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a b s t r a c t

A search engine maintains local copies of different web pages to provide quick search
results. This local cache is kept up-to-date by a web crawler that frequently visits these
different pages to track changes in them. Ideally, the local copy should be updated as
soon as a page changes on the web. However, finite bandwidth availability and server
restrictions limit how frequently different pages can be crawled. This brings forth the
following optimization problem: maximize the freshness of the local cache subject to
the crawling frequencies being within prescribed bounds. While tractable algorithms do
exist to solve this problem, these either assume the knowledge of exact page change
rates or use inefficient methods such as MLE for estimating the same. We address this
issue here.

We provide three novel schemes for online estimation of page change rates, all
of which have extremely low running times per iteration. The first is based on the
law of large numbers and the second on stochastic approximation. The third is an
extension of the second and includes a heavy-ball momentum term. All these schemes
only need partial information about the page change process, i.e., they only need to know
if the page has changed or not since the last crawled instance. Our main theoretical
results concern asymptotic convergence and convergence rates of these three schemes.
In fact, our work is the first to show convergence of the original stochastic heavy-
ball method when neither the gradient nor the noise variance is uniformly bounded.
We also provide some numerical experiments (based on real and synthetic data) to
demonstrate the superiority of our proposed estimators over existing ones such as MLE.
Our algorithms are readily applicable to the synchronization of databases and network
inventory management.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The world wide web is a highly complex entity: it has a lot of interlinked information, and both the information and the
inks keep evolving. Nevertheless, even in this challenging setup, one still expects a search engine to provide accurate and
p-to-date search results instantaneously. To fulfill this expectation, a search engine maintains a local cache of important
eb pages, that it updates frequently by using a crawler (also referred to as a web spider or a web robot). Specifically,
he job of a crawler [1–5] is (a) to access various pages on the web at specific frequencies so as to determine if any
hanges have happened to the content since the last crawled instance; and (b) to update the local cache whenever there
s a change.1 There are, however, two key constraints on the different crawling frequencies. The first is due to limitations
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1 A web crawler is also supposed to discover new pages, but we do not focus on this task in this work.
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on the available bandwidth. The second one, known as the politeness constraint, arises because of the bounds placed by
servers on the number of pages that can be accessed in a short amount of time. The search engine thus needs to solve
the following optimization problem: maximize the freshness of the local database subject to the crawling frequencies
satisfying the above constraints.

In the early 2000s, the web crawling problem used to be formulated as follows [6–8]. The whole web consists of n
pages, all have equal importance, and there are no politeness constraints. Further, the times at which different pages
change are independent Poisson point processes with different rates [6,9]. On the search engine side, the local cache
consists of a copy of each of these n pages. Each copy is updated at regular intervals of time by crawling the original
page at a certain (known) frequency. Finally, the freshness of the local cache at time t ≥ 0 is defined to be r ∈ [0, 1] if
r fraction of the local elements matches the actual versions on the web. The goal then is to find an update policy that
maximizes the time-averaged freshness of the local cache and, also, satisfies the bandwidth constraint.

Finding an exact solution to this problem is hard. Hence, numerical solutions were obtained in [6,7] for small values of
n. These showed that the optimal crawling policy could be very different to both the uniform as well as the proportional
policy, i.e., crawling each page at the same frequency or at one that is proportional to its change rate. In fact, somewhat
surprisingly, it was also found that the optimal policy may often include ignoring pages that change too frequently, i.e., not
crawling them at all.

In 2003, the freshness definition was modified to include different weights for different pages depending on their
importance, e.g., represented as the frequency of requests for different pages [10]. This was done in line with the view
that only a finite number of pages can be crawled in any given time frame; hence, to improve the utility of the local
database, the freshness criteria should be biased more towards important pages. Numerical solutions, again for small n,
confirm that page weights do substantially influence the optimal crawling policy.

While the general n case is still unsolved, a recent breakthrough work [11] showed how an optimal randomized
crawling policy can, nonetheless, be found very efficiently (in just O(n log n) operations). In particular, this solution
pertains to the case where, for each web page, even the set of access times forms a Poisson point process. An approach
to derandomize this policy to handle the original setup with periodic crawling is also discussed there. In synthetic
experiments, this resultant policy is claimed to show performances very similar to the one obtained via numerical
solutions. This work was recently extended to cover the case with politeness constraints as well [12].

A separate study [13,14] provides a Whittle index based dynamic programming approach to optimize the schedule of
a web crawler. In that approach, the page/catalog freshness estimate also influences the optimal crawling policy.

As can be seen, several algorithms do exist to determine the optimal crawling policy. However, they either presume
prior knowledge of the exact page change rates, which is unrealistic in practice, or, alternatively, use inefficient ideas for
estimating the same. We now provide a brief overview of such approaches and the issues that plague them.

To the best of our knowledge, three other estimators exist in the literature: the naive estimator [15–17], the Maximum
Likelihood Estimator (MLE) [18], and the Moment Matching (MM) estimator [19]. The naive estimator is simply the ratio of
the observed number of changes to the total monitoring time period. This is clearly biased since the crawler only has access
to partial information about the page change process (remember, it only gets to see if a page has changed or not since the
last crawled instance). To overcome this bias issue, MLE instead estimates the rate of change by identifying the parameter
value that maximizes the likelihood of the page change observations. This idea performs quite well in experiments; in
fact, it also works when access to a page is only possible at irregular intervals of time. However, MLE lacks a closed
form expression and suffers from two issues: (a) instability, i.e., the estimator value equals ∞ as long as a page change
s detected in every access; and (b) computational intractability, i.e., the estimate needs to be recomputed from scratch
ach time a new observation is made. The latter makes MLE impractical to use when the data set of observations is quite
arge. Finally, in the MM estimator, one looks at the fraction of times no changes were detected during page accesses
nd then, using a moment matching method, estimates the change rate. Unfortunately, like MLE, the MM estimator also
uffers from instability and computational issues.
Our exact problem statement and the main contributions can now be summarized as follows. We consider a single page

nd, as in [11], presume that the page change times and page access times are independent homogeneous Poisson point
rocesses. Thus, each of these processes can be characterized by a single parameter, which we denote here by ∆ and p,
espectively. Importantly, we assume that only p is known. We then develop three approaches for online estimation of ∆,
hich only need to know if this page has changed or not between two successive accesses. The key word here is ‘online’.
his means, unlike MLE and the MM estimator, our estimates can be incrementally updated using extremely simple, low
ost formulas as and when a new observation becomes available. Thus, our estimators do not face computational issues
f the kind mentioned above. Also, they do not face any instability issues.
Our first estimator uses the Law of Large Numbers (LLN), while the second and third estimators are based on Stochastic

pproximation (SA) principles. Specifically, the update rule for the first estimator is derived using a formula for the
robability that there is a page change between two successive accesses. In contrast, the second estimator is constructed
ia a standard trick in SA. A key ingredient there is a function that is carefully chosen so that it satisfies two properties: (a)
oisy estimates of its value for any given input can be easily obtained; and (b) its expected value is linear and, importantly,
is its unique zero. The update rule for the third estimator is similar to that of the second one, except that it has an

dditional momentum term (in the heavy-ball sense). As we show in Section 3.5, it is also possible to view our second
nd third estimators as a Stochastic Gradient Descent (SGD) method and as an SGD method with heavy-ball momentum,
2
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respectively. Even though we present our results in the context of web crawling, our algorithms are equally applicable to
the synchronization of databases [7] and the problem of network inventory management [20].

Our main theoretical result is that all our estimators almost surely (a.s.) converge to ∆; thus, they all are asymptotically
consistent. As far as we know, our result concerning the third estimator is the first to show convergence of an SGD method
with heavy-ball momentum when neither the gradient nor the noise variance is a priori assumed to be uniformly bounded.
While similar settings have also been dealt with in [21], the analysis there concerns the stochastic analogue of a modified
heavy-ball method and not the original one that was proposed in [22]. Separately, we also derive the convergence rates
of the first two estimators in the expected error sense. Based on the existing literature, we also provide a loose guess on
the convergence rate of the third estimator.

We also provide numerical simulations to compare the performance of our online schemes to each other and also to
that of the (offline) MLE estimator. From these experiments, it can be explicitly seen that our estimators give performances
comparable to that of MLE. This was a bit surprise to us since our estimators, compared to MLE, have extremely low
running times per iteration. Also, unlike MLE, they ignore the actual lengths of intervals between two page accesses.
Among our three estimators, LLN and SAM show similar performances and both typically outperform our SA estimator.
In particular, the momentum in the third estimator helps in accelerating the estimation whenever p ≪ ∆ (the rate at
which the page is accessed is much smaller than the rate at which it changes). Our experiments are based on both real
(Wikipedia traces) as well as synthetic data sets. In the experiment using Wikipedia traces, we also verify our modeling
assumption that the page change process is a Poisson point process.

The rest of this paper is organized as follows. The next section provides a formal summary of this work in terms of
the setup, goals, and key contributions. It also gives explicit update rules for all of our online schemes. In Section 3, we
formally analyze their convergence and the rates of convergence. The numerical experiments discussed above are given in
Section 4. Then, in Section 5, we provide some motivation on how one can use our estimates to find the optimal crawling
rates. Finally, we conclude in Section 6 with some future directions.

We note that a shorter version (Avrachenkov et al. 2020, [23]) of this paper appeared in the proceedings of ValueTools
2020 conference. The novel contributions here include (i.) an additional change rate estimation scheme (this is a stochastic
approximation scheme with momentum) and its analysis and (ii.) additional experiments including one that compares
the performance of all our estimators based on real data (Wikitraces).

2. Setup, goal, and key contributions

The three topics are individually described below.

Setup: Without loss of generality, we work with a single web page. We presume that the actual times at which this page
changes is a time-homogeneous Poisson point process in [0, ∞) with a constant but unknown rate ∆. Independently
of everything else, this page is crawled (accessed) at the random instances {tk}k≥0 ⊂ [0, ∞), where t0 = 0 and the
inter-arrival times, i.e., {tk − tk−1}k≥1, are IID exponential random variables with a known rate p. Thus, the times at which
this page is crawled is also a time-homogeneous Poisson point process but with rate p. At time instance tk, we get to
know if the page got modified or not in the interval (tk−1, tk], i.e., we can access the value of the indicator

Ik :=

{
1, if the page got modified in(tk−1, tk],
0, otherwise.

The above assumptions are standard in the crawling literature. Nevertheless, we now provide a short justification for
the same. Our assumption that the page change process is a Poisson point process is based on the experimental evidence
collected in [6,9,24]. An additional validation is provided by us in this work. Specifically, we selected an arbitrary page
from the list of frequently edited Wikipedia pages. We extracted the complete history of this web page (exact dates and
times of different changes) for a period of five months (April 01, 2020 to August 31, 2020). Thereafter, we calculated
the time between successive changes and then used this data to produce a Q-Q plot. This plot confirms that the set of
quantiles for the actual data indeed matches linearly with the quantiles of exponential distribution, as predicted. Further
details about this experiment can be found in Section 4. Some generalized models for the page change process have also
been considered in the literature [8,25]; however, we do not pursue them here.

Our assumption on {Ik} is based on the fact that a crawler can only access incomplete knowledge about the page change
process. In particular, a crawler does not know when and how many times a page has changed between two crawling
instances. Instead, all it can track is the status of a page at each crawling instance and know if it has changed or not with
respect to the previous access. Sometimes, it is possible to also know the time at which the page was last modified [2,18],
but we do not consider this case here.

Goal: Develop online algorithms for estimating ∆ in the above setup. The motivation for doing this is that such estimates
can then be used to estimate the optimal crawling rates [11,26]; see Section 5 for more details on this.

Key Contributions: We provide three online methods for estimating the page change rate ∆. The first is based on the law
of large numbers, while the second and third are based on stochastic approximation theory, with the third one having
an additional momentum component. If {xk}, {yk}, and {zk}, denote the iterates of these three methods, respectively, then

their update rules are as shown below.
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• LLN Estimator: Its kth estimate is given by

xk = pÎk/(k + αk − Îk), k ≥ 1. (1)

Here, Îk =
∑k

j=1 Ij; hence, Îk = Îk−1+Ik. Further, {αk} is any positive sequence satisfying the conditions in Theorem 1;
e.g., αk could be log k,

√
k, or identically 1.

• SA Estimator: Given some initial value y0, the update rule for the SA estimator is

yk+1 = yk + ηk[Ik+1(yk + p) − yk], k ≥ 0. (2)

Here, {ηk} is any stepsize sequence that satisfies the conditions in Theorem 2. For example, ηk could be 1/(k + 1)η
for some constant η ∈ (0, 1].

• SAM Estimator (SA Estimator with Momentum): Given some initial values z0, z−1, the SAM estimator satisfies

zk+1 = zk + ηk[Ik+1(zk + p) − zk] + ζk(zk − zk−1), k ≥ 0. (3)

Here, {ηk} and {ζk} are any stepsize sequences that satisfy the conditions given in Theorem 3. For example, one
could pick a β ∈ (1/2, 1] and let βk = 1/(k+ 1)β . Then, {ηk} and {ζk} could be {1/(k+ 1)η} and {(βk − ωηk)/(βk−1)},
respectively, where ω > 0 is some constant and β + 1/2 < η ≤ 2β . While we do not show it, we conjecture that
one can also pick β ∈ (0, 1/2] and then choose η so that β < η ≤ 2β . Finally, note that if β = η and ω = 1, then
the asymptotic behavior of (3) will resemble that of (2); this is because ζk ≡ 0 then.

We call these methods online because the estimates can be updated on the fly as and when a new observation Ik
becomes available. This contrasts the MLE estimator in which one needs to start the calculation from scratch each time a
new data point arrives. Also, unlike MLE, our estimators are never unstable; see Section 3.4 for the details.

Our main results include the following. We show that all our three estimators, i.e., xk, yk, and zk, converge to ∆ a.s.
Further, we show that

1. E|xk − ∆| = O
(
max

{
k−1/2, αk/k

})
, and

2. E|yk − ∆| = O(k−η/2) if ηk = (k + 1)η with η ∈ (0, 1).

Separately, based on existing literature [27–29], we conjecture that E|zk − ∆| = Õ(k−β/2), where Õ hides logarithmic
terms. We also provide several numerical experiments based on real as well as synthetic data for judging the strength of
our three proposed estimators.

3. Analysis of the proposed online estimators

Here, we formally discuss the convergence and convergence rates of our three estimators. Thereafter, we compare
their behaviors with those that already exist in the literature—the Naive estimator, MLE, and the MM estimator. We end
with a summary of existing results on stochastic momentum methods and a discussion on how our convergence result
for the SAM estimator extends our current understanding of such methods.

3.1. LLN estimator

Our first aim here is to obtain a formula for E[I1]. We shall use this later to motivate the form of our LLN estimator.
Let τ1 = t1 − t0 = t1, where the second equality holds since t0 = 0. Then, as per our assumptions in Section 2, τ1 is an

exponential random variable with rate p. Also, E[I1|τ1 = τ ] = 1 − exp (−∆τ ). Hence,

E
[
I1
]

= ∆/(∆ + p). (4)

his gives the desired formula for E[I1].
From this latter calculation, we have

∆ = pE[I1]/(1 − E[I1]). (5)

eparately, because {Ik} is an IID sequence and E|I1| ≤ 1, it follows from the strong law of large numbers that E
[
I1
]

=

imk→∞

∑k
j=1 Ij/k a.s. Thus,

∆ = p
limk→∞

∑k
j=1 Ij/k

1 − limk→∞

∑k
j=1 Ij/k

a.s.

Consequently, a natural estimator for ∆ is

x′

k = p

∑k
j=1 Ij/k

1 −
∑k

j=1 Ij/k
= p

Îk
k − Îk

, (6)

here Î is as defined below (1).
k

4
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Unfortunately, the above estimator faces an instability issue, i.e., x′

k = ∞ when I1, . . . , Ik are all 1. To fix this, one can
dd a non-zero term in the denominator. The different choices then give rise to the LLN estimator defined in (1).
The following result discusses the convergence and convergence rate of this estimator.

heorem 1. Consider the estimator given in (1) for some positive sequence {αk}.

1. If limk→∞ αk/k = 0, then limk→∞ xk = ∆ a.s.
2. Additionally, if limk→∞ log(k/αk)/k = 0, then

E|xk − ∆| = O
(
max

{
k−1/2, αk/k

})
.

Proof. Let µ = E[I1], Ik = Îk/k, and αk = αk/k. Then, observe that (1) can be rewritten as xk = pIk/(1 + αk − Ik). Now,
imk→∞ Ik = µ a.s. and limk→∞ αk = 0; the first claim holds due to the strong law of large numbers, while the second
ne is true due to our assumption. Statement 1. is now easy to see.
We now derive Statement 2. From (5), we have

|xk − ∆| =

⏐⏐⏐⏐xk − p
µ

1 − µ

⏐⏐⏐⏐ ≤ p (Ak + Bk) ,

here

Ak =

⏐⏐⏐⏐⏐ Ik
αk + 1 − Ik

−
µ

αk + 1 − µ

⏐⏐⏐⏐⏐ and Bk =

⏐⏐⏐⏐ µ

αk + 1 − µ
−

µ

1 − µ

⏐⏐⏐⏐ .
ince αk > 0 and, hence, αk > 0, it follows that

Bk = αk
µ

(1 − µ)(αk + (1 − µ))
≤ αk

µ

(1 − µ)2
.

Similarly,

Ak ≤

(
1 + αk

1 − µ

)(
|Ik − µ|

αk + 1 − Ik

)
.

t is now easy to see that E[Bk] = O(αk). The rest of our arguments concern how fast E[Ak] decays to 0.
Let {δk} be a deterministic sequence that is both non-negative and decays to 0. We will describe how to pick this later.

Let k be such that (1 + δk)µ < 1. Then,

E

[
|Ik − µ|

αk + 1 − Ik

]
≤ E[Ck] + E[Dk],

where

Ck =
|Ik − µ|

αk + 1 − Ik
1
{
Ik − µ ≤ δkµ

}
,

nd

Dk =
|Ik − µ|

αk + 1 − Ik
1
{
Ik − µ ≥ δkµ

}
.

n the one hand,

E[Ck] ≤
E|Ik − µ|

αk + 1 − (1 + δk)µ
≤

√
Var[I1]

√
k(αk + 1 − (1 + δk)µ)

.

On the other hand, since |Ik − µ| ≤ 2 and 1 − Ik ≥ 0, it follows by applying the Chernoff bound that

E[Dk] ≤
2
αk

Pr{Ik ≥ (1 + δk)µ} ≤
2
αk

exp
(
−kδ2kµ/3

)
.

Now, pick {δk} so that δ2k = 6 log(1/ αk)/(kµ) ∨ 0 for all k ≥ 1. Notice that this choice is both non-negative and
decays to 0 due to our assumptions on {αk}; thus, this is a valid choice. It is now easy to see that E[Ck] = O(1/

√
k) and

[Dk] = O(αk).
The desired result now follows. □
5
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3.2. SA estimator

Let I denote a random variable with the same distribution as I1. Also, for y ∈ R, let H(y, I) = I(y+ p)− y. Next, define
h : R → R using h(y) := E[H(y, I)]. Clearly, h(y) = p(∆−y)/(∆+p); further, ∆ is its unique zero. The theory of stochastic
approximation then suggests using the update rule given in (2) for estimating ∆. For later use, also define

Mk+1 = [Ik+1(yk + p) − yk] − h(yk)

=

[
Ik+1 −

∆

∆ + p

]
(yk + p). (7)

We now discuss the convergence and convergence rate of (2).

heorem 2. Consider the estimator given in (2) for some positive stepsize sequence {ηk}.

1. Suppose that
∑

∞

k=0 ηk = ∞ and
∑

∞

k=0 η2
k < ∞. Then, limk→∞ yk = ∆ a.s.

2. Suppose that ηk = 1/(k + 1)η for some constant η ∈ (0, 1). Then,

E|yk − ∆| = O
(
k−η/2) .

roof. For k ≥ 0, consider the σ−field Fk := σ (yj, Ij, j ≤ k). Then, from (4) and the fact that {Ik} is an IID sequence, we
et

E[Ik+1(yk + p) − yk|Fk] =
∆

∆ + p
(yk + p) − yk = h(yk).

Hence, one can rewrite (2) as

yk+1 = yk + ηk[h(yk) + Mk+1], (8)

where Mk+1 is as in (7).
Since E[Mk+1|Fk] = 0 for all k ≥ 0, {Mk} is a martingale difference sequence. Consequently, (8) is a classical SA

algorithm whose limiting ODE is

ẏ(t) = h(y(t)). (9)

We now make use of Theorem 9 given in the Appendix to establish Statement 1. Accordingly, we verify the four
conditions listed there. The stepsize Condition (i.) directly holds due to our assumptions on {ηk}. With regard to Condition
(ii.), recall we have already established above that {Mk} is a martingale difference sequence with respect to {Fk}. The
quare-integrability condition holds since |Mk+1| ≤ |yk|+p which, in turn, implies that E[|Mk+1|

2
|Fk] ≤ 2(p2∨1)(1+|yk|2),

as desired. Next, due to linearity, h is trivially Lipschitz continuous. Further, h(y) = 0 if and only if y = ∆. This shows that
is the unique equilibrium point of (9). Now, because the coefficient of y in h(y) is negative, it also follows that ∆ is the

nique globally asymptotically stable equilibrium of (9). This verifies Condition (iii.). We finally consider Condition (iv.) Let
∞(y) := −yp/(∆ + p). Then, clearly, hc → h∞ uniformly on compacts as c → ∞. Furthermore, since the coefficient of y
s negative in the definition of h∞, it is easy to see that the origin is the unique globally asymptotically stable equilibrium
f the ODE ẏ(t) = h∞(y(t)), as required. Statement 1. now follows.
We now sketch a proof for Statement 2. First, note that

yk+1 − ∆ = (1 − aηk)(yk − ∆) + ηkMk+1,

here a = p/(∆ + p). Now, since E[Mk+1|Fk] = 0, we have

E[(yk+1 − ∆)2|Fk] = (1 − aηk)2(yk − ∆)2 + η2
kE[M2

k+1|Fk].

Recall that E[M2
k+1|Fk] ≤ C(1 + y2k) for some constant C ≥ 0. By substituting this above and then repeating all the steps

from the proof of [30, Theorem 3.1], it is not difficult to see that Statement 2 holds as well. □

3.3. SA estimator with momentum

As stated before, our SAM estimator is the SA estimator discussed above with an additional heavy-ball momentum
term. Simulations in Section 4 show that this simple modification results in a drastic improvement in performance.

We now discuss the convergence of the SAM estimator under the assumption that, for k ≥ 0,

ζk =
βk − ωηk

βk−1
, (10)

here ω > 0 is some constant and {βk} is some positive real sequence. By substituting (10) and letting uk = (zk −

zk−1)/βk−1, observe that the update rule in (3) can be rewritten as

uk+1 = uk + γk [Ik+1(zk + pi) − zk] − ωγkuk,

here γ := η /β .
k k k

6



K. Avrachenkov, K. Patil and G. Thoppe Performance Evaluation 153 (2022) 102261

E
s

w

w

T
f

I

R

I

R
o
i
i
t

R
s

c

o
S
d
m

P

a

For k ≥ 0, let Mk+1 be as in (7). Also, let Fk denote the σ -field σ (z0, u0, I1, . . . , Ik). Clearly, uk, zk ∈ Fk and
[Mk+1|Fk] = 0. Hence, {Mk} is again a martingale difference sequence with respect to the filtration {Fk}. Furthermore,
ince |Mk+1| ≤ |zk| + p, we have

E[|Mk+1|
2
|Fk] ≤ 2(p2 ∨ 1)(1 + |zk|2). (11)

As before, let a = p/(∆ + p). Also, let b = ∆p/(∆ + p) and ϵk = uk+1 − uk for k ≥ 0. It is then easy to see that one can
rite down (3) in terms of the following two update rules:

uk+1 = uk + γk[h(uk, zk) + Mk+1] (12)

zk+1 = zk + βk[g(uk, zk) + ϵk], (13)

here h : R2
→ R and g : R2

→ R are the linear functions given by

h(u, z) = b − ωu − az and g(u, z) = u.

heorem 3. Consider the SAM estimator given in (3) with ζk of the form given in (10). Then zk → ∆ a.s., if one of the
ollowing conditions holds true.

1. One-timescale :
∑

k≥0 βk = ∞,
∑

k≥0 β2
k < ∞, and βk = γk.

2. Two-timescale:
∑

k≥0 βk =
∑

k≥0 γk = ∞,
∑

k≥0

(
β2
k + γ 2

k

)
< ∞, and limk→∞

βk

γk
= 0.

n both these cases, recall that γk = ηk/βk.
We state a few remarks concerning this result before discussing its proof.

emark 4. Examples of {ηk} and {βk} sequences such that the above conditions are satisfied include the following.

• One-timescale: βk = 1/(k + 1)β with β ∈ (1/2, 1] and ηk = 1/(k + 1)η with η = 2β .
• Two-timescale: βk = 1/(k + 1)β with β ∈ (1/2, 1] and ηk = 1/(k + 1)η with 1

2 + β < η < 2β .

n either case, note that limk→∞ ζk = 1.

emark 5. The justification for the names given above for the two sets of conditions is as follows. Under the first set
f conditions, the update rules in (12) and (13) indeed behave like a one-timescale stochastic approximation algorithm,
.e., both uk and zk move on the same timescale. On the other hand, under the second set of conditions, (12) and (13),
t behaves like a two-timescale stochastic approximation algorithm. This is because βk decays to 0 at a much faster rate
han γk, in turn implying that the changes in {zk}, i.e., {zk+1 − zk} are of a smaller magnitude than that in {uk}.

emark 6. In the spirit of the above remark, a natural question to consider is the following. Can one pick {ηk} and {βk}

o that ηk/β
2
k → 0 or, equivalently, γk/βk → 0? That is, can one pick the stepsizes so that uk now becomes the slowly

moving update relative to zk? The answer to this question seems to be no. This is because a couple of sufficient conditions
needed to guarantee convergence (e.g., Condition (iii.) and (iv.) in Theorem 11) would no longer hold true in this new
setup. Furthermore, simulations seem to suggest that the iterates, in fact, race to infinity.

Remark 7. Another question to consider is the following. Can one pick ω, {βk}, and {ηk} so that ζk → ζ , where ζ is a
onstant in (0, 1)? In particular, can one choose ω = (1−ζ ), βk = 1/(k+1)β with β ∈ (1/2, 1] and then pick ηk = 1/(k+1)β
(i.e., η = β) so that ζk → ζ? The answer to this second question does not seem to be clear. This is because limk→∞ γk
would then equal 1. Consequently, again, one of the sufficient conditions to guarantee convergence (e.g., condition (i.) of
Theorem 11) would no longer hold. However, simulations in this case do show some promise.

Remark 8. Based on the existing literature on convergence rates for one-timescale and two-timescale linear stochastic
approximation [27–30], one can conjecture that E|zk − ∆| = Õ(k−β/2) when {βk} and {ηk} are chosen as described in
Remark 4. This implies the optimal convergence rate would then again be Õ(1/

√
k), which matches the bound we have

btained in Theorem 2 for the SA estimator. However, it is possible that this bound may not be tight in the case of the
AM estimator. The is because (13) lacks the martingale difference term and, typically, these are the kind of terms that
ictate the convergence rates. Furthermore, simulations in Section 4 suggest that the SAM estimator always converges
uch faster than the SA estimator.

roof of Theorem 3. We discuss the two cases one by one.
One-timescale Setup: In this case, the update rules given in (12) and (13) together form a one-timescale stochastic

pproximation algorithm. More specifically, if we let vk =

[
uk
zk

]
, then it follows that

vk+1 = vk + βk

(
H(vk) +

[
0
]

+

[
Mk+1

])
, (14)
ϵk 0

7
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where H : R2
→ R2 is the function defined by

H(v) =

[
b
0

]
−

[
ω a
−1 0

]
v.

We now verify the four conditions listed in Theorem 9 and then make use of Proposition 10 (both given in the

Appendix) to show that vk →

[
0
∆

]
=: v∗ a.s. This automatically implies zk → ∆ a.s., which is what we need to prove.

Notice that the stepsize in (14) is βk. Condition (i.), therefore, trivially holds due to the assumptions made in Statement

1. Next, observe that the martingale difference term in (14) is the vector
[
Mk+1
0

]
. This, along with (11) and the statements

above it, shows that Condition (ii.) is true as well.
With regard to Condition (iii.), first note that H is trivially Lipschitz continuous due to the linearity of both its

component functions. Next, since ∆ = b/a, we have that H(v) = 0 if and only if v = v∗. Furthermore, since a and ω

are strictly positive, the real parts of the eigenvalues of the matrix in the definition of H are also positive. This can be
seen from the following set of observations. To begin with, the associated characteristic equation of this matrix is

λ2
− λω + a = 0.

Hence, the roots are λ = (ω ±
√

ω2 − 4a)/2. If ω2 < 4a, then the roots are complex valued; therefore, the real part of
oth these roots is ω/2 which is clearly positive. On the other hand, if ω2

≥ 4a, then both the roots are real; further, the
mallest of the two roots, i.e., (ω−

√
ω2 − 4a)/2, is strictly positive since a > 0. This shows that the negative of the matrix

iven in the definition of H is Hurwitz. Together, these observations show that v∗ is the unique globally asymptotically
table equilibrium of the ODE v̇(t) = H(v(t)). This verifies Condition (iii.).
Finally, let

H∞(v) = −

[
ω a
−1 0

]
v.

hen, it is easy to see that Hc(v) → H∞(v) uniformly on compact sets as c → ∞. Also, H∞(v) = 0 if and only if v = 0.
urthermore, as shown before, the negative of the matrix in the definition of H∞ is Hurwitz. This implies that the origin
s the unique globally asymptotically stable equilibrium of the ODE v̇(t) = H∞(v). This verifies condition (iv.).

It now remains to check if {ϵk} has the decaying behavior described in Proposition 10. Towards this, since |Mk+1| ≤

p + |zk|), we have[0ϵk
] ≤ C ′γk(1 + |uk| + |zk|) ≤ Cγk(1 + ∥vk∥)

for some constants C, C ′
≥ 0. Now, because γk decays to 0 as k → ∞ due to the assumption in Statement 1., it follows

hat {ϵk} indeed has the desired behavior.
This completes the proof in the one-timescale setup.
Two-timescale Setup: Since βk/γk → 0, one can perceive uk to be changing on a faster timescale relative to yk. Hence, the

pdate rules in (12) and (13) can be viewed as a two-timescale stochastic approximation. We now verify the conditions
isted in Theorem 11 and then use Proposition 12 (both given in the Appendix) to conclude zk → ∆ a.s.

Conditions (i.) and (ii.) trivially hold. Hence, we only focus on verifying Conditions (iii.) and (iv.). Because of linearity, h
nd g are trivially Lipschitz continuous. Next, let φ(z) = (b−az)/ω for z ∈ R. Clearly, φ is linear in z and, hence, Lipschitz

continuous. Also, h(φ(z), z) = 0. This, along with the fact that the sign in front of u in h(u, z) is negative, shows that φ(z)
s indeed the unique globally asymptotically stable equilibrium of the ODE u̇(t) = h(u(t), z). Next, observe that the ODE
˙(t) = g(φ(z(t)), z(t)) has the form ż(t) = (b − az(t))/ω. Clearly, this ODE has ∆ as its unique globally asymptotically
table equilibrium. This completes the verification of Condition (iii.).
With regard to Condition (iv.), first let h∞ be the function defined by h∞(u, z) = −ωu − az. Also, for z ∈ R, let

∞(z) = −az/ω. This function is linear in z and, hence, Lipschitz; also, φ∞(0) = 0. Then, on the one hand, hc → h∞

niformly on compacts as c → ∞ and, on the other hand, the ODE u̇(t) = h∞(u(t), z) = −ωu(t) − az indeed has φ∞(z)
s its unique globally asymptotically stable equilibrium. Finally, for z ∈ R, let g∞(z) = −az/ω. Then, trivially, gc → g∞

niformly on compacts, as c → ∞. Further, ż(t) = g∞(z(t)) = −az(t)/ω which indeed has the origin as its unique globally
symptotically stable equilibrium. With this, we finish with verifying Condition (iv.).
Now, as per Proposition 12, we need to show that {ϵk} is asymptotically negligible. However, this is indeed true since

Mk+1| ≤ (zk + p) which implies |ϵk| ≤ Cγk(1 + |uk| + |zk|) for some constant C ≥ 0, and since γk → 0.
This shows that (uk, zk) → (φ(∆), ∆) = (0, ∆) a.s., as desired. □

.4. Comparison with existing estimators

As far as we know, there are three other approaches in the literature for estimating page change rates—the Naive

stimator, MLE, and the MM estimator. The details about the first two estimators can be found in [18] while, for the third
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one, one can look at [19]. We now do a comparison, within the context of our setup, between these estimators and the
ones that we have proposed.

The Naive estimator simply uses the average number of changes detected to approximate the rate at which a page
hanges. That is, if {qk} denotes the iterates of the Naive estimator then, in our setup, qk = pÎk/k, where Îk is as defined
elow (1). The intuition behind this is the following. If τ1 is as defined at the beginning of Section 3.1, then

E[N(τ1)] = ∆/p. (15)

hus, the Naive estimator tries to approximate E[N(τ1)] with Îk/k then use (15) to determine the change rate.
Clearly, E[qk] = p∆/(∆ + p) ̸= ∆. Also, from the strong law of large numbers, qk

a.s.
→ p∆/(∆ + p) ̸= ∆. Thus, this

stimator is not consistent and is also biased. This is to be expected since this estimator does not account for all the
hanges that occur between two consecutive accesses.
Next, we look at the MLE estimator. Informally, this estimator identifies the parameter value that has the highest

robability of producing the observed set of observations. In our setup, the value of the MLE estimator is obtained by
olving the following equation for ∆ :

k∑
j=1

Ij τj/(exp (∆ τj) − 1) =

k∑
j=1

(1 − Ij) τj, (16)

here τk = tk − tk−1 and {tk} is as defined in Section 2. The derivation of this relation is given in [18, Appendix C]. As
entioned in [18, Section 4], the above estimator is consistent.
Note that the MLE estimator makes actual use of the inter-arrival crawl times {τk} unlike our two estimators and also

he Naive estimator. In this sense, it fully accounts for the information available from the crawling process. Due to this,
s we shall see in the experiments section, the quality of the estimate obtained via MLE improves rapidly in comparison
o the Naive estimator as the sample size increases.

However, MLE suffers in two aspects: computational tractability and mathematical instability. Specifically, note that
he MLE estimator lacks a closed form expression. Therefore, one has to solve (16) by using numerical methods such as
he Newton–Raphson method, Fisher’s Scoring Method, etc. Unfortunately, using these ideas to solve (16) takes more and
ore time as the number of samples grow. Also note that, under the above solution ideas, the MLE estimator works in
n offline fashion. In that, each time we get a new observation, (16) needs to be solved afresh. This is because there is no
asy way to efficiently reuse the calculations from one iteration into the next (note that the defining Eq. (16) changes in
significant and nontrivial way from one iteration to the other).
Besides the complexity, the MLE estimator is also unstable in two situations. One, when no changes have been detected

Ij = 0, ∀k ∈ {1, . . . , k}), and the other, when all the accesses detect a change (Ij = 1, ∀k ∈ {1, . . . , k}). In the first setting,
no solution exists; in the second setting, the solution is ∞. One simple strategy to avoid these instability issues is to clip
the estimate to some pre-defined range whenever one of bad observation instances occur.

Finally, let us discuss the MM estimator. Here, one looks at the fraction of times no changes were detected during page
accesses and then, using a moment matching method, tries to approximate the actual page change rate. In our context,
the value of this estimator is obtained by solving

∑k
j=1(1 − Ij) =

∑k
j=1 e

−∆τj for ∆. The details of this equation are given
n [19, Section 4]. While the MM idea is indeed simpler than MLE, the associated estimation process continues to suffer
rom similar instability and computational issues like the ones discussed above.

We emphasize that none of our estimators suffer from any of the issues mentioned above. In particular, all of our
stimators are online and have a significantly simple update rule; thus, improving the estimate whenever a new data
oint arrives is extremely easy. Moreover, all of them are stable, i.e., the estimated values will almost surely be finite.
ore importantly, the performance of our estimators is comparable to that of MLE. This can be seen from the numerical
xperiments in Section 4.

.5. Comparison of Theorem 3 with the literature on stochastic momentum methods

We first provide an alternative characterization of (3). Let f (z) =
1
2a (az − b)2, where a and b are as defined below (11),

nd let h be as defined in Section 3.2. Then, clearly, h(z) = −∇f (z). Thus, (3) can be rewritten as

zk+1 = zk + ηk[−∇f (zk) + Mk+1] + ζk(zk − zk−1),

here Mk+1 is as defined in (7). Consequently, it follows that (3) can also be viewed as an SGD method with a heavy-ball
omentum term (similarly, (2) is also an SGD method, but we will not focus on that here).
The above viewpoint now brings forth an interesting question ‘‘How does Theorem 3 compare with the existing results

n stochastic heavy-ball method and the stochastic variant of Nesterov’s accelerated gradient method?’’
While there are numerous results on stochastic momentum methods, surprisingly, most of them hold only under

xtremely restrictive assumptions: they either need
9
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1. that the gradient of the objective function be uniformly bounded [31,32], or
2. that the noise sequence, i.e., {Mn+1}, be independent of the iterates [33] or, alternatively, its variance be uniformly

bounded [31–38].

In our setup, in contrast, the objective function f is quadratic; hence, the magnitude of its gradient grows to infinity
s |z| → ∞. Also, E[|Mk+1|

2
|Fk] = (zk + p)2E[Ik+1 − ∆/(∆ + p)]2, which implies that E|Mk+1|

2
=

∆p
(∆+p)2

E(zk + p)2. One
can thus see that the above assumptions do not directly hold in our case.

To the best of our knowledge, [21,39] are the only other works that similarly do not need the above assumptions. The
results in [39], however, only apply to the setup with constant stepsizes. In that case, it is shown there that the iterates
converge to a neighborhood of the desired solution but not to the solution itself. On the other hand, [21] does discuss
results on convergence and convergence rates of the stochastic heavy-ball method. The analysis there, though, does not
apply to the stochastic variant of the original heavy-ball method, i.e., the one proposed in [22, (9)]; instead, it applies to
a different variant.

The paper [40] is one other work on stochastic momentum methods that has recently generated significant attention.
However, the results there concern a setup where the objective function is of a different nature to the one we consider
here. In particular, instead of the gradient, it is assumed there that the objective function itself is defined via an
expectation.

In this sense, our work is the first to analyze the stochastic heavy-ball method (in its original form) without a priori
presuming that the above two conditions hold. As a matter of fact, it is proved in [21] that the variant which is considered
there cannot be analyzed using the standard ODE based stochastic approximation techniques such as the one proposed
in [41, Chapter 6]. Our analysis, in contrast, is able to directly make use of the standard approach.

4. Numerical results

We now demonstrate the strength of our estimators using three different experiments. The first one involves real data
based on Wikipedia traces. It serves two of our goals. First, we use this experiment to validate our model assumption that
the page change process is a stationary Poisson point process. Second, we use it to demonstrate that the estimation quality
of our online estimators is comparable to that of the offline MLE estimator. In the second experiment, using synthetic data,
we study the impact of ∆ and p on our three estimators. In the third experiment, we similarly study how the choices
of {αk}, {ηk} and {βk} influence the performance. Finally, based on the outcomes of these experiments, we provide some
guidelines on which estimator to use in practice.

4.1. Performance on real data (expt. 1)

As mentioned before, our goal here is provide a validation for our model as well as to compare the performance of the
different estimators on real data.

To generate the data set, we used Wikipedia traces which are openly available on the web. In particular, we selected
an arbitrary page from the list of frequently edited pages on Wikipedia. The title of the page we chose was ‘‘Template
talk: Did you know’’. Next, we extracted the timestamps at which this page was edited over a period of five months (April
01, 2020 to August 31, 2020). We found that this page had changed 4043 times during this period. From the available
history, we then calculated the inter-update times of the page change process. The average of these values turned out to
be ∆ = 1.1098.

Using a Q-Q plot, we then compared the distribution (specifically quantiles) of the collected data to that of an
exponential distribution with this ∆ rate. The result is given in Fig. 1(a). Notice that the points roughly fall on a straight
line. Importantly, this line is very close to the 45◦ diagonal. This implies that both the sets of quantiles come from the
same distribution, thereby confirming that the collected inter-update times indeed follow an exponential distribution
whose rate is close to ∆. Equivalently, this implies that the update times come from a Poisson point process with rate
close to ∆.

Having verified our assumption, we now compare five different page rate estimators: Naive, MLE, LLN, SA, and SAM.
Their performances are given in Figs. 1(b) and 1(c).

The procedure we adopted to obtain these plots was as follows. (Unless specified, we follow the notations from
Section 2). Recall that we had access to the actual timestamps at which this Wikipedia page was changed. Keeping this in
mind, we artificially generated the crawl instances of this page. These times were sampled from a Poisson point process
with rate p = 0.5 for Fig. 1(b) and with p = 0.1 for Fig. 1(c). We then checked if the page had changed or not between each
of the successive crawling instances. This then generated the values of the indicator sequence {Ik}. For p = 0.5, the length
of this sequence was 1723 while, for p = 0.1, this length turned out to be 340. Using these Ik, p, and inter-update time
lengths, we then used the five different estimators mentioned above to find ∆. This gave rise to the trajectories shown
n Figs. 1(b) and 1(c). Note that the depicted trajectories correspond to exactly one run of each estimator. The trajectory
f the estimates obtained by the SA estimator is labeled ∆SA, etc. The stepsizes chosen for our different estimators are as

follows. For our LLN estimator, we had set αk ≡ 1 and, for the SA estimator, we had used ηk = (k + 1)−η with η = 0.75.
−β −η
In case of the SAM estimator, we had set βk = (k + 1) with β = 0.6 and ηk = (k + 1) with η = 1.2. (Recall

10
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Fig. 1. Different Estimators: Real Data.

that, in the SAM estimator, the main stepsize is ηk while the stepsize multiplying the momentum term has the form
ζk = (βk − ωηk)/βk−1).

We now summarize our findings. In Fig. 1(b), we observe that performances of the MLE, LLN, SA and SAM estimators
are comparable to each other and all of them outperform the Naive estimator. This last observation is not at all surprising
since the Naive estimator completely ignores the changes missed between two successive crawling instances. In contrast
11



K. Avrachenkov, K. Patil and G. Thoppe Performance Evaluation 153 (2022) 102261

4

r

p
a
p
i

s
η

to this, we observe that the estimators behave somewhat differently in Fig. 1(c). Recall that the crawling frequency here
is 0.1, which is quite small compared with the value 0.5 that was chosen before. We notice that SAM and MLE estimators
perform better than SA and LLN estimators in this scenario.

4.2. Comparison of estimation quality using synthetic data (expt. 2)

Throughout this experiment, we work with synthetic data.

.2.1. Sample variance and root mean squared error
Our goal here is to study the sample variance and root mean squared error of the estimates obtained from multiple

uns of the different estimators. The output is given in Fig. 2.
The data for this experiment is generated as follows. We sample points from two different stationary Poisson point

rocesses, one with parameter ∆ = 5 and the other with parameter p = 3. We treat the samples from the first process
s the times at which an imaginary page changes, and the samples from the second process as the times at which this
age is crawled. We then check if the page has changed or not between two successive page accesses. This information
s then used to generate the values of the indicator sequence {Ik}.

We now give {Ik}, p, as well as the inter-access lengths as input to the five different estimators mentioned before. The
tepsizes we use are as follows. For our LLN estimator, we set αk ≡ 1; for the SA estimator, we use ηk = (k + 1)−η with
= 0.75; and, for the SAM estimator, we choose ζk = (βk − ωηk)/βk−1, where ηk = (k + 1)−η with η = 1.3, ω = 1, and

βk = (k + 1)−β with β = 0.75. Fig. 2(a) depicts one single run of each of the five estimators.
In Figs. 2(b) and 2(c), the parameter values are exactly the same as in Fig. 2(a). However, we now run the simulation

100 times; the page change times and the page access times are generated afresh in each run. Fig. 2(b) depicts the 95%
confidence interval of the obtained estimates, whereas Fig. 2(c) shows the root mean squared value of the difference
between the estimated value and actual change rate of the page.

We now summarize our findings. Clearly, in each case, we observe that performances of the MLE, LLN, SA and SAM
estimators are comparable to each other and all of them outperform the Naive estimator. The fact that the estimates from
our approaches are close to that of the MLE estimator was indeed quite surprising to us. This is because, unlike MLE, our
estimators completely ignore the actual lengths of the intervals between two accesses. Instead, they use p, which only
accounts for the mean interval length. Note that the root mean square error of the first few samples for MLE is very high
(hence, it is not depicted in Fig. 2(c)). This is due to the instability that MLE faces; see Section 3.4. Fig. 2(c) shows that the
error in the MLE estimate decays faster as compared to others. We believe this is because the MLE also uses the actual
interval lengths in its computation; thus, it uses more information about the crawling process than the other estimators.

While the plots do not show this, we once again draw attention to the fact that the time taken by each iteration in
MLE rapidly grows as k increases. In contrast, our estimators take roughly the same amount of time for each iteration.

4.2.2. Impact of ∆ and p on performance
In the previous experiments, recall that our different estimators more or less behaved similarly. Our goal now is to vary

the values of ∆ and p and see if there are any major differences that crop up in their performances. Alongside, we also
wish to see the usefulness of the momentum term used in the SAM estimator. The performances in two such interesting
scenarios are shown in Figs. 3 and 4. Note that we no longer consider MLE on account of their impractical run times when
the {Ik} sequence lengths are large.

In Fig. 3, ∆ = 500 and p = 3, which means the crawling frequency is quite low compared to the frequency at which the
page is updated. On the other hand, in Fig. 4, ∆ = 500 and p = 50; thus, the crawling frequency now is relatively higher.
The stepsizes for our different estimators are as follows. For the LLN estimator, we chose αk ≡ 1; for the SA estimator,
we chose ηk = (k + 1)−η with η = 0.8; and, for the SAM estimator, we chose ηk as before, ω = 1 and βk = (k + 1)−β

with β = 0.5 (note that our stepsize choice for the SAM estimator violates the conditions of Theorem 3, but it satisfies
the one we made in the conjecture below (3)).

Figs. 3(a) and 4(a) show one single trajectory of our estimators in the two scenarios. We observe that the LLN and
SAM estimators perform quite well as compared to the SA estimator in both the scenarios; however, the latter catches
up when the p value becomes higher. The impact of the momentum term can also be clearly seen in the low frequency
crawling case. In this scenario, note that the crawler will more or less always detects a change. That is, the {Ik} sequence
will mostly consists of all 1s. In turn, this means that the SA estimator’s update rule will almost always have the form
yk+1 = yk + ηkp.

We then ran the simulation 100 times and obtained a plot of the 95% confidence interval and the root mean squared
error of our different estimators in the two scenarios. This is shown in Fig. 3(b), 3(c), 4(b), and 4(c). We observe that
variance for SA is relatively very low. This is because the SA estimator does not deviate too much from the update rule
mentioned in the previous paragraph. The disadvantage, however, is that its estimates typically are quite far away from
the actual change rate. Furthermore, this error decreases quite slowly. Another interesting observation from Figs. 3(b) and
3(c) is that the variance of LLN estimator is larger than that of SAM estimator, however, its error decays at much faster
rate than that of the SAM estimator.

Compared to Fig. 3, notice that in Fig. 4 that performance of all our estimators improve . However, as shown in Fig. 4(b),
the SAM estimator is quite volatile now. Separately, the zoomed-in plot in 4(c) shows that the average error for the SAM
estimator drops quite rapidly compared to others in the initial few iterations. However, this advantage disappears after

400 iterations; then on the LLN estimator performs much better.

12
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Fig. 2. Synthetic data: ∆ = 5, p = 3.
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Fig. 3. Synthetic data: ∆ = 500, p = 3.
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Fig. 4. Synthetic data: ∆ = 500, p = 50.
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Fig. 5. Impact of {αk}, {ηk} and {ζk} choices on Performance; ∆ = 500 and p = 10.

.3. Impact of step size choices (expt.3)

The theoretical results presented in Section 3 show that the convergence rates of LLN, SA, and SAM estimators are
ffected by the choice of {αk} {ηk}, and {ζk}, respectively. Fig. 5 provides a numerical verification of the same. The details
re as follows. We chose ∆ = 500 and p = 10. Notice that the page change rate is again very high, whereas the crawling

frequency is relatively very low value. We then use the LLN estimator with three different choices of {αk}; these choices
are shown in Fig. 5(a) itself. The LLN estimator with αk = k0.75 has the worst performance. This behavior matches the
prediction made by Theorem 1. In Fig. 5(b), we again consider the same setup as above. However, this time we run the
SA estimator with three different choices of {ηk}; the choices are given in the figure itself. We see that the performance
or η = 0.5 is better than the other cases.

We now analyze the impact of varying {ηk} and {ζk} on the performance of the SAM estimator. Let ζk be of form given
n (10). Based on our conjecture below (3), pick ηk = (k + 1)−η and βk = (k + 1)−β with β ∈ (0, 1] and β < η < 2β . In
Fig. 5(c), we fix η = 0.8 and vary β; these choices are shown in the figure itself. The SAM estimator with β = 0.4 reaches
the limit very quickly, however, it is very noisy and keeps fluctuating around actual change rate. The fluctuations reduce
as the value of β increases; however, larger values of β also slow down the rate at which the error decreases. We observe
that the SAM estimator with β = 0.6 has the best performance. In Fig. 5(d), we fix β = 0.6 and vary η. The figure seems
to suggest that a larger η increases the convergence rate but, simultaneously, also increases the fluctuations.
16
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4.4. Practical recommendations

Here, we provide some recommendations on which estimator to use in practice. Our conclusions are based on what
e have observed in the numerical experiments discussed in Section 4. We summarize them as follows.

• High frequency crawling: If the crawling frequency p is comparable to ∆, all estimators (LLN, SA, SAM and MLE) per-
form well except the Naive estimator. However, we do not recommend MLE as it is offline and very time-consuming.
The examples that correspond to this scenario are depicted in Figs. 1(b) and 2.

• Low frequency crawling: There are two sub-cases depending on the value of p as compared to ∆.

– Relatively very low p: The Naive estimator is very bad for this scenario as there will several missed changes
which will be unaccounted for. We recommend LLN or SAM estimator as they both outperform SA estimator;
the example that corresponds to this scenario is depicted in Fig. 3. For similar reasons as in the previous case,
we do not recommend the MLE estimator.

– Relatively moderate p: The Naive estimator is again a bad choice here. Amongst the rest, we recommend the
LLN estimator when several Ik values are available. Otherwise, one can use SAM or the MLE estimator; the
offline nature of the MLE will be of concern here as well. The examples that correspond to this scenario are
depicted in Figs. 1(c) and 4.

. Estimating optimal crawling rates

In this section, we discuss how our estimators can be used to identify the optimal crawling rates. Formally, we suppose
hat a search engine’s local cache consists of N pages. Let pi denote the rate at which page i is crawled. The goal then is
o find the optimal crawling rates such that the overall freshness of the local cache, i.e.,

lim
T→∞

E
[
1
T

T∫
0

( N∑
i=1

wi1{Fresh(i, t)}
)
dt
]
, (17)

s maximized subject to the constraint
∑n

i=1 pi ≤ B. Here, T > 0 is the time horizon, wi denotes the importance of the
ith page, B ≥ 0 is a bound on the overall crawling frequency, 1{Fresh(i, t)} is the indicator that page i is fresh at time t ,
i.e., the local copy matches the actual page.

In [11], it was shown that maximizing (17) under a bandwidth constraint for large enough T corresponds to maximizing
F (p) =

∑N
i=1

(
wipi/(pi+∆i)

)
, where p ≡ (p1, . . . , pN ). Importantly, it was shown there that this latter optimization problem

can be solved efficiently (in O(N logN) iterations) and provided an algorithm for the same. However, that algorithm
requires that the ∆i’s be known in advance. Our goal here is to combine their algorithm with our estimators and try
and determine the optimal crawling rates.

Taking inspiration from [20], we consider the following hypothetical setup. We consider N = 50 pages, in which we
presume that there are

√
50 ≈ 7 pages that change very frequently, i.e., they account for (say) 90% of the total changes

in the system. Accordingly, we suppose that the change rate ∆i for each frequently changing page is 4.5/7, while for
the others it is 0.5/43. We further assume that the bound on the overall bandwidth is B = 5. We further assume that
the frequently changing pages are more important and assign uniform weight of 2. On the other hand every other page
presumed to have uniform weight of 1.

We then use the following strategy. We arbitrarily initialize pi = B/N = 0.1 for all i, i.e., B is uniformly divided across
all the N pages. Since these pi values are arbitrarily chosen, these need not be the optimal crawling rates. Thereafter,
we run each of our estimators for (say) 50 iterations. We then use the estimates of ∆i at the 50th iteration as input to
[11, Algorithm 2] and obtain the associated possibly sub-optimal crawling rates. Denoting these new rates as pi again, we
now repeat the above procedure. That is, we use pi’s for 50 iterations to estimate the ∆i’s and, in turn, use the later to
obtain estimates for the new pi’s.

Fig. 6 compares the estimated crawling rates obtained using our three estimators with the optimal ones obtained by
using the actual ∆i values in [11, Algorithm 2] for the two kinds of pages. In this experiment, the two SA-based estimators
appear to perform better than the LLN estimator, at least initially. Note that p5 denotes the optimal crawling rate for the
5-th page, while pSA5 denotes the estimate obtained by using the SA estimator, etc. P10, pSA10, etc. have similar meanings in
relation to the 10-th page. The parameters we chose for our different estimators are as follows. For the LLN estimator,
we chose αk ≡ 1. For the SA estimator, we chose ηk = (k + 1)−η with η = 0.75. For the SAM estimator, we choose
ηk = (k + 1)−η with η = 1.3 and ζk = (βk − ωηk)/βk−1 with ω = 1, and βk = (k + 1)−β for β = 0.75.

6. Conclusion and future work

We propose three new online approaches for estimating the rate of change of web pages. We provide theoretical
guarantees for their convergence and also provide numerical simulations to compare their performances. From experi-
ments, one can verify that the proposed estimators perform significantly better than the Naive estimator. Also, they have
17
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Fig. 6. Adaptive estimation of the optimal crawling rate.

extremely simple update rules which make them computationally attractive when compared to MLE. We also provide
important insights on which estimator one should use in practice.

The performance of both our estimators currently depend on the choice of {αk}, {ηk}, and {ζk} respectively. One aspect
o analyze in the future would be to ask what would be the ideal choice for these sequences that would help attain
he fastest convergence rate. Another interesting research direction to pursue is to combine the online estimation with
ynamic optimization.
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ppendix. Convergence of stochastic approximation algorithms

In this section, we discuss results from literature that provide sufficient conditions for convergence of both one-
imescale and two-timescale stochastic approximation algorithms.

We begin by discussing the convergence of a generic one-timescale stochastic approximation algorithm. This result is
btained by combining [41, Chapter 2, Corollary 4,] and [41, Chapter 3, Theorem 7].

heorem 9 (Convergence of One-timescale Stochastic Approximation [41]). Consider the update rule

yk+1 = yk + ηk[h(yk) + Mk+1],

where ηk is a positive scalar; yk,Mk ∈ Rd
; and h : Rd

→ Rd is a deterministic function. Suppose the following conditions hold:

(i.)
∑

∞

k=0 ηk = ∞ and
∑

∞

k=0 η2
k < ∞.

(ii.) {Mk} is a martingale difference sequence with respect to the increasing family of σ−fields

Fk := σ (yj,Mj, j ≤ k), k ≥ 0.

That is, E[Mk+1|Fk] = 0 a.s., k ≥ 0. Further, there is a constant C ≥ 0 such that E[∥Mk+1∥
2
|Fk] ≤ C(1+ ∥yk∥2) a.s. for

all k ≥ 0.
(iii.) h is a globally Lipschitz continuous function. Further, the ODE ẏ(t) = h(y(t)) has a unique globally asymptotically stable

equilibrium y .
∗
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(iv.) There exists a continuous function h∞ : Rd
→ Rd such that the functions hc(x) := h(cx)/c, c ≥ 1, satisfy hc → h∞

uniformly on compact sets as c → ∞. Further, the ODE ẏ(t) = h∞(y(t)) has the origin as its unique globally
asymptotically stable equilibrium.

hen, yk → y∗ a.s.

Often, stochastic approximation algorithms contain an additional perturbation term that is asymptotically negligible.
he next result discusses convergence of such algorithms.

roposition 10 (Convergence of Perturbed One-timescale Stochastic Approximation). Consider the update rule

yk+1 = yk + ηk[h(yk) + ϵk + Mk+1],

here ϵk is an additional perturbation term while the other terms have the same meaning as in Theorem 9. Suppose that the
our conditions listed in Theorem 9 hold true. Further, suppose ∥ϵk∥ ≤ Cρk(1 + ∥yk∥) a.s. for k ≥ 0, where C is a positive
onstant and {ρk} is a sequence of positive scalars such that limk→∞ ρk = 0. Then, yk → y∗ a.s.

roof. We only give a sketch of the proof since the arguments are more or less similar to the ones used to derive
heorem 9. As mentioned before, this latter result follows from [41, Chapter 2, Corollary 4] and [41, Chapter3, Theorem 7].
e now briefly discuss how, even in the presence of the additional perturbation term, these two results continue to hold.

• [41, Chapter 2, Corollary 4]: This result follows from [41, Chapter 2, Theorem 2] which, in turn, follows from
[41, Chapter 2, Lemma 1]. However, as shown in extension 3 in [41, pg. 17], this latter result goes through even
in the presence of the perturbation term {ϵk}. This is because ϵk is asymptotically negligible a.s. More specifically,
observe that the sequence {yk} is a.s. bounded under assumption (A4) given on [41, pg. 17]. This implies that {ϵk} is
a random bounded sequence which is o(1) a.s.; the latter is true since ρk → 0.

• [41, Chapter3, Theorem 7]: The proof of this result is based on Lemmas 1 to 6 in [41, Chapter 3]. The first three
of these lemmas concern the behavior of the solution trajectories of the limiting ODE ẏ(t) = h∞(y(t)). Since the
perturbation term does not affect the definition of this limiting ODE in any way whatsoever, these three results
continue to hold as before. Similarly, Lemma 5 in ibid is unchanged since it only concerns the convergence of the
sum of martingale differences

∑
k ηkM̂k+1 (recall that the stepsize sequence in our update rule is ηk). With regard

to the proof of Lemma 4 in ibid, observe that our update rule satisfies

ŷ(t(k + 1)) = ŷ(t(k)) + ηk(hr(n)(ŷ(t(k))) + ϵ̂k + M̂k+1), m(n) ≤ k ≤ m(n + 1),

where ϵ̂k = ϵk/r(n) while the other notations are analogous to the ones defined in [41, Chapter 3]. Because
∥ϵk∥ ≤ Cρk(1 + ∥yk∥), ρk → 0, and r(n) ≥ 1, it follows that

∥ϵ̂k∥ ≤ C1(1 + ∥ŷ(t(k))∥2)

for some positive constant C1. Note that this is in similar spirit to (3.2.5) in ibid. It is then easy to see that the rest of
the proof goes through as before. This shows that [41, Chapter 3,Lemma 4] continues to be true even in the presence
of the perturbation term. Using exactly the same bound for ∥ϵ̂k∥ obtained above, one can see that the arguments in
the proof of Lemma 6 in ibid hold as well. Thus, [41, Chapter 3, Theorem 7] continues to hold, which is exactly what
we wanted to establish.

The desired result now follows. □

We next state a result that discusses the convergence of a generic two-timescale stochastic approximation algorithm.
The proof of this result is based on [41, Chapter 6, Theorem 2] and [42, Theorem 10].

Theorem 11 (Convergence of Two-timescale Stochastic Approximation [41,42]). Consider the update rules

uk+1 = uk + γk[h(uk, zk) + M (1)
k+1],

zk+1 = zk + βk[g(uk, zk) + M (2)
k+1],

where γk and βk are positive scalars; uk, zk,M
(1)
k ,M (2)

k ∈ Rd
; and h, g : R2d

→ Rd are two deterministic functions. Suppose
the following conditions hold:

(i.)
∑

k≥0 γk =
∑

k≥0 βk = ∞,
∑

k≥0

(
γ 2
k + β2

k

)
< ∞, and limk→∞

βk

γk
= 0.

(ii.) {M (1)
k } and {M (2)

k } are martingale difference sequences with respect to the increasing σ−fields

Fk := σ (uj, zj,M
(1)
j ,M (2)

j , j ≤ k), k ≥ 0.

Further, there exists a constant C ≥ 0 such that E[∥M (i)
∥
2
|F ] ≤ C(1 + ∥u ∥

2
+ ∥z ∥

2) for i = 1, 2 and k ≥ 0.
k+1 k k k
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(iii.) h and g are globally Lipschitz continuous functions. For each fixed z, the ODE u̇(t) = h(u(t), z) has a unique globally
asymptotically stable equilibrium φ(z), where φ : Rd

→ Rd is Lipschitz continuous. Further, the ODE ż(t) =

g(φ(z(t)), z(t)) has an unique globally asymptotically stable equilibrium z∗.
(iv.) The functions hc(u, z) := h(cu, cz)/c, c ≥ 1, satisfy hc → h∞ as c → ∞, uniformly on compacts for h∞. Also, for each

fixed z ∈ Rd, the limiting ODE u̇(t) = h∞(u(t), z) has a unique globally asymptotically stable equilibrium φ∞(z), where
φ∞ : Rd

→ Rd is a Lipschitz map. Further, φ∞(0) = 0. Separately, the functions gc(z) := g(cφ∞(z), cz)/c, c ≥ 1, satisfy
gc → g∞ as c → ∞, uniformly on compacts for some g∞. Also, the limiting ODE ż(t) = g∞(z(t)) has the origin as its
unique globally asymptotically stable equilibrium.

hen, (uk, zk) → (φ(z∗), z∗) a.s.

The last and final result of this section concerns the convergence of two-timescale stochastic approximation with
erturbation terms that are asymptotically negligible.

roposition 12 (Convergence of Perturbed Two-timescale Stochastic Approximation). Consider the update rules

uk+1 = uk + γk[h(uk, zk) + ϵ
(1)
k + M (1)

k+1]

zk+1 = zk + βk[g(uk, zk) + ϵ
(2)
k + M (2)

k+1],

here ϵ
(1)
k , ϵ

(2)
k are additional perturbation terms while the other terms have the same meaning as in Theorem 11. Suppose

hat the four conditions listed in Theorem 11 hold true. Further, suppose ∥ϵ
(i)
k ∥ ≤ Cρ

(i)
k (1 + ∥uk∥ + ∥zk∥) a.s. for k ≥ 0 and

= 1, 2, where C is a positive constant and {ρ
(i)
k }, i = 1, 2, are sequences of positive scalars such that limk→∞ ρ

(i)
k = 0. Then,

(uk, zk) → (φ(z∗), z∗) a.s.

Proof. As stated before, this result follows from [41, Chapter 6, Theorem 2] and [42, Theorem 10]. We now briefly discuss
how these results continue to hold even in the presence of the perturbation terms ϵ

(1)
k and ϵ

(2)
k .

• [41, Chapter 6, Theorem 2]: This result, as well as [41, Chapter 6, Lemma 1] on which it relies, are essentially
proved by defining suitable one-timescale stochastic approximation algorithms and then using convergence results
concerning the latter. In our situation, both these will have additional perturbation terms that are asymptotically
negligible. Consequently, by arguing as in the third extension given in [41, pg. 27], it can be shown that the
asymptotic behavior of these two algorithms remains unchanged even in the perturbed setup. Therefore, it follows
that the conclusions of [41, Chapter 6, Theorem 2] continue to hold as before.

• [42, Theorem 10]: This result is based on Lemmas 2 to 7 and Lemma 9 as well as Theorems 6 and 7 in ibid. Lemmas 2
to 5 in ibid concern the limiting ODEs described in condition (iv.) of Theorem 11 above. The definitions of these ODEs
do not depend on the presence or absence of the perturbation terms. Therefore, the aforementioned four lemmas
continue to hold as before. On the other hand, Lemmas 6 and 9 in ibid rely on the results in Chapter 3 and Chapter 6
of [41]. As argued before, these results continue to hold even in the presence of perturbation terms and, consequently,
so do Lemmas 6 and 9 in ibid. Finally, Theorems 8 and 10 in ibid build upon these seven Lemmas. Therefore, they
hold as well in the perturbed setup.

The desired result now follows. □
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