 = 𝑤𝑖∗ 𝑗 when 𝑒 ∉ Table𝑖∗ is at most 2
−𝜎

.

Note that this is the probability that Table1 [ 𝑗] ∈ 𝑌\𝑌 ∗. By union

bound over all bins it holds that with probability at least 1 − 𝛽2−𝜎
the set 𝑌\𝑌 ∗ is empty. □

Hence, except with failure probability at most 2
−^

(that includes

the probability of cuckoo hashing failure), the output of the protocol

is correct, for ^ = 40.

Security. Let𝐶 ⊂ [𝑛] be the set of corrupted parties (|𝐶 | = 𝑡 < 𝑛/2).
We show how to simulate the view of 𝐶 in the ideal world, given

the input sets 𝑋𝐶 = {𝑋 𝑗 : 𝑗 ∈ 𝐶} and the output, 𝑇 = 𝑓 (∩𝑛
𝑖=1
𝑋𝑖 ).

We consider two cases based on party 𝑃1 being corrupt or not.

• Case 1 (𝑃1 is honest): The hashing step is local, and can be exe-

cuted by the simulator using the inputs of the corrupted parties.

In Step 2, 𝑃1 and 𝑃𝑖 (for each 𝑖 ∈ {2, · · · , 𝑛}) invoke the F 𝛽,𝜎,𝑁wPSM
functionality and the corrupted parties only see the sender’s

views (since 𝑃1 ∉ 𝐶), {𝑤𝑖 𝑗 }𝑖∈𝐶,𝑗 ∈[𝛽 ] , which can all be picked at

random by the simulator (by the definition of F 𝛽,𝜎,𝑁wPSM ). In Steps 3

and 4, for each 𝑖 ∈ {2, · · · , 𝑛}, parties 𝑃1 and 𝑃𝑖 invoke the F 𝜎EQ
and F F𝑝B2A functionalities and the corrupted parties see only one

of the two boolean and additive shares, {⟨𝑒𝑞𝑖 𝑗 ⟩𝐵𝑖 }𝑖∈𝐶,𝑗 ∈[𝛽 ] and
{⟨𝑓𝑖 𝑗 ⟩𝑖 }𝑖∈𝐶,𝑗 ∈[𝛽 ] , respectively, which can be generated as corre-

sponding shares of some random bit (by the security of secret

sharing). In Step 5, besides the local computations, which the sim-

ulator can do, the corrupted parties get at most 𝑡 shares of 𝑎 𝑗 , for

each 𝑗 ∈ [𝛽], which can be picked as shares of a random value by

the simulator (by the security of secret sharing). In Step 6, besides

the local computations, the parties invoke the MultF𝑛,𝑡 function-
ality. The view of corrupted parties includes: at most 𝑡 shares

of the values {𝑣 (𝑖)
𝑗
}𝑖∈[𝑑 ], 𝑗 ∈[𝛽 ] , {𝑞

(𝑖)
𝑗
}𝑖∈[𝑘 ], 𝑗 ∈[𝛽 ] and {𝑐 𝑗 } 𝑗 ∈[𝛽 ] .

Each of the 𝑡 shares of the 𝑣
(𝑖)
𝑗
’s and the 𝑞

(𝑖)
𝑗
’s can be picked as

shares of random values (by the security of secret sharing) and

the 𝑡 shares of 𝑐 𝑗 ’s can be obtained by local computation. Finally,

for Step 7, the simulator can set the output as 𝑇 .
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• Case 2 (𝑃1 is corrupt): The simulation of the hashing step is

exactly the same as in Case 1. In Step 2, 𝑃1 and 𝑃𝑖 (for each

𝑖 ∈ {2, · · · , 𝑛}) invoke the F 𝛽,𝜎,𝑁wPSM functionality and the corrupted

parties see both the receiver’s view {𝑦𝑖 𝑗 : 𝑖 ∈ {2, · · · , 𝑛}, 𝑗 ∈ [𝛽]},
and the sender’s views {𝑤𝑖 𝑗 }𝑖∈𝐶\{1}, 𝑗 ∈[𝛽 ] . For each 𝑖 ∈ 𝐶 , the
simulator picks a random 𝑦𝑖 𝑗 = 𝑤𝑖 𝑗 , if Table1 [ 𝑗] ∈ Table𝑖 [ 𝑗], else
picks a random 𝑦𝑖 𝑗 and𝑤𝑖 𝑗 independently, for each 𝑗 ∈ [𝛽] (the
faithfulness of this step of simulation follows from the definition

of F 𝛽,𝜎,𝑁wPSM and since the simulator has both Table1 and Table𝑖 ). For
each 𝑖 ∉ 𝐶 , the simulator picks 𝑦𝑖 𝑗 ’s at random. In Steps 3 and 4,

for each 𝑖 ∈ {2, · · · , 𝑛}, parties 𝑃1 and 𝑃𝑖 invoke the F 𝜎EQ and F F𝑝B2A
functionalities and the corrupted parties see both the boolean

and additive shares for 𝑖 ∈ 𝐶 , {⟨𝑒𝑞𝑖 𝑗 ⟩𝐵
1
, ⟨𝑒𝑞𝑖 𝑗 ⟩𝐵𝑖 }𝑖∈𝐶\{1}, 𝑗 ∈[𝛽 ] and

{⟨𝑓𝑖 𝑗 ⟩1, ⟨𝑓𝑖 𝑗 ⟩𝑖 }𝑖∈𝐶\{1}, 𝑗 ∈[𝛽 ] , and only one of the two shares for

𝑖 ∉ 𝐶 , {⟨𝑒𝑞𝑖 𝑗 ⟩𝐵
1
}𝑖∈[𝑛]\𝐶,𝑗 ∈[𝛽 ] and {⟨𝑓𝑖 𝑗 ⟩1}𝑖∈[𝑛]\𝐶,𝑗 ∈[𝛽 ] . For each

𝑖 ∈ 𝐶 \ {1} and 𝑗 ∈ [𝛽], the simulator sets 𝑒𝑞𝑖 𝑗 = 𝑓𝑖 𝑗 = 1, if

Table1 [ 𝑗] ∈ Table𝑖 [ 𝑗] and sets 𝑒𝑞𝑖 𝑗 = 𝑓𝑖 𝑗 = 0, otherwise. It then

generates the boolean and arithmetic shares of the 𝑒𝑞𝑖 𝑗 ’s and

𝑓𝑖 𝑗 ’s, respectively. For each 𝑖 ∈ [𝑛] \𝐶 , the simulator generates

both the boolean and additive shares as shares of some random

bit (by the security of secret sharing). The simulation of Steps 5

and 6 is exactly as in Case 1. Again, for Step 7, the simulator sets

the output as 𝑇 .

Complexity.We instantiate F 𝛽,𝜎,𝑁wPSM using the polynomial-based

batch-OPPRF and set 𝑝 to be the smallest prime greater than 𝑛, i.e.,

⌈log 𝑝⌉ ≤ ⌈log𝑛⌉ + 1. We split the communication of the protocol

into two parts. 1) Steps 1–4 where 𝑃1 interacts with each 𝑃𝑖 for

𝑖 ∈ [2, . . . , 𝑛] separately. 2) Steps 5 and 6 where parties run 𝑛-party

functionalities. In the first part, protocol invokes F 𝛽,𝜎,𝑁wPSM , F 𝜎EQ , F
F𝑝
B2A

functionalities (𝑛 − 1), 𝛽 (𝑛 − 1), and 𝛽 (𝑛 − 1) times respectively.

Concretely, communication cost of this part is at most𝑚(𝑛−1) (_𝜎+
5.8_+14𝜎+1.28⌈log𝑛⌉), where𝜎 = ^+⌈log𝑚⌉+2. In the second part,
the protocol invokes ConvertShares𝑛,𝑡 andMultF𝑛,𝑡 functionalities
𝛽 and (at most) 2𝛽 ⌈log𝑛⌉ times respectively. The concrete cost of

this part is at most𝑚(𝑛 − 1) (36(⌈log𝑛⌉)2 + 40⌈log𝑛⌉). Summing

up both gives the total complexity of our protocol. □

5 QUORUM PRIVATE SET INTERSECTION
The goal of quorum private set intersection is to compute the set

of all elements which are present in the leader 𝑃1’s private set

and in at least 𝑘 other parties’ sets, where 𝑘 denotes the quorum

threshold (excluding 𝑃1), and output it to 𝑃1 only. We begin by

formally defining the quorum private set intersection functionality

F𝑛,𝑚,𝑘QPSI in Figure 7. Observe that when 𝑘 = 𝑛 − 1, (intuitively) this
is simply multiparty private set intersection and reduces to the

functionality of Figure 3.

There are 𝑛 parties 𝑃1, · · · , 𝑃𝑛 , where 𝑃1 is the leader and

𝑘 ∈ [𝑛 − 1] denotes the quorum threshold.

Input: For each 𝑖 ∈ [𝑛], 𝑃𝑖 inputs a set 𝑋𝑖 of size𝑚.

Output: For each 𝑥 ∈ 𝑋1, let 𝑞𝑥 = |{𝑖 : 𝑥 ∈ 𝑋𝑖 for 𝑖 ∈
{2, · · · , 𝑛}}|. Then, output 𝑌 ∗ = {𝑥 ∈ 𝑋1 : 𝑞𝑥 ≥ 𝑘} to 𝑃1.

Figure 7: Quorum PSI Functionality F𝑛,𝑚,𝑘QPSI

5.1 Quorum PSI Protocol
Building blocks: Our protocol uses the two-party functionalities

weak private set membership F 𝛽,𝜎,𝑁wPSM (Section 2.4), equality test

F 𝜎EQ (Sec. 2.3.1), boolean to arithmetic share conversion F F𝑝B2A (Sec-

tion 2.3.2), the 𝑛-party functionalities from Section 2.5, and the

weak comparison functionality F 𝑝,𝑘,𝑛,𝑡w-CMP (Section 2.6) in the honest

majority setting. In Section 5.2 we provide two weak comparison

protocols that realize F 𝑝,𝑘,𝑛,𝑡w-CMP and discuss their trade-offs.

Overview. Since the protocol follows most of the steps of circuit-

PSI protocol from Section 4, we provide an in-text description of

the quorum PSI protocol highlighting only the changes (with full

description in Figure 16). At a high level, for each 𝑗 ∈ [𝛽], after
obtaining (𝑛, 𝑡)-shares of value 𝑎 𝑗 that denotes the number of 𝑃𝑖 ’s

that contain the element of 𝑃1 stored at Table1 [ 𝑗], they invoke an

𝑛-party weak comparison protocol that compares the value of 𝑎 𝑗
with 𝑘 and outputs the result to 𝑃1. We now provide more details.

Parameters: There are 𝑛 parties 𝑃1, . . . , 𝑃𝑛 with private sets of

size 𝑚 and 1 < 𝑘 ≤ 𝑛 − 1 is the quorum. Let 𝛽 = 1.28𝑚,𝜎 =

^+⌈log𝑚⌉+⌈log𝑛⌉+2. Additions andmultiplications in the protocol

are over the field F𝑝 , where 𝑝 is a prime (larger than 𝑛) that depends

on specific instantiation of Fw-CMP.

Input: Each party 𝑃𝑖 has input set 𝑋𝑖 = {𝑥𝑖1, · · · , 𝑥𝑖𝑚}, where
𝑥𝑖 𝑗 ∈ {0, 1}𝜎 . Element size can always be made 𝜎 bits by first

hashing the elements using an appropriate universal hash function.

Protocol: The protocol executes Steps 1–5 of the circuit-PSI pro-

tocol from Figure 6. After this step, for each 𝑗 ∈ [𝛽], parties hold
[𝑎 𝑗 ]. Then, parties 𝑃1, · · · , 𝑃𝑛 invoke F 𝑝,𝑘,𝑛,𝑡w-CMP with 𝑃𝑖 ’s input being

[𝑎 𝑗 ]𝑖 for 𝑖 ∈ [𝑛] and 𝑃1 learns 𝑐 𝑗 as output.
𝑃1 computes the quorum intersection as 𝑌 =

⋃
𝑗 ∈[𝛽 ]:𝑐 𝑗=1

Table1 [ 𝑗].

Complexity. Based on the two instantiations of F 𝑝,𝑘,𝑛,𝑡w-CMP described in

the next section, we have two protocols for quorum PSI, Quorum-I

and Quorum-II.

Theorem 5.1. The protocol given above securely realizes F𝑛,𝑚,𝑘QPSI

in the F -hybrid model, where F = (F 𝛽,𝜎,𝑁wPSM ,F 𝜎EQ , F
F𝑝
B2A, F

𝑝,𝑘,𝑛,𝑡

w-CMP,
ConvertShares𝑛,𝑡 , MultF𝑛,𝑡 ), against a semi-honest adversary cor-
rupting 𝑡 < 𝑛/2 parties. The communication complexities of the
two quorum PSI protocols, Quorum-I and Quorum-II, are at most
𝑚(𝑛 − 1) (_𝜎 + 5.8_ + 14𝜎 + 18𝑘 ′(⌈log𝑛⌉ + 1) + 22𝜏 + 10⌈log𝑛⌉),
where 𝑘 ′ = min{𝑘 − 1, 𝑛 − 𝑘} and 𝜏 = ^ + ⌈log𝑚⌉ + 3, and𝑚(𝑛 −
1) (_𝜎 + 5.8_ + 14𝜎 + 27(⌈log𝑛⌉ + 1) (^ + ⌈log𝑛⌉ + 1)2), respectively,
and their round complexities are at most 10 + ⌈log𝜎⌉ + 2𝑘 ′ and
8 + ⌈log𝜎⌉ + 2⌈log𝑛⌉, respectively.

We give a complete proof of the correctness and security in Appen-

dix F.1 and discuss the complexities in Appendix F.2.

5.2 Weak Comparison Protocols
In this section, we describe two protocols realizing the weak com-

parison functionality F 𝑝,𝑘,𝑛,𝑡w-CMP (Section 2.6), w-CMP1 and w-CMP2
and discuss their trade-offs in Appendix F.2.1.
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5.2.1 Weak Comparison Protocol w-CMP1. This protocol uses the
multiparty functionalities in Section 2.5 (with 𝑛 parties and corrup-

tion threshold 𝑡 ) as building blocks.

On input, the (𝑛, 𝑡)− shares [𝑎]𝑖 from each 𝑃𝑖 , for 𝑖 ∈ [𝑛] (where 0 ≤
𝑎 < 𝑛 and 𝑎 ∈ F𝑝 ), the protocol proceeds as follows: For 𝑘 ≥ 𝑛/2,
consider the polynomial𝜓 (𝑥) = (𝑥 − 𝑘) · (𝑥 − (𝑘 + 1)) · · · (𝑥 − 𝑛),
of degree 𝑛 − 𝑘 + 1, that satisfies the following property:𝜓 (𝑥) = 0

for all 𝑛 > 𝑥 ≥ 𝑘 . Similarly, for 𝑘 < 𝑛/2, consider the polyno-

mial𝜓 (𝑥) = 𝑥 · (𝑥 − 1) · (𝑥 − 2) · · · (𝑥 − (𝑘 − 1)), of degree 𝑘 , that
satisfies the following property: 𝜓 (𝑥) = 0 for all 0 ≤ 𝑥 < 𝑘 . The

protocol takes as input [𝑎] and for 𝐽 values of random 𝑠 𝑗 ’s in F𝑝 ,

evaluates [𝜓 (𝑎) ·𝑠 𝑗 ] using theMultF𝑛,𝑡 functionality. Subsequently,
𝑃1 recovers 𝜓 (𝑎) · 𝑠 𝑗 , for each 𝑗 ∈ [𝐽 ]. If 𝜓 (𝑎) · 𝑠 𝑗 = 0, for each

𝑗 ∈ [𝐽 ], then 𝜓 (𝑎) = 0 with probability 1 − 2−𝜏 , where 𝜏 is a con-
figurable parameter for correctness of the construction. Hence, by

the property of 𝜓 , 𝑃1 gets the required comparison bit comp. We

formally describe the protocol in Figure 8.

Parameters: There are 𝑛 parties 𝑃1, · · · , 𝑃𝑛 with (𝑛, 𝑡)−
shares [𝑎], of 𝑎 ∈ F𝑝 and 𝑎 < 𝑛. Here, 𝑝, 𝑛, 𝑡, 𝜏, 𝐽 and 𝑘 are

such that 𝑝 is a prime, 𝑝 > 𝑛 > 𝑘 , 𝑛 > 2𝑡 , 𝜏 is a configurable

parameter for correctness of construction and 𝐽 = ⌈ 𝜏
log |F𝑝 | ⌉.

Additions and multiplications are over the field F𝑝 .
Define the polynomial𝜓 (publicly known to all parties):

𝜓 (𝑥) =

(𝑥 − 𝑘) · (𝑥 − (𝑘 + 1)) · · · (𝑥 − 𝑛) , if 𝑘 ≥ 𝑛

2

𝑥 · (𝑥 − 1) · (𝑥 − 2) · · · (𝑥 − (𝑘 − 1)) , if 𝑘 < 𝑛
2

Input: For each 𝑖 ∈ [𝑛], 𝑃𝑖 inputs its (𝑛, 𝑡)− share [𝑎]𝑖 .
Protocol:
(1) Pre-processing: 𝑃1, · · · , 𝑃𝑛 run:

[𝑠1], · · · , [𝑠 𝐽 ] ← RandomF𝑛,𝑡 (𝐽 ).
(2) Evaluating the polynomial: 𝑃1, · · · , 𝑃𝑛 do:

• On input [𝑎], invoke MultF𝑛,𝑡 to compute all the re-

quired [𝑎𝑖 ], followed by scalar multiplications and ad-

ditions to compute [𝜓 (𝑎)].
• For each 𝑗 ∈ [𝐽 ], do:

- [𝑣 𝑗 ] ← MultF𝑛,𝑡 ( [𝜓 (𝑎)], [𝑠 𝑗 ]).
- 𝑣 𝑗 ← Reveal𝑛,𝑡 ( [𝑣 𝑗 ]).

Output: If 𝑘 ≥ 𝑛/2, if 𝑣 𝑗 = 0,∀𝑗 ∈ [𝐽 ], 𝑃1 sets comp = 1,

else sets comp = 0. If 𝑘 < 𝑛/2, if 𝑣 𝑗 = 0,∀𝑗 ∈ [𝐽 ], 𝑃1 sets

comp = 0 else sets comp = 1. Other parties get no output.

Figure 8: WEAK COMPARISON PROTOCOL I

Theorem 5.2. The protocol in Figure 8 securely realizes F 𝑝,𝑘,𝑛,𝑡w-CMP in
the F -hybrid model, where F = (RandomF𝑛,𝑡 , MultF𝑛,𝑡 , Reveal𝑛,𝑡 ),
against a semi-honest adversary corrupting 𝑡 < 𝑛/2 parties. The total
amortized communication cost of the protocol is at most 14𝑘 ′(𝑛 −
1) (⌈log𝑛⌉ +1) +17𝜏 (𝑛−1) and the round complexity is 6+2𝑘 ′, where
𝑘 ′ = min{𝑘 − 1, 𝑛 − 𝑘}.

We give a complete proof of Theorem 5.2 in Appendix E.1 and

discuss the complexities in Appendix F.2.1.

5.2.2 Weak Comparison Protocolw-CMP2. This protocol is a slight
modification of the comparison protocol from [12]. The main idea

of their comparison protocol is as follows: For 0 ≤ 𝑎, 𝑘 < 𝑛,

𝑎 ≥ 𝑘 iff

⌊
(𝑎−𝑘)
2
𝛾

⌋
= 0 (where 𝛾 = ⌈log𝑛⌉ + 1). Hence, the pro-

tocol takes the (𝑛, 𝑡)− shares of 𝑎 and evaluates the (𝑛, 𝑡)− shares
of

⌊
(𝑎−𝑘)
2
𝛾

⌋
. This protocol invokes the multiparty functionalities

MultF𝑛,𝑡 , RandomF𝑛,𝑡 and Reveal𝑛,𝑡 . Corresponding to the instan-

tiations of these functionalities used in [12], their protocol has an

𝑛2 factor in the communication complexity. Instead, we use the

instantiations from [21] for these functionalities, which reduces

the communication complexity of their protocol. For complete-

ness, we give the full protocol, which is modified (and simplified)

appropriately to instantiate F 𝑝,𝑘,𝑛,𝑡w-CMP, in Appendix E.2.

6 IMPLEMENTATION AND EVALUATION
In this section, we discuss the performance of our mPSI (multiparty

PSI) protocols
8
. Let Protocol A, Protocol B and Protocol C denote

our mPSI protocols when instantiated with polynomial-based batch

OPPRF [65], table-based OPPRF [51] and relaxed batch OPPRF [13]

respectively. We compare the performance of our mPSI protocols

with the state-of-the-art mPSI protocol in literature [51].

Protocol Parameters. We set statistical security parameter ^=40

and computational security parameter _=128. Correctness of The-

orem 3.1 requires Cuckoo hashing failure in Step 2 (Figure 4) to

be at most 2
−41

. Similar to [13, 51, 65, 67], we use the empirical

analysis to instantiate the parameters of Cuckoo hashing scheme

in the stash-less setting as 𝛽 = 1.28𝑚 for 𝐾 = 3 (see Section 2.2).

Based on Theorem 3.1, we set size of elements 𝜎 = ^ + ⌈log𝑚⌉ +3 to
achieve statistical security of ^ bits. Hence, the minimum element

size 𝜎 required in mPSI protocol to ensure that the failure probabil-

ity is at most 2
−40

is 55, 59 and 63 for input set sizes 2
12
, 2

16
and

2
20

respectively. In the implementation of Step 4 (see Figure 4) of

mPSI protocol for input set size 2
12

and 2
16
, we perform arithmetic

over prime field where the prime is the Mersenne prime 2
61 − 1.

For input set size 2
20
, we choose the prime field with Mersenne

prime 2
127 − 1 for the LAN setting; for WAN setting we choose the

Galois Field over an irreducible polynomial where each element is

represented in 64 bits. This is due to compute vs communication

trade-offs between the two fields.

Based on correctness analysis, we set 𝜎 = ^+ ⌈log𝑚⌉ + ⌈log𝑛⌉ +2
for our Circuit PSI and qPSI protocols, i.e., larger of the element

size required by these two protocols.

Implementation Details. We make use of the implementation

of polynomial-based batch OPPRF [65] and table-based OPPRF

[51] available at [25] and [60] respectively. For implementation

of relaxed batch OPPRF [13] and equality test functionality F ℓEQ
[13, 23, 32, 68], we use the code available at [58]. For Boolean to

Arithmetic share conversion functionality F FB2A [68], we use the

implementation of correlated OTs available at [57]. Finally, we use

the code available at [20] for multiparty functionalities [21, 52] (see

Section 2.5).

Experimental Setup. Similar to [51], we ran our experiments on a

single machine with 64-core Intel Xeon 2.6GHz CPU and 256GB

RAM, and simulated the network environment using the Linux

𝑡𝑐 command. We configure a LAN connection with bandwidth 10

8
Code available at https://aka.ms/PQC-mPSI
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𝑛, 𝑡 4, 1 5, 2 10, 4 15, 7

𝑚 2
12

2
16

2
20

2
12

2
16

2
20

2
12

2
16

2
20

2
12

2
16

2
20

KMPRT 7.2 114.1 2057.7 13.4 211.2 3805.4 44.7 706.2 12730.4 103.4 1635.4 29487.9

Protocol A 3.2 49.4 790.2 4.6 72.7 1162.8 12.3 192.4 3077.2 22.5 353.4 5652.9

Table 2: Total communication in MB of mPSI protocols: KMPRT [51] and Protocol A.

𝑛, 𝑡 4, 1 5, 2 10, 4 15, 7

𝑚 2
12

2
16

2
20

2
12

2
16

2
20

2
12

2
16

2
20

2
12

2
16

2
20

KMPRT 3.3 51.9 935.2 4.9 77.8 1402.0 8.3 131.7 2373.5 13.1 207.5 3741.0

Protocol A 1.3 19.9 318.0 1.5 23.3 372.6 2.0 30.8 492.1 2.4 38.8 620.1

Table 3: Client communication in MB of mPSI protocols: KMPRT [51] and Protocol A.

LAN Setting

𝑛, 𝑡 4, 1 5, 2 10, 4 15, 7

𝑚 2
12

2
16

2
20

2
12

2
16

2
20

2
12

2
16

2
20

2
12

2
16

2
20

KMPRT 0.28 2.47 41.30 0.39 4.03 65.43 0.67 6.77 98.04 1.40 13.32 193.90

Ours 0.23 (B) 1.60 (B) 23.80 (C) 0.23 (B) 1.66 (B) 25.48 (C) 0.31 (B) 2.48 (B) 31.45 (C) 0.44 (B) 3.27 (C) 39.45 (C)

WAN Setting

𝑛, 𝑡 4, 1 5, 2 10, 4 15, 7

𝑚 2
12

2
16

2
20

2
12

2
16

2
20

2
12

2
16

2
20

2
12

2
16

2
20

KMPRT 2.5 10.3 108.2 3.7 14.4 196.2 4.2 37.6 615.4 6.8 87.6 1524.5

Ours 1.9 (A) 7.0 (A) 69.6 (C) 2.2 (A) 7.6 (A) 86.3 (C) 3.0 (A) 10.4 (C) 153.9 (C) 3.3 (A) 15.4 (C) 244.8 (C)

Table 4: Total run-time in seconds of mPSI protocols: KMPRT [51] and Ours. For our protocols, we report the best time among
the three protocols and the label in parenthesis denotes the name of this protocol.

Gbps and round-trip latency of 0.06ms. For WAN setting, we set the

network bandwidth to 200 Mbps and round-trip latency to 96ms.

In this section, 𝑛, 𝑡 and 𝑚 denote the number of parties, cor-

ruption threshold and the size of the input sets respectively. In

our experiments, we consider the following values of (𝑛, 𝑡): (4, 1),
(5, 2), (10, 4) and (15, 7). We note that among these, three settings,

namely, (4, 1), (5, 2), and (15, 7) were considered explicitly in the

experimental analysis of KMPRT [51, Section 7]. We compare the

performance with the implementation of KMPRT provided at [60].

6.1 Communication Comparison of mPSI
In this section, we compare the concrete communication cost of our

most communication frugal mPSI protocol Protocol A with KMPRT

[51]. Table 2 summarizes the overall communication cost of of both

of these protocols. As can be observed from the table, Protocol A is

2.3 − 5.2× more communication efficient than KMPRT protocol
9
.

Further, as noted earlier, the clients (parties 𝑃2, . . . , 𝑃𝑛) in our

protocol are muchmore light-weight compared to clients in KMPRT

as illustrated by Table 3. The concrete communication cost of a

client in Protocol A is 2.6 − 6× less than that of KMPRT protocol.

9Protocol A’s implementation builds on the Polynomial based Batch OPPRF’s [65]

implementation at [25] that uses Mersenne prime 2
61 − 1. We note that this only gives

statistical security of 38 bits for input sets of size 2
20
. To obtain statistical security

of 40 bits, one can implement Protocol A over a field with at least 2
63

elements, i.e.,

each element is represented using 64 bits. However, in the implementation, since an

element over prime field with Mersenne Prime 2
61 − 1 is communicated using 64 bits,

the number in the table gives a correct bound on communication of Protocol A with

40 bits of security.

Recall that a client in KMPRT is involved in 2𝑡 + 3 calls to OPPRF

functionality whereas in our protocol a client only makes a single

call to wPSM functionality followed by the interaction in Evaluation

phase (step 4 in Figure 4).

6.2 Run-time Comparison of mPSI
In this section, we compare the run-times of our mPSI protocols

with that of KMPRT [51]. In Table 4, we report the run-time of KM-

PRT along with the run-time of our best performing protocol (i.e.,

Protocol A, Protocol B, or Protocol C as discussed above). For each

entry in Table 4, we report the median value across 5 executions.

Our best protocol achieves a speedup of 1.2 − 4.9× and 1.3 − 6.2×
over KMPRT in LAN andWAN settings respectively. This is because

KMPRT protocol involves execution of 𝑛(𝑡 + 2) − 1 instances of

OPPRF protocol whereas our protocols involve execution of just

𝑛− 1 wPSM protocols followed by a very efficient Evaluation phase.

In the LAN Setting, Protocol A is the least efficient of our three

mPSI protocols. This is because Protocol A involves expensive com-

putation of polynomial interpolation in contrast to Protocol B and

Protocol C which involve inexpensive hashing computations. Be-

tween Protocol B and Protocol C, there is a trade-off between com-

pute and communication. Protocol B has non-linear (in set-size𝑚)

communication that starts to dominate as𝑚 increases. Protocol C
has higher fixed compute but linear communication in𝑚. Hence,

Protocol C is slower than Protocol B for smaller set size but is faster

as the set size increases.

In the WAN Setting, Protocol A owing to its least concrete com-

munication cost, is the most efficient for small set sizes. But as
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𝑛 4 5 10 15

𝑚 2
12

2
16

2
18

2
12

2
16

2
18

2
12

2
16

2
18

2
12

2
16

2
18

Run-time LAN (s) 1.46 2.91 9.32 1.62 3.10 9.49 2.19 4.12 11.27 2.26 4.54 13.12

Run-time WAN (s) 7.10 13.74 34.04 6.98 15.44 39.34 7.88 23.08 74.02 8.14 31.28 108.36

Total Communication (MB) 16.98 209.86 874.23 24.64 290.68 1166.28 55.44 667.73 2627.01 86.24 1038.68 4086.45

Client Communication (MB) 5.66 69.95 291.41 6.16 72.67 291.57 6.16 74.19 291.9 6.16 74.19 291.89

Table 5: Run-time in seconds and communication in MB for steps 1–4 of our Circuit PSI and qPSI protocols.

the set size increases, the non-linear compute starts to become a

bottleneck and it loses to Protocol C. Note that Protocol C enjoys

much more light-weight compute and linear communication com-

plexity. Since Protocol B communicates more, it is inefficient when

compared to the other two protocols in the WAN setting.

6.2.1 Cost Estimation of HE-based mPSI. [44] gave mPSI schemes

based on threshold additively homomorphic encryption (AHE)

schemes and we estimate the cost of their most efficient variant

that uses hashing to significantly reduce the computation cost. The

protocol has four main steps: 1) distributed key generation phase

for an AHE scheme; 2) encryption phase where each client (parties

𝑃2, · · · , 𝑃𝑛) generates 𝐵Z ciphertexts (using the AHE encryption)

and sends them to the leader 𝑃1, where 𝐵 =𝑚/log𝑚 is the number

of bins after hashing, and each bin has Z =𝑚/𝐵+
√
𝑚 log𝐵/𝐵 values;

3) homomorphic evaluation phase where the leader 𝑃1 performs

𝐵Z𝑛+Z𝑚 homomorphic additions and𝑚Z homomorphic scalar mul-

tiplications (for plaintext size of 32 bits); 4) threshold decryption

phase where parties together do a decryption of𝑚 ciphertexts. As

the end-to-end protocol would require concretely efficient proto-

cols for distributed key generation (Step 1), we focus only on AHE

schemes for which such concretely efficient protocols are known

(and hence do not consider lattice based AHE schemes [8, 33, 34]).

In particular, as suggested by [44], we use El Gamal and Paillier

based AHE schemes and estimate the cost of Steps 2 and 3 that is

clearly a strict lower bound for the overall cost.

As suggested by [44] we use the costs of microbenchmarking

provided in [29] for both El Gamal and Paillier encryption schemes.

For 𝑚 = 2
20

and 𝑛 = 15, this gives us a computation cost lower

bound of 729s for the El Gamal instantiation, and 7973s for the

Paillier instantiation in a similar setting as ours. In contrast, our

end-to-end protocol takes only ≈ 40s and hence, is at least 18× and

200× faster than El Gamal and Paillier based schemes, respectively.

Communication estimate for these steps is similar to ours in case of

El Gamal and is much higher for the Paillier based scheme. Similarly,

for𝑚 = 2
12

and 𝑛 = 5, these two steps take at least 4s with El Gamal

and 35s with Paillier, and communication of both schemes is much

worse than our scheme. In comparison, our protocol executes in

0.23s and is 17× and 150× faster than the El Gamal and Paillier

based schemes, respectively.

6.3 Performance of Circuit PSI and qPSI
Circuit PSI. As discussed in Section 4, in steps 5,6 (Figure 6), we

need to work over a prime field F𝑝 such that 𝑝 > 𝑛. Hence, the

Mersenne prime 2
5 − 1 suffices for up to 30 parties and also for all

the settings we consider. However, the smallest prime 𝑝 for which

the implementation of protocols for multiparty functionalities from

Section 2.5 is available (at [20]) is for the Mersenne prime 2
31 − 1,

which is an overkill for our implementations. Based on the concrete

communication analysis discussed in Section 4.2, we observe that

the communication in steps 5,6 using Mersenne prime 31 is < 8.2%

of the communication involved in steps 1 – 4 of the protocol for the

values of 𝑛, 𝑡 and𝑚 considered in our experiments. Moreover, the

computation done in these steps are arithmetic operations over the

small field F31. Hence, performance of the steps 1–4 of the protocol

is a strong indicator of its overall performance.

We illustrate the performance of steps 1–4 in Table 5 whenwPSM

is instantiated using relaxed-batch OPPRF [13]. These numbers can

be extrapolated to estimate the overall run-time of the protocol. For

instance, we estimate our Circuit PSI protocol to take 12.19𝑠 and

80.09𝑠 in LAN and WAN setting respectively for 10 parties with

𝑡 = 4 and input set size 2
18
.

qPSI. Protocol Quorum-I convincingly outperforms Quorum-II for

the values of 𝑛, 𝑡 and𝑚 that we consider in our experiments (see

Theorem 5.1). The aforementioned discussion in the context of

Circuit PSI protocol also holds for protocol Quorum-I. From the

concrete communication analysis in Appendix F.2, for the values of

𝑛, 𝑡,𝑚 considered in experiments, the communication in step 5 (see

Figure 16) using Mersenne prime 31 is < 21% of the communication

involved in steps 1 – 4 for all values of 𝑘 ≤ 𝑛−1. Hence, for instance,
the run-time of Quorum-I protocol can be estimated to be 5.49𝑠 and

37.85𝑠 in LAN and WAN setting respectively for 15 parties with

𝑡 = 7,𝑚 = 2
16

and any 𝑘 ≤ 14.
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A REMARK ON AUGMENTED SEMI-HONEST
MPSI PROTOCOL OF [51]

Here, we describe how the augmented semi-honest mPSI protocol

of [51] leaks intersection of the honest parties’ sets to the adversary.

Consider the following setting: Let 𝑃1 and 𝑃2 be the two corrupt

parties and let element 𝑥 be present in the input set of all parties

except 𝑃2. In augmented semi-honest protocol of [51], the relation

of zero-sharing phase with OPPRF outputs received by 𝑃1 will leak

that 𝑥 belongs to the intersection of honest party sets, even when it

clearly doesn’t belong to the intersection. Note that, as mentioned

before, such leakage is disallowed in standard semi-honest security.

B INSTANTIATIONS OF THEWPSM
FUNCTIONALITY

The wPSM functionality from Section 2.4 can be instantiated us-

ing an oblivious programmable pseudorandom function (OPPRF),

which was first introduced in [51]. More specifically, we can instan-

tiate this functionality using any of the three OPPRF: polynomial-

based batch OPPRF, table-based OPPRF and relaxed-batch OPPRF,

each of which offer a different trade-off in parameters. We infor-

mally describe these variants below, and explain how they can

be used to realize the F 𝛽,𝜎,𝑁wPSM functionality. We refer the reader

to [13, 51, 65] for detailed definitions.

Batch PPRF. [51] Informally, a pseudorandom function (PRF) [38],

sampled with a key from a function family, is guaranteed to be com-

putationally indistinguishable from a uniformly random function,

to an adversary (who does not have the key), given oracle access to

the function. In a programmable PRF (PPRF), the PRF function out-

puts “programmed" values on a set of “programmed" input points.

A “hint", which is also given to the adversary, helps in encoding

such programmed inputs and outputs. The guarantee is that the

hint leaks no information about the programmed values (but can

leak the number of programmed points). When 𝛽 instances of a

PPRF are used, then the corresponding 𝛽 hints can be combined

into a single hint, that hides all the programmed values (but not

the number of programmed points). This variant of PPRF is called

a Batch PPRF [65].

OPRF and Batch OPPRF. An oblivious PRF (OPRF) functional-

ity [30] is a two-party functionality, where the sender learns a

PRF key 𝑘 and the receiver learns the PRF outputs on its queries

𝑞1, · · · , 𝑞𝑡 . An oblivious PPRF (OPPRF) is a two-party functionality,

Fopprf , similar to the OPRF, where now the sender specifies the

programmed inputs/outputs, the receiver specifies the evaluation

points 𝑞1, · · · , 𝑞𝑡 , and the sender gets the PPRF key 𝑘 and the hint,

while the receiver gets the hint and the PPRF outputs on 𝑞1, · · · , 𝑞𝑡 .
The OPPRF functionality defined with respect to a Batch PPRF is

called a Batch OPPRF, denoted by Fb−opprf .
Relaxed Batch OPPRF. [13] A relaxed batch PPRF is a variant of

PPRF, where now the function outputs a set of 𝑑 pseudorandom

values corresponding to every input point, with the constraint that

for a programmed input, the programmed output is one of these 𝑑

elements. The corresponding relaxed batch OPPRF functionality,

denoted by F𝑑rb−opprf , uses the relaxed batch PPRF to respond to

the sender and receiver. The sender inputs the programmed in-

puts/outputs and gets the relaxed batch PPRF keys and the hint,

while the receiver inputs the evaluation points and gets the hint

and the relaxed batch PPRF outputs on its queries.

We now describe the three variants of OPPRFs, which can be

used to instantiate the F 𝛽,𝜎,𝑁wPSM functionality:

• Using the Batch OPPRF functionality [65]: On sender’s in-

puts {𝑋 𝑗 } 𝑗 ∈[𝛽 ] and receiver’s input 𝑞1, · · · , 𝑞𝛽 , the protocol

proceeds as follows: the sender picks 𝑤 𝑗 at random for each

𝑗 ∈ [𝛽], sets 𝑇𝑗 as a set of size |𝑋 𝑗 |, all equal to 𝑤 𝑗 , and the

sender and receiver invoke the Fb−opprf functionality on in-

puts {(𝑋 𝑗 ,𝑇𝑗 )} 𝑗 ∈[𝛽 ] and {𝑞 𝑗 } 𝑗 ∈[𝛽 ] , respectively. The receiver
gets its output {𝑦 𝑗 } 𝑗 ∈[𝛽 ] from the OPPRF functionality and the

sender sets its output as {𝑤 𝑗 } 𝑗 ∈[𝛽 ] (and ignores its output from
the OPPRF functionality). By the property of the batch OPPRF,

it is guaranteed that 𝑦 𝑗 = 𝑤 𝑗 for each 𝑗 ∈ [𝛽] such that 𝑞 𝑗 ∈ 𝑋 𝑗
and 𝑦 𝑗 is random otherwise. Hence, this protocol securely real-

izes the F 𝛽,𝜎,𝑁wPSM functionality in the Fb−opprf-hybrid model.

Specifically, the polynomial-based batch-OPPRF from [65] can

be used to instantiate Fb−opprf in the above construction, which
gives a concrete communication cost of 3.5_𝛽 + 𝑁𝜎 and has a

round complexity of 2.
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• Using the OPPRF functionality [51]: On sender’s inputs

{𝑋 𝑗 } 𝑗 ∈[𝛽 ] and receiver’s input 𝑞1, · · · , 𝑞𝛽 , the protocol pro-

ceeds as follows: the sender picks𝑤 𝑗 at random for each 𝑗 ∈ [𝛽],
sets 𝑇𝑗 as a set of size |𝑋 𝑗 |, all equal to 𝑤 𝑗 . Let max𝛽 be the

application specific upper-bound on the size of the input sets.

The sender pads set 𝑋 𝑗 with dummy elements and set 𝑇𝑗 with

random elements, up to the upper-bound max𝛽 , ∀𝑗 ∈ [𝛽]. The
sender and receiver invoke the Fopprf functionality on inputs

(𝑋 𝑗 ,𝑇𝑗 ) and 𝑞 𝑗 respectively, ∀𝑗 ∈ [𝛽]. The receiver gets output
𝑦 𝑗 from 𝑗 th OPPRF functionality invocation. The sender sets its

output as {𝑤 𝑗 } 𝑗 ∈[𝛽 ] (and ignores its output from the invoca-

tions of OPPRF functionalities). By the property of OPPRF, it is

guaranteed that 𝑦 𝑗 = 𝑤 𝑗 for each 𝑗 ∈ [𝛽] such that 𝑞 𝑗 ∈ 𝑋 𝑗 and
𝑦 𝑗 is random otherwise. Hence, this protocol securely realizes

the F 𝛽,𝜎,𝑁wPSM functionality in the Fopprf-hybrid model.

Specifically, the table-based OPPRF from [51] can be used to

instantiate Fopprf in the above construction, which gives a

concrete communication cost of (4.5_ + 2 ⌈log(max𝛽 ) ⌉𝜎)𝛽 and

a round complexity of 2. For the application of PSI, max𝛽 is

𝑂 (log𝑚/log log𝑚), where𝑚 denotes the size of the input sets.

• Using the Relaxed Batch OPPRF functionality [13]: Fix

𝑑 = 3 in the relaxed batch OPPRF functionality, F𝑑rb−opprf . Let

𝑃1 and 𝑃2 be the sender and receiver of F 𝛽,𝜎,𝑁wPSM functionality

respectively. On 𝑃1’s input {𝑋 𝑗 } 𝑗 ∈[𝛽 ] and 𝑃2’s input 𝑞1, · · · , 𝑞𝛽 ,
the protocol proceeds as follows: 𝑃1 picks𝑤 𝑗 at random for each

𝑗 ∈ [𝛽], sets 𝑇𝑗 as a set of size |𝑋 𝑗 |, all equal to𝑤 𝑗 , and 𝑃1 and
𝑃2 invoke the F𝑑rb−opprf functionality with 𝑃1 as sender with

inputs {(𝑋 𝑗 ,𝑇𝑗 )} 𝑗 ∈[𝛽 ] and 𝑃2 as receiver with inputs {𝑞 𝑗 } 𝑗 ∈[𝛽 ] .
𝑃2 gets its output {𝑊𝑗 } 𝑗 ∈[𝛽 ] from the relaxed batch OPPRF

functionality. By the property of relaxed batch OPPRF, it is

guaranteed that 𝑤 𝑗 ∈ 𝑊𝑗 and the other elements in𝑊𝑗 are

random if 𝑞 𝑗 ∈ 𝑋 𝑗 , else𝑊𝑗 is completely random. Observe that

|𝑊𝑗 | = 3, ∀𝑗 ∈ [𝛽].
In the next phase, 𝑃2 picks 𝑣 𝑗 at random for each 𝑗 ∈ [𝛽],
sets target set 𝑉𝑗 as a set of size |𝑊𝑗 |, all equal to 𝑣 𝑗 . 𝑃1 and
𝑃2 invoke 𝛽 many instances of OPPRF functionality, where

𝑃2 plays the role of sender with inputs (𝑊𝑗 ,𝑉𝑗 ) and 𝑃1 plays
the role of receiver with input 𝑤 𝑗 in the 𝑗 th OPPRF instance.

𝑃1 gets output 𝑦 𝑗 from 𝑗 th OPPRF functionality invocation.

𝑃2 sets output as {𝑣 𝑗 } 𝑗 ∈[𝛽 ] . By the property of OPPRF, it is

guaranteed that𝑦 𝑗 = 𝑣 𝑗 for each 𝑗 ∈ [𝛽] such that𝑤 𝑗 ∈𝑊𝑗 and

𝑦 𝑗 is random otherwise. Using transitivity of implication, this

implies that 𝑦 𝑗 = 𝑣 𝑗 for each 𝑗 ∈ [𝛽] such that 𝑞 𝑗 ∈ 𝑋 𝑗 and 𝑦 𝑗
is random otherwise. Hence, this protocol securely realizes the

F 𝛽,𝜎,𝑁wPSM functionality in the (F𝑑rb−opprf , Fopprf)-hybrid model.

Specifically, using the solution proposed in [13] to instantiate

F𝑑rb−opprf and table-based OPPRF [51] to instantiate Fopprf gives
a concrete communication cost of (8_ + 4𝜎)𝛽 + 1.31𝑁𝜎 and a

round complexity of 4.

C INSTANTIATION OF THE
CONVERTSHARES FUNCTIONALITY

To instantiate ConvertShares𝑛,𝑡 , we make use of a functionality

DoubleRandomF𝑛,𝑡 (ℓ) which generates (𝑛, 𝑡)-shares and additive

shares of uniform field elements 𝑟1, · · · , 𝑟ℓ . We give an instantiation

of this functionality in Appendix C.1. Now, we describe the protocol

which instantiates the ConvertShares𝑛,𝑡 functionality in Figure 9.

Parameters: 𝑃1, · · · , 𝑃𝑛 are 𝑛 parties. All additions and mul-

tiplications are considered in F. Let 𝑡 < 𝑛/2 denote the cor-
ruption threshold.

Input: Additive shares, ⟨𝑎⟩ of 𝑎 ∈ F.
Protocol:

(1) Randomness Generation:
𝑃1, · · · , 𝑃𝑛 compute ( [𝑟 ], ⟨𝑟 ⟩) ← DoubleRandomF𝑛,𝑡 (1).

(2) For each 𝑖 ∈ [𝑛]: 𝑃𝑖 computes ⟨𝑧⟩𝑖 = ⟨𝑎⟩𝑖 − ⟨𝑟 ⟩𝑖 . Each 𝑃𝑖 ,
for 𝑖 ∈ {2, · · · , 𝑛}, sends ⟨𝑧⟩𝑖 to 𝑃1.

(3) 𝑃1 reconstructs 𝑧, computes and sends (𝑛, 𝑡)-shares, [𝑧]𝑖 to
𝑃𝑖 , for each 𝑖 ∈ {2, · · · , 𝑛}.

(4) For 𝑖 ∈ [𝑛], 𝑃𝑖 computes [𝑢]𝑖 = [𝑧]𝑖 + [𝑟 ]𝑖 .
(5) Output [𝑢].

Figure 9: ConvertShares𝑛,𝑡 (⟨𝑎⟩) Protocol

Theorem C.1. The protocol given in Figure 9 securely realizes
ConvertShares𝑛,𝑡 in the DoubleRandomF𝑛,𝑡−hybrid model against
a semi-honest adversary corrupting 𝑡 < 𝑛/2 parties.

Proof. Correctness. The correctness of the protocol follows
from the correctness of DoubleRandomF𝑛,𝑡 (1) and since the local

computations on the shares guarantee that𝑢 = 𝑧+𝑟 = (𝑎−𝑟 )+𝑟 = 𝑎.
Security. Let𝐶 ⊂ [𝑛] be the set of corrupted parties. We show how

to simulate the view of 𝐶 in the ideal world, given the input shares

{⟨𝑎⟩𝑖 }𝑖∈𝐶 and the output shares {[𝑢]𝑖 }𝑖∈𝐶 . We consider two cases

based on 𝑃1 being corrupt or not.

• Case 1 (P1 ∉ C): In this case, the simulator can pick an 𝑟 at ran-

dom and generate its 𝑡 additive and (𝑛, 𝑡)−shares corresponding
to the output ofDoubleRandomF𝑛,𝑡 . For simulating the 𝑡 additive

shares of 𝑧, the simulator locally computes ⟨𝑎⟩𝑖 − ⟨𝑟 ⟩𝑖 , for each
𝑖 ∈ 𝐶 . For the 𝑡 , (𝑛, 𝑡)−shares of 𝑧, it locally computes [𝑢]𝑖 − [𝑟 ]𝑖 ,
for each 𝑖 ∈ 𝐶 .
• Case 2 (P1 ∈ C): The simulation of the 𝑡 additive and (𝑛, 𝑡)−
shares of 𝑟 and 𝑧 are exactly as in Case 1. In addition, since 𝑃1 ∈ 𝐶 ,
the corrupted parties also get 𝑧 in clear, which the simulator picks

at random (since 𝑟 is random, 𝑧 looks random as well).

□

Complexity. The instantiation ofDoubleRandomF𝑛,𝑡 from (Ap-

pendix C.1) gives us a communication cost upper bound of 6(𝑛 −
1) ⌈log |F|⌉ and a round complexity of 3.

C.1 Instantiation of the DoubleRandom
Functionality

From [21], we have an instantiation of a functionality ("DOUBLE-

RANDOM(ℓ)") which outputs (𝑛, 𝑡)-shares and (𝑛, 2𝑡)-shares of
uniform field elements 𝑟1, · · · , 𝑟ℓ for 2𝑡 < 𝑛. Slight modification

to the techniques from [21] would result in an instantiation of

DoubleRandomF𝑛,𝑡 (ℓ), which we describe below for any ℓ ≤ 𝑛 − 𝑡 .
To generate ℓ (> 𝑛 − 𝑡) pairs of double random sharings, the below

protocol can be executed ⌈ℓ/(𝑛 − 𝑡)⌉ times.
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Parameters: 𝑃1, · · · , 𝑃𝑛 are 𝑛 parties. 𝑡 is the corruption

threshold. ℓ ≤ 𝑛 − 𝑡 . All additions and multiplications are

considered in F. Let 𝛼1, · · · , 𝛼𝑛 be distinct non-zero elements

in F. Let 𝑀 be a ℓ × 𝑛 matrix, where for 𝑖 ∈ [ℓ] and 𝑗 ∈ [𝑛],
the 𝑖 𝑗𝑡ℎ element of the matrix𝑚𝑖 𝑗 = (𝛼 𝑗 )𝑖−1.
Protocol:

(1) For each 𝑖 ∈ [𝑛],
• 𝑃𝑖 chooses an 𝑠 (𝑖) ∈ F uniformly.

• 𝑃𝑖 computes an (𝑛, 𝑡)-sharing [𝑠 (𝑖) ] and an additive

sharing ⟨𝑠 (𝑖) ⟩ and sends ( [𝑠 (𝑖) ] 𝑗 , ⟨𝑠 (𝑖) ⟩𝑗 ) to 𝑃 𝑗 for each
𝑗 ∈ [𝑛]\{𝑖}.
• 𝑃𝑖 locally computes

( [𝑟1]𝑖 , · · · , [𝑟ℓ ]𝑖 ) = 𝑀 ( [𝑠 (1) ]𝑖 , · · · , [𝑠 (𝑛) ]𝑖 )𝑇

(⟨𝑟1⟩𝑖 , · · · , ⟨𝑟ℓ ⟩𝑖 ) = 𝑀 (⟨𝑠 (1) ⟩𝑖 , · · · , ⟨𝑠 (𝑛) ⟩𝑖 )𝑇

(2) Output ( [𝑟1], · · · , [𝑟ℓ ]) and (⟨𝑟1⟩, · · · , ⟨𝑟ℓ ⟩).

Figure 10: DoubleRandomF𝑛,𝑡 (ℓ) Protocol

The security proof of the protocol is verbatim similar to the proof

of DOUBLE-RANDOM(ℓ) from [21]. We refer the reader to [21] for

security proof ideas of the same. For generating shares of ℓ random

values, the communication cost of this protocol is 2⌈ ℓ
𝑛−𝑡 ⌉𝑛(𝑛 −

1) ⌈log |F|⌉ and the round complexity is 1. In this paper we invoke

DoubleRandomF𝑛,𝑡 for the setting 𝑡 < 𝑛/2 and (implicitly)
10

for

ℓ ≫ (𝑛 − 𝑡). Hence, where ever we invoke DoubleRandomF𝑛,𝑡 we
consider the amortised cost of a single (ℓ = 1) double sharing as

4(𝑛 − 1) ⌈log |F|⌉ for the sake of simplicity.

D MPSI PROTOCOLWITH STASH
Figure 11 gives a formal description of the sub-procedure to handle

stash in our mPSI protocol. In step 2 of our mPSI protocol with-

out stash (see Figure 4), let 𝑆 denote the stash observed at 𝑃1’s

end on performing Cuckoo hashing. Let 𝑚𝑠 = 𝑂 (log𝑚) denote
the upper-bound on the stash size for input set of size𝑚 [41]. 𝑃1
pads the stash 𝑆 with dummy elements until its size is 𝑚𝑠 . Let

𝑆 = {𝑦1, · · · , 𝑦𝑚𝑠
}. Party 𝑃1 participates in steps 3 and 4 of Fig-

ure 4 with cuckoo hash table Table1 excluding the stash 𝑆 . After

the execution of these steps, 𝑃1 computes the set 𝑌 as in step 5 of

Figure 4. Next, for each element 𝑦 𝑗 ∈ 𝑆 and for all 𝑖 ∈ {2, · · · , 𝑛},
𝑃1 and 𝑃𝑖 invoke the private set membership (PSM) functionality

FPSM [13, 16, 22, 30, 67] which takes as input element 𝑦 𝑗 from

𝑃1 and set 𝑋𝑖 from 𝑃𝑖 and outputs shares ⟨𝑔𝑖 𝑗 ⟩𝐵
1
and ⟨𝑔𝑖 𝑗 ⟩𝐵𝑖 to 𝑃1

and 𝑃𝑖 respectively s.t. 𝑔𝑖 𝑗 = 1 if 𝑦 𝑗 ∈ 𝑋𝑖 , 𝑔𝑖 𝑗 = 0 otherwise. We

make use of the protocol proposed in [13] which has a computation

and communication complexity of O(𝑚_). Party 𝑃𝑖 sets ⟨𝑔𝑖 𝑗 ⟩𝐵𝑖 =
¬⟨𝑔𝑖 𝑗 ⟩𝐵𝑖 , for all 𝑖 ∈ {2, · · · , 𝑛}. Party 𝑃1 and 𝑃𝑖 invoke the F

F𝑝
B2A on

shares of 𝑔𝑖 𝑗 to obtain the corresponding additive shares, ⟨𝑓𝑖 𝑗 ⟩1
and ⟨𝑓𝑖 𝑗 ⟩𝑖 . 𝑃1 then sets ⟨𝑏 𝑗 ⟩1 =

∑𝑛
𝑖=2⟨𝑓𝑖 𝑗 ⟩1 and for 𝑖 ∈ {2, · · · , 𝑛},

𝑃𝑖 sets ⟨𝑏 𝑗 ⟩𝑖 = ⟨𝑓𝑖 𝑗 ⟩𝑖 . Observe that, 𝑏 𝑗 = 0 iff 𝑦 𝑗 belongs to the

10
For example, although ConvertShares𝑛,𝑡 invokes DoubleRandomF𝑛,𝑡 on ℓ = 1, in

all our protocols ConvertShares𝑛,𝑡 itself will be invoked large number of times and

the DoubleRandomF𝑛,𝑡 calls of all these instances can be batched together into a

single DoubleRandomF𝑛,𝑡 call on a large 𝑙 .

intersection. Finally, the parties perform computation similar to

step 4 of Figure 4 to reveal 𝑞 𝑗 = 𝑠 𝑗 · 𝑏 𝑗 to 𝑃1, where 𝑠 𝑗 ∈ F𝑝 is

uniformly random. Finally, 𝑃1 computes the set 𝑌𝑠 =
⋃

𝑗 ∈[𝑚𝑠 ]:𝑞 𝑗=0
𝑦 𝑗 .

𝑃1 permutes the elements in set 𝑌 ∪𝑌𝑠 and announces to all parties.
From Theorem D.1, we get that the sub-procedure securely com-

putes 𝑌𝑠 such that 𝑌𝑠 = 𝑆 ∩ (∩𝑛𝑖=2𝑋𝑖 ). The correctness and security

of mPSI protocol with stash follows from that of the mPSI protocol

without stash (Figure 4) and the sub-procedure to handle stash in

mPSI protocol.

Correctness and Security Proof.

Theorem D.1. The protocol in Figure 11 securely computes the
intersection 𝑌 ∗𝑠 = 𝑆 ∩ (∩𝑛

𝑖=2
𝑋𝑖 ), in the F -hybrid model, where F =

(FPSM, F F𝑝B2A, RandomF𝑛,𝑡 , ConvertShares𝑛,𝑡 ,MultF𝑛,𝑡 , Reveal𝑛,𝑡 ),
against a semi-honest adversary corrupting 𝑡 < 𝑛/2 parties.

Proof. Correctness. Let𝑌 ∗𝑠 = 𝑆∩(∩𝑛
𝑖=2
𝑋𝑖 ) and𝑌𝑠 is the output

of the protocol. In order to prove correctness, we need to show that

𝑌𝑠 = 𝑌
∗
𝑠 , with all but negligible probability in ^.

Lemma D.2. 𝑌 ∗𝑠 ⊆ 𝑌𝑠 .

Proof. Let 𝑒 = 𝑦 𝑗 ∈ 𝑌 ∗𝑠 . From the correctness of FPSM func-

tionality, we have ⟨𝑔𝑖 𝑗 ⟩𝐵
1
⊕ ⟨𝑔𝑖 𝑗 ⟩𝐵𝑖 = 1, for all 𝑖 ∈ {2, · · · , 𝑛}, in

step 2 of the protocol. This implies that ⟨𝑔𝑖 𝑗 ⟩𝐵
1
⊕ ⟨𝑔𝑖 𝑗 ⟩𝐵𝑖 = 0, for all

𝑖 ∈ {2, · · · , 𝑛}, after step 3 of the protocol. From the correctness of

F F𝑝B2A, we have that ⟨𝑓𝑖 𝑗 ⟩1 + ⟨𝑓𝑖 𝑗 ⟩𝑖 = 0, for all 𝑖 ∈ {2, · · · , 𝑛}. Finally,
by the correctness of the multiparty functionalities from Section 2.5,

we have 𝑏 𝑗 = 0 = 𝑞 𝑗 . Hence, 𝑒 ∈ 𝑌𝑠 . □

Lemma D.3. 𝑌𝑠 ⊆ 𝑌 ∗𝑠 , with probability at least 1 − 2−^−2.

Proof. Let 𝑒 = 𝑦 𝑗 ∈ 𝑆 s.t. 𝑒 ∈ 𝑌𝑠 and 𝑒 ∉ 𝑌 ∗𝑠 . Since 𝑒 ∈ 𝑌𝑠 , 𝑞 𝑗 = 0.

From the correctness ofMultF𝑛,𝑡 , then we have that either 𝑏 𝑗 = 0

or 𝑠 𝑗 = 0. The probability that 𝑠 𝑗 = 0 is 𝑝−1 < 2
−𝜎

. Let 𝑆 ′ denote
the stash at 𝑃1’s end before padding it with dummy elements. If

𝑏 𝑗 = 0, consider the following disjoint and exhaustive cases for 𝑒 .

• 𝑒 ∈ 𝑆 ′: Since, 𝑒 ∉ 𝑌 ∗𝑠 , there exists 𝑖 ∈ {2, · · · , 𝑛} such that 𝑒 ∉ 𝑋𝑖 .

Thus, ⟨𝑔𝑖 𝑗 ⟩𝐵
1
⊕ ⟨𝑔𝑖 𝑗 ⟩𝐵𝑖 = 0 in step 2 of the protocol or ⟨𝑔𝑖 𝑗 ⟩𝐵

1
⊕

⟨𝑔𝑖 𝑗 ⟩𝐵𝑖 = 1 after step 3 of the protocol. From the correctness of

F F𝑝B2A, we have that ⟨𝑓𝑖 𝑗 ⟩1 + ⟨𝑓𝑖 𝑗 ⟩𝑖 = 1. This contradicts the fact

that 𝑏 𝑗 = 0. Hence, such an 𝑖 does not exist.

• 𝑒 ∉ 𝑆 ′: That is, 𝑒 is a dummy element inserted by 𝑃1. Since dummy

elements are different from real elements, ⟨𝑔𝑖 𝑗 ⟩𝐵
1
⊕ ⟨𝑔𝑖 𝑗 ⟩𝐵𝑖 = 0,

for all 𝑖 ∈ {2, · · · , 𝑛}, in step 2 of the protocol. This implies that

⟨𝑔𝑖 𝑗 ⟩𝐵
1
⊕ ⟨𝑔𝑖 𝑗 ⟩𝐵𝑖 = 1, for all 𝑖 ∈ {2, · · · , 𝑛}, after step 3 of the

protocol. From the correctness of F F𝑝B2A, we have that ⟨𝑓𝑖 𝑗 ⟩1 +
⟨𝑓𝑖 𝑗 ⟩𝑖 = 1, for all 𝑖 ∈ {2, · · · , 𝑛}. This contradicts the fact that

𝑏 𝑗 = 0.

Thus, the probability of false positive is𝑚𝑠 · 2−𝜎 < 2
−^−2

. □

Security. Let 𝐶 ⊂ [𝑛] be the set of corrupt parties (|𝐶 | = 𝑡 <

𝑛/2). We show how to simulate the view of 𝐶 in the ideal world,

given the stash 𝑆 (if 𝑃1 is corrupt) and input sets 𝑋𝐶 = {𝑋 𝑗 : 𝑗 ∈
𝐶 \ {1}} and the output 𝑌 ∗𝑠 = 𝑆 ∩ (∩𝑛

𝑖=2
𝑋𝑖 ). We consider two cases

based on party 𝑃1 being corrupt or not.
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Parameters: Let 𝜎 = ^ + ⌈log𝑚⌉ + 3 and 𝑝 > 2
𝜎
is a prime. Additions and multiplications in the protocol are over F𝑝 . Let 𝑡 < 𝑛/2 be

the corruption threshold.

Input: Party 𝑃1 has stash 𝑆 = {𝑦1, · · · , 𝑦𝑚𝑠
}, where 𝑦 𝑗 ∈ {0, 1}𝜎 and for all 𝑖 ∈ {2, · · · , 𝑛}, 𝑃𝑖 has input set 𝑋𝑖 = {𝑥𝑖1, · · · , 𝑥𝑖𝑚}, where

𝑥𝑖 𝑗 ∈ {0, 1}𝜎 . Let 𝑡 < 𝑛/2 be the corruption threshold.

Protocol:
(1) Pre-processing: 𝑃1, · · · , 𝑃𝑛 invoke the multiparty functionality RandomF𝑛,𝑡 (𝑚𝑠 ) to get ( [𝑠1], · · · , [𝑠𝑚𝑠

]).
(2) For each 𝑖 ∈ {2, · · · , 𝑛}, 𝑗 ∈ [𝑚𝑠 ], 𝑃1 and 𝑃𝑖 invoke FPSM functionality as follows: 𝑃1 and 𝑃𝑖 send inputs 𝑦 𝑗 and 𝑋𝑖 , resp., and

receive boolean shares ⟨𝑔𝑖 𝑗 ⟩𝐵
1
and ⟨𝑔𝑖 𝑗 ⟩𝐵𝑖 , resp., as outputs.

(3) 𝑃𝑖 computes ⟨𝑔𝑖 𝑗 ⟩𝐵𝑖 = ¬⟨𝑔𝑖 𝑗 ⟩𝐵𝑖 , for all 𝑖 ∈ {2, · · · , 𝑛} and 𝑗 ∈ [𝑚𝑠 ].
(4) For each 𝑖 ∈ {2, · · · , 𝑛} and 𝑗 ∈ [𝑚𝑠 ], 𝑃1 and 𝑃𝑖 invoke F

F𝑝
B2A functionality as follows: 𝑃1 and 𝑃𝑖 send inputs ⟨𝑔𝑖 𝑗 ⟩𝐵

1
and ⟨𝑔𝑖 𝑗 ⟩𝐵𝑖 ,

resp., and receive additive shares ⟨𝑓𝑖 𝑗 ⟩1 and ⟨𝑓𝑖 𝑗 ⟩𝑖 , resp., as outputs.
(5) For 𝑗 ∈ [𝑚𝑠 ],
• 𝑃1 computes ⟨𝑏 𝑗 ⟩1 =

∑𝑛
𝑖=2⟨𝑓𝑖 𝑗 ⟩1 and for 𝑖 ∈ {2, · · · , 𝑛}, 𝑃𝑖 sets ⟨𝑏 𝑗 ⟩𝑖 = ⟨𝑓𝑖 𝑗 ⟩𝑖 .

• 𝑃1, · · · , 𝑃𝑛 compute [𝑏 𝑗 ] ← ConvertShares𝑛,𝑡 (⟨𝑏 𝑗 ⟩).
• 𝑃1, · · · , 𝑃𝑛 invoke the following multiparty functionalities.

– [𝑞 𝑗 ] ← MultF𝑛,𝑡 ( [𝑏 𝑗 ], [𝑠 𝑗 ]).
– 𝑞 𝑗 ← Reveal𝑛,𝑡 ( [𝑞 𝑗 ]).

(6) 𝑃1 computes the intersection as 𝑌𝑠 =
⋃

𝑗 ∈[𝑚𝑠 ]:𝑞 𝑗=0
𝑦 𝑗 from elements in stash.

Figure 11: Handling Stash in mPSI Protocol

• Case 1 (𝑃1 is honest): To simulate the output of RandomF𝑛,𝑡 in
step 1, pick random 𝑠 𝑗 ’s, generate their shares and give 𝑡 shares

to the corrupted parties. In step 2, 𝑃1 and 𝑃𝑖 invoke the FPSM
functionality, for all 𝑖 ∈ {2, · · · , 𝑛} and 𝑗 ∈ [𝑚𝑠 ]. Since 𝑃1 ∉ 𝐶 ,

the view of corrupted parties comprises of only one of the two

boolean shares, i.e., {⟨𝑔𝑖 𝑗 ⟩𝐵𝑖 }𝑖∈𝐶,𝑗 ∈[𝑚𝑠 ] , which can be generated

as corresponding shares of some random bit (by definition of

FPSM). Step 3 is local and can be executed by the simulator. In

step 4, the corrupted parties see only one of the two additive

shares {⟨𝑓𝑖 𝑗 ⟩𝑖 }𝑖∈𝐶,𝑗 ∈[𝑚𝑠 ] , which can be generated as shares of

a random bit (by definition of F F𝑝B2A). In step 5, apart from the

local computations, which can all be executed by the simulator,

the parties call functionalities ConvertShares𝑛,𝑡 , MultF𝑛,𝑡 and
Reveal𝑛,𝑡 ). The corrupted parties get 𝑡 shares of 𝑏 𝑗 and 𝑞 𝑗 , for

each 𝑗 ∈ [𝑚𝑠 ]. The simulator can generate 𝑡 shares of random

values (by the security of (𝑛, 𝑡)-secret sharing), and finally, send

the output 𝑌 ∗𝑠 to the corrupted parties.

• Case 2 (𝑃1 is corrupt): The simulation of step 1 is exactly same

as in Case 1. In step 2, 𝑃1 and 𝑃𝑖 invoke FPSM functionality,

for all 𝑖 ∈ {2, · · · , 𝑛} and 𝑗 ∈ [𝑚𝑠 ]. The corrupted parties see

both the boolean shares {⟨𝑔𝑖 𝑗 ⟩𝐵
1
, ⟨𝑔𝑖 𝑗 ⟩𝐵𝑖 }𝑖∈𝐶\{1}, 𝑗 ∈[𝑚𝑠 ] and only

one of the boolean shares {⟨𝑔𝑖 𝑗 ⟩𝐵
1
}𝑖∈[𝑛]\𝐶,𝑗 ∈[𝑚𝑠 ] . For each 𝑖 ∈

𝐶 \ {1}, simulator sets 𝑔𝑖 𝑗 = 1 if 𝑦 𝑗 ∈ 𝑋𝑖 else it sets 𝑔𝑖 𝑗 = 0.

The simulator then generates boolean shares of 𝑔𝑖 𝑗 to simu-

late {⟨𝑔𝑖 𝑗 ⟩𝐵
1
, ⟨𝑔𝑖 𝑗 ⟩𝐵𝑖 }𝑖∈𝐶\{1}, 𝑗 ∈[𝑚𝑠 ] (by definition of FPSM). For

𝑖 ∈ [𝑛] \ 𝐶 , the simulator generates boolean shares of random

bits to simulate {⟨𝑔𝑖 𝑗 ⟩𝐵
1
}𝑖∈[𝑛]\𝐶,𝑗 ∈[𝑚𝑠 ] . Step 3 is local and can

be executed by the simulator. Corrupted parties see both the

arithmetic shares {⟨𝑓𝑖 𝑗 ⟩1, ⟨𝑓𝑖 𝑗 ⟩𝑖 }𝑖∈𝐶\{1}, 𝑗 ∈[𝑚𝑠 ] and one of the

arithmetic shares {⟨𝑓𝑖 𝑗 ⟩1}𝑖∈[𝑛]\𝐶,𝑗 ∈[𝑚𝑠 ] in step 4. For each 𝑖 ∈
𝐶 \ {1}, simulator sets 𝑓𝑖 𝑗 = 0 if 𝑦 𝑗 ∈ 𝑋𝑖 else it sets 𝑓𝑖 𝑗 = 1.

The simulator then generates arithmetic shares of 𝑓𝑖 𝑗 to simulate

{⟨𝑓𝑖 𝑗 ⟩1, ⟨𝑓𝑖 𝑗 ⟩𝑖 }𝑖∈𝐶\{1}, 𝑗 ∈[𝑚𝑠 ] (by definition of F F𝑝B2A). To simulate

the view {⟨𝑓𝑖 𝑗 ⟩1}𝑖∈[𝑛]\𝐶,𝑗 ∈[𝑚𝑠 ] , simulator generates arithmetic

shares of random bits. In step 5, apart from the local computa-

tions, which can all be executed by the simulator, the parties call

functionalities ConvertShares𝑛,𝑡 , MultF𝑛,𝑡 and Reveal𝑛,𝑡 ). The
corrupted parties see at most 𝑡 shares of 𝑏 𝑗 , for each 𝑗 ∈ [𝑚𝑠 ],
which can be simulated by generating 𝑡 shares of random values

(by security of (𝑛, 𝑡)-secret sharing). Moreover, for all 𝑗 ∈ [𝑚𝑠 ],
simulator sets 𝑞 𝑗 = 0 if 𝑦 𝑗 ∈ 𝑌 ∗𝑠 , else it picks 𝑞 𝑗 uniformly at

random from F𝑝 (since 𝑠 𝑗 are uniformly random given at most 𝑡

shares of the corrupted parties). For all 𝑗 ∈ [𝑚𝑠 ], it gives 𝑡 shares
of 𝑞 𝑗 as output of MultF𝑛,𝑡 and 𝑞 𝑗 as output of Reveal𝑛,𝑡 .

□

Complexity. 𝑃1 invokes the PSM protocol for every element 𝑦 𝑗 in

stash and for every party 𝑃𝑖 , 𝑖 ∈ {2, · · · , 𝑛}. Thus, the computation

and communication complexity of this step is O(𝑛𝑚 log(𝑚)_). No-
tice that, this cost dominates the overall cost of the sub-procedure as

the rest of the steps have a complexity of O(𝑛 log(𝑚)_). Hence, we
obtain anmPSI protocol with an overall complexity of𝑂 (𝑛𝑚 log(𝑚)_)
in cuckoo hashing with stash setting.

E WEAK COMPARISON PROTOCOLS
E.1 Correctness and Security of Weak

Comparison Protocol I
We give a complete proof of Theorem 5.2 by proving the correctness

and security of the weak comparison protocol I in Figure 8.

Correctness. The correctness of the evaluation of the polynomial

𝜓 (𝑥) directly follows from its definition and from the correctness of

the multiparty functionalities RandomF𝑛,𝑡 and MultF𝑛,𝑡 from [21].

We need to show that, for each 𝑎, except with negligible probability

in correctness parameter (𝜏), 𝑣 𝑗 = 0,∀𝑗 ∈ [𝐽 ] ⇐⇒ 𝜓 (𝑎) = 0.

Lemma E.1. 𝜓 (𝑎) = 0 =⇒
(
𝑣 𝑗 = 0,∀𝑗 ∈ [𝐽 ]

)
.

Proof. This follows directly from the definition of 𝑣 𝑗 . □
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Lemma E.2. Probability that𝜓 (𝑎) = 0 when
(
𝑣 𝑗 = 0,∀𝑗 ∈ [𝐽 ]

)
is

atleast 1 − 2−𝜏 .

Proof. For any 𝑗 ∈ [𝐽 ], if 𝑣 𝑗 = 0 then either 𝑠 𝑗 = 0 or𝜓 (𝑎) = 0.

If 𝜓 (𝑎) = 0 then we are done. If 𝜓 (𝑎) ≠ 0 and 𝑣 𝑗 = 0 then 𝑠 𝑗 = 0,

which occurs with probability 2
− log |F𝑝 |

. Probability that 𝑠 𝑗 = 0 for

every 𝑗 ∈ [𝐽 ] is 2− log |F𝑝 | ·𝐽 ≤ 2
−𝜏

by the definition of 𝐽 . Therefore

if 𝜓 (𝑎) ≠ 0 then at least one 𝑣 𝑗 ≠ 0 with probability at least

1 − 2−𝜏 . □

Hence except with failure probability at most 2
−𝜏

the output of the

protocol is correct.

Security. Let 𝐶 ⊂ [𝑛] be the set of corrupted parties (|𝐶 | = 𝑡 <
𝑛/2). We show how to simulate the view of 𝐶 in the ideal world,

given the input shares {[𝑎]𝑖 }𝑖∈𝐶 and the output comp, if 𝑃1 is

corrupt, and no output, otherwise. We consider two cases based on

party 𝑃1 being corrupt or not.

• Case 1 (𝑃1 is honest): For the pre-processing step, the simulator

can pick random strings 𝑠1, · · · , 𝑠 𝐽 and send 𝑡 shares of each

𝑠1, · · · , 𝑠 𝐽 to parties in 𝐶 . To simulate step 2, the simulator picks

random values and gives their 𝑡 shares as shares of [𝑎𝑖 ]. The
scalar multiplications and additions are done locally on these

shares to obtain 𝑡 shares of𝜓 (𝑎). Next, it picks 𝑣 𝑗 at random and

gives its 𝑡 shares to corrupted parties, for each 𝑗 ∈ [𝐽 ]. Simulation

of this step is correct by security of (𝑛, 𝑡)-secret sharing scheme.

• Case 2 (𝑃1 is corrupt): The simulation of step 1 and step 2 until

generating 𝑡 shares of each 𝑣 𝑗 is done exactly as in the previous

case. The opened value 𝑣 𝑗 = 𝜓 (𝑎) · 𝑠 𝑗 is simulated as follows:

Since 𝑠 𝑗 is uniformly random (as only 𝑡 shares are known to the

corrupted parties), 𝑣 𝑗 = 𝜓 (𝑎) · 𝑠 𝑗 looks random whenever 𝑣 𝑗 ≠ 0.

Hence, if 𝑘 ≥ 𝑛/2, the simulator sets all 𝑣 𝑗 = 0 if comp = 1, and

picks all 𝑣 𝑗 at random otherwise, and vice versa, if 𝑘 < 𝑛/2. The
simulator sends all 𝑣 𝑗 to the corrupted parties.

E.2 Weak Comparison Protocol II
Building Blocks: The protocol uses the multiparty functionali-

ties in Section 2.5 (with 𝑛 parties and corruption threshold 𝑡 ) and

the F 𝑝,𝑛,𝑡Mod functionality, which we define in Figure 12, as building

blocks. The F 𝑝,𝑛,𝑡Mod functionality takes as input the (𝑛, 𝑡)− shares of

some 𝑎 ∈ F𝑝 and outputs the (𝑛, 𝑡)− shares of (𝑎 mod 2).

There are𝑛 parties 𝑃1, · · · , 𝑃𝑛 . 𝑡 denotes the corruption thresh-
old. All operations and elements are over F𝑝 , such that 𝑛 < 𝑝 .

Inputs: For each 𝑖 ∈ [𝑛], 𝑃𝑖 inputs its (𝑛, 𝑡)− share [𝑎]𝑖 cor-
responding to some 0 ≤ 𝑎 < 𝑛 and [𝑎]𝑖 ∈ F𝑝 .
Output: Reconstruct the shares to get 𝑎, evaluate 𝑑 = 𝑎

mod 2, generate (𝑛, 𝑡)− shares of 𝑑 and output [𝑑]𝑖 to each

𝑃𝑖 .

Figure 12: Mod2 Functionality F 𝑝,𝑛,𝑡Mod

We instantiate theF 𝑝,𝑛,𝑡Mod functionality using the protocol from [12],

which sets 𝑝 > 2
^+𝛾

to be a prime such that 𝑝 mod 4 = 3 and

𝛾 = ⌈log𝑛⌉ + 1. The details of this protocol are given in Appendix

E.2.1.

The weak comparison protocol takes as input, the (𝑛, 𝑡)− shares

[𝑎]𝑖 from each 𝑃𝑖 (𝑖 ∈ [𝑛]), where 𝑎 ∈ F𝑝 (such that 0 ≤ 𝑎 < 𝑛).

For 𝑘 ∈ F𝑝 (with 0 ≤ 𝑘 < 𝑛) and 𝛾 = ⌈log𝑛⌉ + 1, the protocol

proceeds as follows: it first computes the (𝑛, 𝑡)− shares of (𝑎 −
𝑘). Next, by sequentially invoking the F 𝑝,𝑛,𝑡Mod functionality, the

parties 𝑃1, · · · , 𝑃𝑛 receive the (𝑛, 𝑡)− shares of

⌊
(𝑎−𝑘)
2
𝛾

⌋
. Finally, by

invoking the Reveal𝑛,𝑡 functionality, party 𝑃1 recovers

⌊
(𝑎−𝑘)
2
𝛾

⌋
,

which is 0 iff 𝑎 ≥ 𝑘 . A formal description of the protocol is given in

Figure 13.

Parameters: There are 𝑛 parties 𝑃1, · · · , 𝑃𝑛 with (𝑛, 𝑡)−
shares [𝑎], of 𝑎 ∈ F𝑝 and 𝑎 < 𝑛. Let 𝑝, 𝑛, 𝑘, 𝑡 be such that

𝑝 is a prime, 𝑝 > 𝑛 > 𝑘 and 𝑛 > 2𝑡 . Let 𝛾 = ⌈log𝑛⌉ + 1. Addi-
tions and multiplications in the protocol are over F𝑝 , where

𝑝 depends on the specific instantiation of F 𝑝,𝑛,𝑡Mod .

Input: For each 𝑖 ∈ [𝑛], 𝑃𝑖 inputs its (𝑛, 𝑡)− share [𝑎]𝑖 .
Protocol:
(1) 𝑃1, · · · , 𝑃𝑛 locally compute [𝑏] = [𝑎] − 𝑘 .
(2) Let 𝑐1 = 𝑏. For each 𝑖 = 1, · · · , 𝛾 , 𝑃1, · · · , 𝑃𝑛 do the follow-

ing:

• Invoke the F 𝑝,𝑛,𝑡Mod functionality with the input [𝑐𝑖 ] to
get the output [𝑑𝑖 ].
• For each 𝑗 ∈ [𝑛], 𝑃 𝑗 sets [𝑐𝑖+1] 𝑗 = ( [𝑐𝑖 ] 𝑗 − [𝑑𝑖 ] 𝑗 ) · 2−1.

(3) 𝑐𝛾+1 ← Reveal𝑛,𝑡 ( [𝑐𝛾+1]).
Output: 𝑃1 sets comp = 1, if 𝑐𝛾+1 = 0 and comp = 0, other-

wise. Other parties get no output.

Figure 13: WEAK COMPARISON PROTOCOL II

Theorem E.3. The protocol given in Figure 13 securely realizes
F 𝑝,𝑘,𝑛,𝑡w-CMP in the F−hybrid model, where F = (F 𝑝,𝑛,𝑡Mod ,Reveal

𝑛,𝑡 ),
against a semi-honest adversary corrupting 𝑡 < 𝑛/2 parties.

Proof. Correctness. The correctness of the protocol follows
from the correctness of the functionalities F 𝑝,𝑛,𝑡Mod and Reveal𝑛,𝑡 and

the fact that

⌊
(𝑎−𝑘)
2
𝛾

⌋
= 0 iff 𝑎 ≥ 𝑘 .

Security. Let𝐶 ⊂ [𝑛] be the set of corrupted parties (|𝐶 | = 𝑡 < 𝑛/2).
We show how to simulate the view of 𝐶 in the ideal world, given

the input shares {[𝑎]𝑖 }𝑖∈𝐶 and the output comp, if 𝑃1 is corrupt,
and no output, otherwise. We consider two cases based on party 𝑃1
being corrupt or not.

• Case 1 (𝑃1 is honest): For the first step, the simulator can per-

form local addition to get 𝑡 shares of 𝑏. For the second step, the

corrupted parties get at most 𝑡 shares of the values,𝑑𝑖 and 𝑐𝑖 , for

𝑖 = 1, · · · , 𝛾 , and 𝑐𝛾+1. The simulator picks the 𝑡 shares of [𝑑𝑖 ]’s
as shares of random value (by the security of secret sharing)

and performs the local addition and scalar multiplication to get

the 𝑡 shares of the [𝑐𝑖 ]’s. Here, the corrupted parties get no

output.

• Case 2 (𝑃1 is corrupt): The simulation of the first and second

steps is done exactly as in Case 1. For the third step, the sim-

ulator sets 𝑐𝛾+1 = 0, if comp = 1 and 𝑐𝛾+1 = 𝑝 − 1, otherwise.
Finally, set the output as comp.
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□

E.2.1 The Mod2 Protocol. We now describe the Mod2 protocol

from [12] (using the instantiations from [21]), which we use to

instantiate the F 𝑝,𝑛,𝑡Mod functionality, used in our weak comparison

protocol II (Figure 13).

Building Blocks: The protocol uses the multiparty functionalities

in Section 2.5 (with 𝑛 parties and corruption threshold 𝑡 ) as building

blocks.

The protocol takes as input, the (𝑛, 𝑡)− shares [𝑎] from parties

𝑃1, · · · , 𝑃𝑛 , where 𝑎 ∈ F𝑝 (such that 0 ≤ 𝑎 < 𝑛), for prime 𝑝 >

2
^+𝛾

(where 𝛾 = ⌈log𝑛⌉ + 1) with 𝑝 mod 4 = 3 and proceeds

as follows: first, in an input-independent Pre-processing step, the
parties generate (𝑛, 𝑡)− shares of a pair of random non-negative

integers (𝑠 ′, 𝑠 ′′), such that (2 · 𝑠 ′′ + 𝑠 ′) is of 𝛾 + ^ bits, which is

required for security reasons as discussed later. Then, they locally

compute and get the (𝑛, 𝑡)− shares of 𝑐 = 2
𝛾−1 +𝑎 + 2𝑠 ′′ + 𝑠 ′, which

is revealed to 𝑃1. 𝑃1 then computes 𝑐0 = 𝑐 mod 2 and sends it

to all parties. Finally, all parties locally compute and get (𝑛, 𝑡)−
shares of 𝑑 = 𝑐0 + 𝑠 ′ − 2𝑐0𝑠 ′, which is the required output. A formal

description of the protocol is given in Figure 14.

Parameters: There are 𝑛 parties 𝑃1, · · · , 𝑃𝑛 with (𝑛, 𝑡)−
shares [𝑎], of 𝑎 ∈ F𝑝 and 𝑎 < 𝑛. Let 𝛾 = ⌈log𝑛⌉ + 1. Ad-
ditions and multiplications in the protocol are over F𝑝 , where
𝑝 > 2

^+𝛾
is a prime such that 𝑝 mod 4 = 3.

Input: For each 𝑖 ∈ [𝑛], 𝑃𝑖 inputs its (𝑛, 𝑡)− shares [𝑎]𝑖 .
Protocol:
(1) Pre-processing:
• For each 𝑖 = 1, · · · , ^ + 𝛾 , 𝑃1, · · · , 𝑃𝑛 use the RandBit()
sub-protocol (Figure 15) to get [𝑏𝑖 ].
• For each 𝑖 ∈ [𝑛], 𝑃𝑖 sets [𝑠 ′′]𝑖 =

∑^+𝛾−1
𝑗=1

2
𝑗−1 · [𝑏 𝑗 ]𝑖

and [𝑠 ′]𝑖 = [𝑏^+𝛾 ]𝑖 .
(2) For each 𝑖 ∈ [𝑛], 𝑃𝑖 sets [𝑐]𝑖 = (2𝛾−1+[𝑎]𝑖+2[𝑠 ′′]𝑖+[𝑠 ′]𝑖 ).
(3) 𝑐 ← Reveal𝑛,𝑡 ( [𝑐]).
(4) 𝑃1 computes: 𝑐0 = 𝑐 mod 2 and sends to all parties.

(5) For each 𝑖 ∈ [𝑛], 𝑃𝑖 sets [𝑑]𝑖 = 𝑐0 + [𝑠 ′]𝑖 − 2 · 𝑐0 · [𝑠 ′]𝑖 .
Output: For each, 𝑖 ∈ [𝑛], 𝑃𝑖 gets the output [𝑑]𝑖 .

Figure 14: Mod2 PROTOCOL

Wenowdescribe the sub-protocolRandBit used in the pre-processing
step of the above protocol, which takes no input and outputs the

(𝑛, 𝑡)− shares of a random bit𝑏. The parameters of this sub-protocol

are as in the main Mod2 protocol of Figure 14.

Theorem E.4. The protocol given in Figure 14 securely realizes
F 𝑝,𝑛,𝑡Mod in the F− hybrid model, where F = (RandomF𝑛,𝑡 ,MultF𝑛,𝑡 ,
Reveal𝑛,𝑡 ), against a semi-honest adversary corrupting 𝑡 < 𝑛/2 par-
ties.

Proof. Correctness. We begin by proving the correctness of

the RandBit sub-protocol, invoked in the first step. For this, it suf-

fices to show that 𝑏 ∈ {0, 1}. By the correctness of the functionali-

ties RandomF𝑛,𝑡 and MultF𝑛,𝑡 from [21], we know that 𝑢 = 𝑟2. If

𝑢 ≠ 0, (𝑣𝑟 + 1)2−1 mod 𝑝 = (𝑟 (1−𝑝)/2 + 1)2−1 mod 𝑝 . We know

that for any prime order field element 𝑟 , 𝑟 (1−𝑝)/2 = ±1 mod 𝑝 and

hence 𝑏 ∈ {0, 1}. Now, the correctness of theMod2 protocol follows

Input: No input taken.

Protocol:
(1) [𝑟 ] ← RandomF𝑛,𝑡 (1).
(2) Compute [𝑢] ← MultF𝑛,𝑡 ( [𝑟 ], [𝑟 ]).
(3) 𝑢 ← Reveal𝑛,𝑡 ( [𝑢]). If 𝑢 = 0, discard 𝑢 and repeat step 1.

Else, 𝑃1 sends 𝑢 to all parties.

(4) For each 𝑖 ∈ [𝑛], 𝑃𝑖 sets: 𝑣 = 𝑢−(𝑝+1)/4 mod 𝑝 .

(5) For each 𝑖 ∈ [𝑛], 𝑃𝑖 sets: [𝑏]𝑖 = (𝑣 [𝑟 ]𝑖 + 1)2−1 mod 𝑝 .

Output: For each 𝑖 ∈ [𝑛], 𝑃𝑖 gets the output [𝑏]𝑖 .

Figure 15: RandBit SUB-PROTOCOL

from the following observations: consider 𝑐 = 2
𝛾−1 + 𝑎 + 2𝑠 ′′ + 𝑠 ′,

which implies that 𝑐0 = 𝑐 mod 2 = (𝑎 + 𝑠 ′) mod 2. Now, clearly,

𝑑 = 𝑐0 + 𝑠 ′ − 2𝑐0𝑠 ′ = 𝑎 mod 2 (recall that 𝑠 ′ is a single bit).
Security. Let𝐶 ⊂ [𝑛] be the set of corrupted parties (|𝐶 | = 𝑡 < 𝑛/2).
We show how to simulate the view of𝐶 in the ideal world, given the

input shares {[𝑎]𝑖 }𝑖∈𝐶 and the output shares {[𝑑]}𝑖∈𝐶 (for 𝑑 = 𝑎

mod 2). But note that the output is something the simulator can

set on its own (by the security of secret sharing). We consider two

cases based on party 𝑃1 being corrupt or not.

• Case 1 (𝑃1 is honest): In the pre-processing step, to simulate

the view of the corrupted parties in the RandBit sub-protocol,
the simulator does the following: it picks the 𝑡 shares of 𝑟 as

shares of a random value. It picks a random 𝑢 and sends its 𝑡

shares to the corrupted parties. Further, it does local computa-

tions to get 𝑣 and the 𝑡 shares of 𝑏. Then, the simulator does

local computations to get the 𝑡 shares of 𝑠 ′ and 𝑠 ′′. For step
2, the simulator does local computations to get the 𝑡 shares of

𝑐 . Finally, it picks 𝑐0 at random (this is because of the follow-

ing reason: for a random 𝑟 , 𝑟 (1−𝑝)/2 = ±1 mod 𝑝 , with equal

probability and hence, 𝑏 is a random bit. Thus, 𝑠 ′ looks ran-
dom to the corrupted parties, by the security of secret sharing,

which implies that 𝑐0 = 𝑎 + 𝑠 ′ mod 2 looks random to the

corrupted parties) and sets the 𝑡 shares of [𝑑] by doing the local
computation.

• Case 2 (𝑃1 is corrupt): The simulation of the pre-processing

step and step 2 is exactly as in Case 1. The simulator picks both

𝑐 and 𝑐0 at random (this is because of the following reason:

𝑐 = 2
𝛾−1 + 𝑎 + 2𝑟 ′′ + 𝑟 ′ and 𝑐0 = 𝑐 mod 2. (2𝑠 ′′ + 𝑠 ′) mod 𝑝 is

a random field element (corresponding to a random integer of

length ^ + 𝛾 ) and hence, 𝑐 looks random in the field F𝑝 , which
implies that 𝑐0 also looks random). Finally, the simulator does

the local computation to set the 𝑡 shares of [𝑑].

□

Complexity. TheMod2 protocol has an expected communica-

tion complexity of 19.3𝑛(⌈log 𝑝⌉)2 and an expected round complex-

ity of 10.

F CORRECTNESS, SECURITY AND
COMPLEXITY OF QUORUM PSI

F.1 Correctness and Security of Quorum PSI
We recall the Quorum PSI protocol from Section 5.1 in Figure 16.

We now give a complete proof of Theorem 5.1, by proving the

correctness and security of the protocol in Figure 16.
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Parameters: There are 𝑛 parties 𝑃1, . . . , 𝑃𝑛 with private sets of size𝑚 and 1 < 𝑘 ≤ 𝑛 − 1 is quorum. Let 𝛽 = 1.28𝑚,𝜎 = ^ + ⌈log𝑚⌉ +
⌈log𝑛⌉ + 2. Additions and multiplications in the protocol are over F𝑝 , where 𝑝 is a prime (larger than 𝑛) that depends on specific

instantiation of Fw-CMP. Let 𝑡 < 𝑛/2 denote the corruption threshold.

Input: Each party 𝑃𝑖 has input set 𝑋𝑖 = {𝑥𝑖1, · · · , 𝑥𝑖𝑚}, where 𝑥𝑖 𝑗 ∈ {0, 1}𝜎 . Note that element size can always be made 𝜎 bits by first

hashing the elements using an appropriate universal hash function.

Protocol:
(1) Hashing: Parties agree on hash functions ℎ1, ℎ2, ℎ3 : {0, 1}𝜎 → [𝛽].

𝑃1 does stash-less cuckoo hashing on 𝑋1 using ℎ1, ℎ2, ℎ3 to generate Table1 and inserts random elements into empty bins.

For 𝑖 ∈ {2, · · · , 𝑛}, 𝑃𝑖 does simple hashing of 𝑋𝑖 using ℎ1, ℎ2, ℎ3 into Table𝑖 , i.e., stores each 𝑥 ∈ 𝑋𝑖 at locations ℎ1 (𝑥), ℎ2 (𝑥) and
ℎ3 (𝑥). If the three locations are not distinct, random dummy values are inserted in bin with collision.

(2) Invoking the F 𝛽,𝜎,𝑁wPSM functionality: For each 𝑖 ∈ {2, · · · , 𝑛} , 𝑃1 and 𝑃𝑖 invoke the F 𝛽,𝜎,𝑁wPSM functionality for 𝑁 = 3𝑚 as follows:

• 𝑃𝑖 is the sender with inputs {Table𝑖 [ 𝑗]} 𝑗 ∈[𝛽 ] and 𝑃1 is the receiver with inputs {Table1 [ 𝑗]} 𝑗 ∈[𝛽 ] .
• 𝑃𝑖 receives the outputs {𝑤𝑖 𝑗 } 𝑗 ∈[𝛽 ] and 𝑃1 receives {𝑦𝑖 𝑗 } 𝑗 ∈[𝛽 ] .

(3) Invoking the F 𝜎EQ functionality: For each 𝑖 ∈ {2, · · · , 𝑛} and for each 𝑗 ∈ [𝛽], 𝑃1 and 𝑃𝑖 invoke the F 𝜎EQ functionality as follows:

𝑃1 and 𝑃𝑖 send their inputs 𝑦𝑖 𝑗 and𝑤𝑖 𝑗 , resp., and receive boolean shares ⟨𝑒𝑞𝑖 𝑗 ⟩𝐵
1
and ⟨𝑒𝑞𝑖 𝑗 ⟩𝐵𝑖 resp., as outputs.

(4) Invoking the F F𝑝B2A functionality: For each 𝑖 ∈ {2, · · · , 𝑛} and for each 𝑗 ∈ [𝛽], 𝑃1 and 𝑃𝑖 invoke the F
F𝑝
B2A functionality as follows:

𝑃1 and 𝑃𝑖 send their inputs ⟨𝑒𝑞𝑖 𝑗 ⟩𝐵
1
and ⟨𝑒𝑞𝑖 𝑗 ⟩𝐵𝑖 , resp., and receive the additive shares ⟨𝑓𝑖 𝑗 ⟩1 and ⟨𝑓𝑖 𝑗 ⟩𝑖 resp., as outputs.

(5) Invoking n-party functionalities: For each 𝑗 ∈ [𝛽],
• 𝑃1 computes ⟨𝑎 𝑗 ⟩1 =

∑𝑛
𝑖=2⟨𝑓𝑖 𝑗 ⟩1 and for each 𝑖 ∈ {2, · · · , 𝑛}, 𝑃𝑖 sets ⟨𝑎 𝑗 ⟩𝑖 = ⟨𝑓𝑖 𝑗 ⟩𝑖 .

• 𝑃1, · · · , 𝑃𝑛 compute [𝑎 𝑗 ] ← ConvertShares𝑛,𝑡 (⟨𝑎 𝑗 ⟩).
• Parties invoke F 𝑝,𝑘,𝑛,𝑡w-CMP with 𝑃𝑖 ’s input being [𝑎 𝑗 ]𝑖 for 𝑖 ∈ [𝑛] and 𝑃1 learns 𝑐 𝑗 as output.

(6) Output: 𝑃1 computes the quorum intersection as 𝑌 =
⋃

𝑗 ∈[𝛽 ]:𝑐 𝑗=1
Table1 [ 𝑗].

Figure 16: QUORUM PSI PROTOCOL

Correctness. For𝑥 ∈ 𝑋1, define𝑞𝑥 = |{𝑖 ∈ {2, · · · , 𝑛} : 𝑥 ∈ 𝑋𝑖 }|.
Let 𝑌 ∗ = {𝑥 ∈ 𝑋1 : 𝑞𝑥 ≥ 𝑘} and the output of the protocol is de-

noted by 𝑌 . We now show that 𝑌 = 𝑌 ∗, with all but negligible in

^ probability. For the rest of the proof we assume that the cuckoo

hashing by 𝑃1 succeeds (i.e., all elements of 𝑋1 get inserted success-

fully in Table1), which happens with probability at least 1 − 2−42
(see Section 2.2). Now, the following two lemmata complete the

proof of correctness.

Lemma F.1. 𝑌 ∗ ⊆ 𝑌 .

Proof. Let 𝑒 = Table1 [ 𝑗] ∈ 𝑌 ∗ and E = {𝑖 ∈ {2, · · · , 𝑛} :

𝑒 ∈ 𝑋𝑖 }. By the property of simple hashing, 𝑒 ∈ Table𝑖 [ 𝑗] for all
𝑖 ∈ E. By correctness of F 𝛽,𝜎,𝑁wPSM , F 𝜎EQ and F F𝑝B2A, we have 𝑦𝑖 𝑗 = 𝑤𝑖 𝑗 ,

𝑒𝑞𝑖 𝑗 = 1 and 𝑓𝑖 𝑗 = 1 respectively, for all 𝑖 ∈ E. For 𝑖 ∉ E, since F 𝜎EQ
gives a boolean output, 𝑒𝑞𝑖 𝑗 ∈ {0, 1}, and by correctness of F F𝑝B2A,

we have 𝑓𝑖 𝑗 ∈ {0, 1}. By correctness of ConvertShares𝑛,𝑡 , we know
that [𝑎 𝑗 ] corresponds to 𝑎 𝑗 =

∑
𝑖∈{2, · · · ,𝑛} 𝑓𝑖 𝑗 < 𝑛 < 𝑝 . Since 𝑒 ∈ 𝑌 ∗,

we get 𝑎 𝑗 ≥ |E| ≥ 𝑘 . Finally, by correctness of F 𝑝,𝑘,𝑛,𝑡w-CMP we will get

𝑐 𝑗 = 1 when invoked on shares of 𝑎 𝑗 ≥ 𝑘 . Therefore, 𝑒 ∈ 𝑌 . □

Lemma F.2. 𝑌 ⊆ 𝑌 ∗, with probability at least 1 − 2−^−1.

Proof. Suppose 𝑌 ⊈ 𝑌 ∗. Let 𝑒 = Table1 [ 𝑗] ∈ 𝑌\𝑌 ∗. First,
𝑒 ∈ 𝑌 implies 𝑐 𝑗 = 1. Further, by correctness of F 𝑝,𝑘,𝑛,𝑡w-CMP and

ConvertShares𝑛,𝑡 , it follows that 𝑎 𝑗 ≥ 𝑘 and 𝑎 𝑗 =
∑
𝑖∈{2, · · · ,𝑛} 𝑓𝑖 𝑗 .

Now, for every 𝑖 ∈ {2, · · · , 𝑛}, by correctness of F F𝑝B2A 𝑓𝑖 𝑗 = 𝑒𝑞𝑖 𝑗 and

by correctness of F 𝜎EQ , 𝑒𝑞𝑖 𝑗 equals 1 if 𝑦𝑖 𝑗 = 𝑤𝑖 𝑗 and 0 otherwise.

Let E = {𝑖 ∈ {2, · · · , 𝑛} : 𝑒 ∈ 𝑋𝑖 }, the set of indices of parties
(other than 𝑃1) who possess 𝑒 in their private sets. Let E ′ = {𝑖 ∈
{2, · · · , 𝑛} : 𝑒𝑞𝑖 𝑗 = 1}, the set of indices of parties (other than 𝑃1)
whom the protocol interprets to have possession of 𝑒 . We now show

that false positive (𝑌 ⊈ 𝑌 ∗) implies that E ′\E is non-empty and

finally prove that the later event occurs with low probability. Since∑
𝑖∈{2, · · · ,𝑛} 𝑓𝑖 𝑗 = 𝑎 𝑗 ≥ 𝑘 and for all 𝑖 ∈ {2, · · · , 𝑛}, 𝑒𝑞𝑖 𝑗 ∈ {0, 1} we

have |E ′ | ≥ 𝑘 . Consider the following disjoint cases.

• Case 1: 𝑒 ∉ 𝑋1. By the construction of Table1, this implies that

𝑒 is a dummy element inserted by 𝑃1. Then, |E | = 0 since real

elements are distinct from 𝑒 . Therefore, E ′\E is non-empty.

Further, since any dummy elements inserted by parties other

than 𝑃1 are distinct from 𝑒 , for every 𝑖 ∈ E ′\E it holds that

𝑒 ∉ Table𝑖 [ 𝑗].
• Case 2: 𝑒 ∈ 𝑋1. Since 𝑒 ∉ 𝑌 ∗, we have |E | < 𝑘 and hence

E ′\E is not a null set. Further, for each 𝑖 ∈ E ′\E, since dummy

elements added by 𝑃𝑖 are distinct from real elements it holds

that 𝑒 ∉ Table𝑖 [ 𝑗].

Probability that 𝑖 ∈ E ′ (that is𝑦𝑖 𝑗 = 𝑤𝑖 𝑗 ) when 𝑒 ∉ Table𝑖 [ 𝑗] is at
most 2

−𝜎
. Note that for any 𝑖 ∈ E, by correctness of simple hashing

𝑒 ∈ Table𝑖 [ 𝑗]. Therefore, probability that E ′\E is non-empty ( and

hence 𝑒 ∈ 𝑌\𝑌 ∗) is at most 𝑛 · 2−𝜎 . By union bound, the probability

that there exists 𝑗 ∈ [𝛽] such that Table1 [ 𝑗] ∈ 𝑌\𝑌 ∗ is at most

𝛽𝑛 · 2−𝜎 < 2
−^−1

. □

Hence with probability at least 1 − 2−42 − 2−^−1 > 1 − 2−^ (for

^ = 40) the protocol’s output will be correct.
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Remark.To ensure the correctness of Quorum-I (instantiated using

w-CMP1) with probability at least 1 − 2−^ , we set the parameter 𝜏

of w-CMP1 to be ^ + ⌈log𝑚⌉ + 3.
Security. Let𝐶 ⊂ [𝑛] be the set of corrupted parties (|𝐶 | = 𝑡 < 𝑛/2).
We show how to simulate the view of𝐶 in the ideal world, given the

input sets 𝑋𝐶 = {𝑋 𝑗 : 𝑗 ∈ 𝐶} and the output, 𝑌 ∗ = {𝑥 ∈ 𝑋1 : 𝑞𝑥 ≥
𝑘}, where, for each 𝑥 ∈ 𝑋1, 𝑞𝑥 = |{𝑖 : 𝑥 ∈ 𝑋𝑖 for 𝑖 ∈ {2, · · · , 𝑛}}|,
when 𝑃1 is corrupt, and no output, otherwise. We consider two

cases based on party 𝑃1 being corrupt or not.

• Case 1 (𝑃1 is honest): The hashing step is local, and can be

executed by the simulator using the inputs of the corrupted

parties. In Step 2, 𝑃1 and 𝑃𝑖 (for each 𝑖 ∈ {2, · · · , 𝑛}) invoke
the F 𝛽,𝜎,𝑁wPSM functionality and the corrupted parties only see the

sender’s views (since 𝑃1 is honest), {𝑤𝑖 𝑗 }𝑖∈𝐶,𝑗 ∈[𝛽 ] , which can

all be picked at random by the simulator (by the definition of

F 𝛽,𝜎,𝑁wPSM ). In Steps 3 and 4, for each 𝑖 ∈ {2, · · · , 𝑛}, parties 𝑃1
and 𝑃𝑖 invoke the F 𝜎EQ and F F𝑝B2A functionalities and the cor-

rupted parties see only one of the two boolean and additive

shares, {⟨𝑒𝑞𝑖 𝑗 ⟩𝐵𝑖 }𝑖∈𝐶,𝑗 ∈[𝛽 ] and {⟨𝑓𝑖 𝑗 ⟩𝑖 }𝑖∈𝐶,𝑗 ∈[𝛽 ] , respectively,
which can be generated as corresponding shares of some ran-

dom bit (by the security of secret sharing). In Step 5, besides

the local computations, the parties invoke the functionalities

ConvertShares𝑛,𝑡 and F 𝑝,𝑘,𝑛,𝑡w-CMP. The view of the corrupted par-

ties in this step includes: at most 𝑡 shares of the 𝑎 𝑗 , for each

𝑗 ∈ [𝛽]. Here, the simulator can pick shares of some random

values as the 𝑡 shares of the 𝑎 𝑗 ’s (by the security of secret shar-

ing). Note that, the corrupted parties get no output from the

Fw-CMP functionality (since 𝑃1 is honest), and also no output

from the protocol.

• Case 2 (𝑃1 is corrupt): The simulation of the hashing step is

exactly the same as in Case 1. In Step 2, 𝑃1 and 𝑃𝑖 (for each 𝑖 ∈
{2, · · · , 𝑛}) invoke the F 𝛽,𝜎,𝑁wPSM functionality and the corrupted

parties see both the receiver’s view {𝑦𝑖 𝑗 : 𝑖 ∈ {2, · · · , 𝑛}, 𝑗 ∈
[𝛽]}, and the sender’s views {𝑤𝑖 𝑗 }𝑖∈𝐶\{1}, 𝑗 ∈[𝛽 ] . For each 𝑖 ∈
𝐶 \ {1}, the simulator picks a random 𝑦𝑖 𝑗 = 𝑤𝑖 𝑗 , if Table1 [ 𝑗] ∈
Table𝑖 [ 𝑗], else picks a random 𝑦𝑖 𝑗 and 𝑤𝑖 𝑗 independently, for

each 𝑗 ∈ [𝛽] (the faithfulness of this step of simulation fol-

lows from the definition of F 𝛽,𝜎,𝑁wPSM and since the simulator

has both Table1 and Table𝑖 ). In Steps 3 and 4, for each 𝑖 ∈
{2, · · · , 𝑛}, parties 𝑃1 and 𝑃𝑖 invoke the F 𝜎EQ and F F𝑝B2A func-

tionalities and the corrupted parties see both the boolean and

additive shares for 𝑖 ∈ 𝐶 , {⟨𝑒𝑞𝑖 𝑗 ⟩𝐵
1
, ⟨𝑒𝑞𝑖 𝑗 ⟩𝐵𝑖 }𝑖∈𝐶\{1}, 𝑗 ∈[𝛽 ] and

{⟨𝑓𝑖 𝑗 ⟩1, ⟨𝑓𝑖 𝑗 ⟩𝑖 }𝑖∈𝐶\{1}, 𝑗 ∈[𝛽 ] , and only one of the two shares for

𝑖 ∈ [𝑛] \ 𝐶 , {⟨𝑒𝑞𝑖 𝑗 ⟩𝐵
1
}𝑖∈[𝑛]\𝐶,𝑗 ∈[𝛽 ] and {⟨𝑓𝑖 𝑗 ⟩1}𝑖∈[𝑛]\𝐶,𝑗 ∈[𝛽 ] .

For each 𝑖 ∈ 𝐶 \ {1}, the simulator sets 𝑒𝑞𝑖 𝑗 = 𝑓𝑖 𝑗 = 1, if

Table1 [ 𝑗] ∈ Table𝑖 [ 𝑗] and sets 𝑒𝑞𝑖 𝑗 = 𝑓𝑖 𝑗 = 0, otherwise, for

each 𝑗 ∈ [𝛽]. It then generates the boolean and arithmetic

shares of the 𝑒𝑞𝑖 𝑗 ’s and 𝑓𝑖 𝑗 ’s, respectively. For each 𝑖 ∈ [𝑛] \𝐶 ,
the simulator generates both the boolean and additive shares

as shares of some random bit (by the security of secret sharing).

To simulate Steps 5 and 6, the simulator does the following: for

all 𝑗 ∈ [𝛽], give 𝑡 shares of the random values as shares of the

𝑎 𝑗 ’s (by the security of secret sharing). Finally, for each 𝑗 ∈ [𝛽],
set 𝑐 𝑗 = 1 if Table1 [ 𝑗] ∈ 𝑌 ∗ and set 𝑐 𝑗 = 0, otherwise, and set

the final output as 𝑌 ∗.

F.2 Quorum PSI Complexity
We instantiate the F 𝜎EQ , F

F𝑝
B2A,ConvertShares

𝑛,𝑡
functionalities as

specified in sections 2.3.1, 2.3.2 and 2.5. We instantiate the F 𝛽,𝜎,𝑁wPSM
functionality using the polynomial-based batchOPPRF. Let Quorum-

I and Quorum-II denote instantiations of F𝑛,𝑚,𝑘QPSI when F 𝑝,𝑘,𝑛,𝑡w-CMP is

instantiated with w-CMP1 (with 𝜏 = ^ + ⌈log𝑚⌉ + 3) and w-CMP2
respectively. We first discuss the complexity trade-off between

w-CMP1 andw-CMP2 and then discuss the complexities of Quorum-

I and Quorum-II

F.2.1 Trade-offs between w-CMP1 and w-CMP2. We first discuss

the communication complexity and rounds of both protocols. Mul-

tiparty functionalities in both the protocols are instantiated as re-

ferred in Sec. 2.5. Since these instantiations provide good amortized

complexities, we give amortized costs of both the protocols.

The amortized communication cost ofw-CMP1 is atmost 14𝑘 ′(𝑛−
1) (⌈log𝑛⌉ + 1) + 17𝜏 (𝑛 − 1) and the round complexity is 6 + 2𝑘 ′,
when we set ⌈log 𝑝⌉ = ⌈log𝑛⌉ + 1 and 𝑘 ′ = min{𝑘 − 1, 𝑛 − 𝑘}.
While for w-CMP2, the (expected11) communication complexity is

20(𝑛−1) ⌈log 2𝑛⌉ (^+⌈log 2𝑛⌉)2, whenwe set ⌈log 𝑝⌉ = ^+⌈log𝑛⌉+2.
The expected round complexity is 9 + 2⌈log𝑛⌉.

We now discuss trade-offs between the two comparison pro-

tocols. Complexity of w-CMP2 protocol is independent of 𝑘 , in

contrast to w-CMP1 protocol’s dependence on 𝑘 . Hence, theoret-
ically, for large values of 𝑘 ′, the communication complexity and

round complexity of w-CMP2 is better than w-CMP1. However, for
practical setting of 𝑘 ′ < 𝑛 < 512, the concrete communication of

w-CMP1 is better than that of w-CMP2 for ^ = 40 and 𝜏 = ^ + 23.
For any ⌈log𝑛⌉ + 2 < 𝑘 ′, the round complexity of w-CMP2 is better
than that of w-CMP1.

F.2.2 Complexities of Quorum-I andQuorum-II. Our protocol, in

total, calls the F 𝛽,𝜎,𝑁wPSM , F 𝜎EQ , F
F𝑝
B2A, ConvertShares

𝑛,𝑡
and F 𝑝,𝑘,𝑛,𝑡w-CMP

functionalities (𝑛−1), 𝛽 (𝑛−1), 𝛽 (𝑛−1), 𝛽 and 𝛽 times respectively,

where 𝛽 = 1.28𝑚. Let 𝑘 ′ = min{𝑘 − 1, 𝑛 − 𝑘}. Recall that 𝜎 =

^ + ⌈log𝑚⌉ + ⌈log𝑛⌉ +2. We first give the costs of the steps common

to Quorum-I and Quorum-II.

• Steps 1-4 cost less than𝑚(𝑛 − 1) (_𝜎 + 5.8_ + 14𝜎 + 1.28⌈log 𝑝⌉).
• Excluding the cost of F 𝑝,𝑘,𝑛,𝑡w-CMP, Step 5 contributes at most 8𝑚(𝑛 −
1) ⌈log 𝑝⌉.

The total cost ofw-CMP1 executions by Quorum-1 is at most𝑚(𝑛−
1) (18𝑘 ′(⌈log𝑛⌉ + 1) + 22𝜏), where 𝜏 = ^ + ⌈log𝑚⌉ + 3 . Therefore,
the concrete communication of Quorum-I is at most𝑚(𝑛 − 1) (_𝜎 +
5.8_ + 14𝜎 + 18𝑘 ′(⌈log𝑛⌉ + 1) + 22𝜏 + 10⌈log𝑛⌉), when we set

⌈log 𝑝⌉ = ⌈log𝑛⌉ + 1. The round complexity of Quorum-I is at most

10 + ⌈log𝜎⌉ + 2𝑘 ′.
The (expected) total cost of w-CMP2 executions by Quorum-

II is at most 26𝑚(𝑛 − 1) (⌈log𝑛⌉ + 1) (^ + ⌈log𝑛⌉ + 1)2. Therefore,
(expected) concrete communication of Quorum-II is at most𝑚(𝑛 −
1) (_𝜎 + 5.8_ + 14𝜎 + 27(⌈log𝑛⌉ + 1) (^ + ⌈log𝑛⌉ + 1)2), when we set

𝑝 = ^ + ⌈log𝑛⌉ + 2. The (expected) round complexity of Quorum-II

is at most 8 + ⌈log𝜎⌉ + 2⌈log𝑛⌉.

11
One of the underlying sub-protocol uses rejection sampling for randomness that

incurs repeated executions with small probability, namely, 1/𝑝 .
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