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We explore the Fock-space structure of eigenstates across the many-body localization (MBL) transition in
a disordered, interacting quantum spin- 1

2 chain. Eigenstate expectation values of spatially local observables,
which distinguish an MBL phase from an ergodic one, can be represented in terms of eigenstate amplitudes on
the Fock space. Motivated by this, we introduce and study spatial correlations on the Fock space. From these, a
correlation length emerges, which is found to vary discontinuously across the MBL transition, and is intimately
connected to the discontinuous jump in the multifractal exponents characterizing the Fock-space wave functions.
Exploiting the direct connection between the local observables and Fock-space correlations, we show that the
discontinuity in the length scale also implies discontinuous behavior of the local observables across the transition.
A scaling theory based on these Fock-space correlations is constructed, which is closely connected to that for
the inverse participation ratio. It yields a volume scale in the ergodic phase and a length scale in the MBL phase,
whose critical properties suggest a Kosterlitz-Thouless–type scenario for the MBL transition, as is predicted by
recent phenomenological theories. Finally, we also show how correlation functions on the Fock space reveal the
inhomogeneities in eigenstate amplitudes on the Fock space in the MBL phase.
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I. INTRODUCTION

Ergodicity is an essential ingredient in the emergence of
equilibrium thermodynamics from coherent quantum dynam-
ics in generic isolated many-body systems. A key idea in
this context is embodied in the eigenstate thermalization hy-
pothesis (ETH) [1–3], viz., that eigenstates of generic ergodic
quantum systems locally behave like thermal states with the
temperature set by their energies. In the presence of suffi-
ciently strong quenched disorder, however, ergodicity can be
robustly broken, leading to a many-body localized (MBL)
phase [4–7] (see Refs. [8–10] for reviews and further refer-
ences). MBL systems are of fundamental importance, as they
violate ETH and hence fall outside the conventional paradigm
of equilibrium thermodynamics and statistical mechanics.
Moreover, the MBL phase at strong disorder is separated from
the ergodic phase at weak disorder by an eigenstate phase tran-
sition, the precise nature of which continues to be a question
of active and fundamental interest [11–21].

The large theoretical effort towards understanding the
MBL phase and accompanying transition has seemingly
forked into two complementary but intertwined directions.
The first comprises theories, primarily phenomenological in
nature, formulated directly in real space. In these approaches,
the effects of ergodic spatial regions in an MBL system are
treated nonperturbatively within phenomenological renormal-
ization group (RG) frameworks; their key predictions include
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the possible Kosterlitz-Thouless–type nature of the MBL tran-
sition, and an effective real-space localization length which
is finite in the MBL phase up to and at the transition, across
which it changes discontinuously [15–17,20,22].

The second direction, arguably more microscopically
motivated, has been to study the MBL problem as an uncon-
ventional Anderson localization problem [23] on the complex,
correlated Fock-space graph of a quantum many-body system
[5,18,19,24–42]. While MBL on Fock space is inherently
different from conventional Anderson localization on high-
dimensional graphs, the latter has served as an important
inspiration for the former, with regard to both techniques and
the scaling laws governing the transition [43–52]. This direc-
tion has led to crucial insights, such as the multifractal scaling
of MBL eigenstates on the Fock space [19,26], emergent frag-
mentation of the Fock space in the MBL phase [18,31,33,34],
and the understanding that maximal correlations in the Fock-
space disorder are a necessary ingredient for MBL to be stable
[37,53].

Work on establishing a bridge between these two avenues,
and putting them on common ground, is however fledgling.
From a classical percolation viewpoint, there is an understand-
ing of how collective effects in real space which freeze spatial
segments of a system lead to a fragmentation of the Fock
space [31], and from a quantum mechanical viewpoint, how
phenomenological distributions of such classically frozen and
ergodic spatial regions can be related to the distributions of
eigenstate amplitudes on the Fock space [40].

In this paper, summarized in Fig. 1, we take a substan-
tive step towards forging a concrete connection between the
behavior of eigenstates on the Fock space, and that of local
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FIG. 1. Schematic summary of central results. (a) There exists
a correlation length ξF on the Fock space, which is finite both
throughout the MBL phase and at the MBL transition. In the ergodic
phase, ξF ∼ γ L scales linearly with system size, with γ vanishing
at the transition ∼(Wc − W )α with α ≈ 0.5. (b) This discontinuity in
ξF across the transition results in the local polarization, a real-space
diagnostic of the transition, also being discontinuous at the transition.
These results are intimately connected to the different nature of
eigenstates on the Fock space in the two phases: homogeneous and
extended in the ergodic phase, inhomogeneous and fractal in the
MBL phase and at the MBL transition. This is shown graphically
in the insets, where the relative size of the blobs denotes the wave-
function density on the corresponding Fock-space sites.

observables across the MBL transition. The infinite-time be-
havior of dynamical autocorrelation functions, encoded in the
eigenstate expectation values of local observables which diag-
nose the MBL transition, is shown to lead naturally to spatial
correlations of eigenstate amplitudes on the Fock space, which
in turn are characterized by a correlation length. The critical
scaling of this correlation length is shown to be intimately
connected to a scaling theory of the MBL transition in terms
of the multifractal properties of the eigenstates on the Fock
space; in particular, the discontinuity in the multifractal expo-
nent at the MBL transition [19,40] leads to a discontinuity in
the correlation length. The correlation length is finite through-
out the MBL phase as well as at the MBL critical point. On
crossing the transition into the ergodic phase, the correlation
length diverges discontinuously in the thermodynamic limit,
and finite-size scaling in the ergodic phase is in fact found to
be controlled by a Fock-space volume scale which diverges
exponentially at the transition with an essential singularity.
This is consistent with a Kosterlitz-Thouless–type scenario
for the MBL transition, as is predicted by complementary
approaches based on phenomenological RG in real space
[15–17,20,22]. The discontinuity in the Fock-space length
scale, via the relation between the eigenstate correlations on
Fock space and the eigenstate expectation values of the local

observables, is in turn manifest in a discontinuity in the latter
across the MBL transition.

Following an overview (Sec. I A), the paper is organized
as follows. Section II describes the spin- 1

2 model employed,
and discusses results for the appropriate local observables.
Eigenstate correlations in Fock space are considered in detail
in Sec. III, while their connection to the Fock-space inverse
participation ratios and the scaling behavior of the latter con-
stitutes Sec. IV. Section V is dedicated to the Fock-space
length scale associated with the eigenstate correlations. We
discuss how the length scale emerges out of the correlation
function, and its critical properties (Sec. V A), together with
its implications for local observables (Sec. V B), and the
distributions of the correlation length (Sec. V C). Section VI
presents results for the finer-grained inhomogeneous structure
of the eigenstates across Fock space in the MBL phase, and its
absence in the ergodic phase. Concluding remarks are given in
Sec. VII.

A. Overview

The central results of this work can be stated succinctly in
the following two points (see also Fig. 1):

(i) Eigenstate expectation values of local observables
which diagnose the MBL phase and transition can be ex-
pressed in terms of spatial correlations between eigenstate
amplitudes on the Fock-space graph.

(ii) The associated correlation length changes discontin-
uously across the MBL transition. It is finite throughout the
MBL phase and at the critical point, but is divergent through-
out the ergodic phase. This discontinuity manifests itself in
a discontinuous behavior of the local observables across the
transition.

We consider specifically a disordered quantum spin- 1
2

chain, where the disordered fields and interactions couple to
the σ z component of the spins. The relevant local observables
to study are thus the real-space dynamical autocorrelations
and eigenstate expectation values of the local σ z operators.
At the same time, from a Fock-space perspective, it is natural
to consider the basis of σ z-product states, to which the MBL
eigenstates are smoothly connected in the strong-disorder
limit. Within this setting, we show that the average infinite-
time value of the σ z autocorrelation measured in an eigenstate,
is directly related to a spatial two-point correlation function
defined on the Fock space, between eigenstate amplitudes on
Fock-space sites. For an eigenstate |E〉 decomposed in terms
of the Fock-space basis states {|I〉} as |E〉 = ∑

I AI |E〉, the
correlation function F (r) is defined as

F (r) =
∑

I,K :rIK =r

|AI |2|AK |2,

with rIK the Hamming distance between sites I and K . The
infinite-time autocorrelation is related to the Fock-space cor-
relation function by

lim
t→∞

1

L

L∑
i=1

〈E |σ z
i (t )σ z

i |E〉 =
L∑

r=0

(
1 − 2r

L

)
F (r),
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with L the system size. This relation provides a bridge be-
tween the behavior of local observables in real space and
spatial correlations of eigenstates on the Fock space.

We show, both numerically and constructively, that F (r) is
characterized by a correlation length ξF on the Fock space.
Since the MBL transition is a bona fide phase transition on
the Fock-space graph, the critical scaling of ξF is a question
of central interest. To address this, we exploit the fact that the
correlation function F (r = 0) (which itself encodes ξF ) is the
Fock-space inverse participation ratio (IPR) of the eigenstate.
To that end we first study a scaling theory for the transition in
terms of the Fock-space IPRs [or participation entropies (PE)],
in direct parallel to that for a disordered XXZ chain [19], and
then use it to extract the critical properties of ξF .

The scaling theory in terms of IPRs or PEs (Ref. [19] and
Sec. IV) tells us that the entire MBL phase as well as the
MBL critical point is characterized by nonergodic multifractal
eigenstates. The IPRs follow a scaling function of ln NH/ξ ,
with NH the Fock-space dimension, and ξ an emergent length
scale which diverges as ξ ∼ (W − Wc)−β with W the disorder
strength. The implication of this for ξF is shown to be that it
is finite throughout the MBL phase, and approaches a finite
limit ξF,c at the transition as ξF,c − ξF ∼ (W − Wc)β , with
the same exponent β [see Fig. 1(a)]. Although ξF is finite in
the MBL phase, the multifractality of the eigenstates arises
from competition between the exponential decay of eigenstate
correlations between Fock-space sites at mutual Hamming
distance r (with ξF the decay length scale), and the exponen-
tial growth of the number of Fock-space sites at distance r
from any given site.

On the ergodic side of the transition by contrast, the scaling
theory shows that in the thermodynamic limit the eigenstates
are fully ergodic throughout the phase, and that the multi-
fractal exponent jumps discontinuously at the transition. Here,
the IPRs follow a scaling function of NH/�2, where �2 can
be understood as a nonergodic volume [19], and diverges as
�2 ∼ exp[(Wc − W )−α] with α ≈ 0.5. This is shown to result
in ξF scaling with the system size L as ξF = γ L, where γ van-
ishes at the transition with the same exponent γ ∼ (Wc − W )α

[see Fig. 1(a)]. The discontinuous behavior in ξF across the
transition in turn leads to a discontinuity in the infinite-time
autocorrelation function of the local σ z:

lim
t→∞

1

L

L∑
i=1

〈E |σ z
i (t )σ z

i |E〉 = 1 − 2(1 + e1/ξF )−1.

This vanishes in the thermodynamic limit throughout the er-
godic phase, jumps discontinuously to a finite value at the
critical point, and thereafter in the MBL phase grows contin-
uously towards 1 with increasing W [see Fig. 1(b)].

An essential physical intuition behind the IPR-based scal-
ing theory is that the MBL eigenstates reside on sparse
“strands” on the Fock-space graph. We further show how
generalizations of the correlation function F (r) probe these
finer structures of the eigenstates, and reveal that they are
indeed strongly inhomogeneous. The inhomogeneities probed
by these generalized correlation functions go well beyond
those probed by the multifractal scaling of the IPRs.

II. MODEL AND LOCAL OBSERVABLES

A. Disordered spin- 1
2 chain

To place our discussions on a concrete footing, we employ
a disordered spin- 1

2 chain which hosts a firmly established
MBL phase [54]. It is specified by the Hamiltonian

H =
L−1∑
i=1

Ji σ z
i σ z

i+1 +
L∑

i=1

[
hi σ

z
i + �σ x

i

]
, (1)

where Ji and hi are uniformly distributed random numbers
with Ji ∈ [J − δJ, J + δJ] and hi ∈ [−W,W ]. In the numer-
ical studies employed we focus solely on eigenstates in the
middle of the spectrum, and for each disorder realization use a
single eigenstate |E〉, with its energy closest to Tr[H] = 0. We
consider throughout J = 1, δJ = 0.2, and � = 1. For these
parameters, the MBL transition for the model occurs at a
critical disorder strength Wc 	 3.5 [55], determined from level
statistics and bipartite entanglement entropy.

B. Eigenstate polarization and autocorrelation

A defining signature of the MBL phase is a persistent
local memory of the initial conditions throughout the course
of time evolution. This is often quantified via local temporal
autocorrelations measured with respect to the eigenstates, and
their infinite-time values. Since the disorder couples to σ z

components of the spins 1
2 in the model (1), the relevant

autocorrelation is

Ai (t ) = 〈E |σ z
i (t )σ z

i |E〉 , (2)

the infinite-time limit of which is

Mi ≡ lim
t→∞Ai (t ) = 〈E |σ z

i |E〉2
. (3)

For a given disorder realization, we denote the average of Mi

over all sites as MS, and the latter’s disorder average by M,

MS = L−1
L∑

i=1

Mi, M = MS. (4)

In an MBL phase the local autocorrelation saturates to a
system-size-independent finite value at infinite times, whereas
in an ergodic phase it decays to zero in the thermodynamic
limit. Equivalently, via Eq. (3), M encodes how strongly the
spins are polarized along the z direction in the eigenstates.

Numerical results for M are shown in Fig. 2. Deep in the
ergodic phase, the finite-size scaling of the ETH [56] suggests
that 〈E |σ z

i |E〉 is normally distributed with a standard deviation
∝ N−1/2

H , implying that M ∝ N−1
H . This is indeed reflected in

the data in Fig. 2(b). On a logarithmic scale data for different
L are equispaced, indicating that M decays as a power of
NH, and hence exponentially with L. The MBL phase by
contrast is characterized by a finite, L-independent M, which
is also reflected well in the data shown in Fig. 2. The behavior
of M with system size is likewise consistent with Wc 	 3.5
[55]. For W � 3.5, M decays systematically with L towards
zero, while for W � 3.5 it appears to saturate to a finite value
independent of L as expected in an MBL phase. Note that the
data also hint rather strongly at a discontinuous jump of M at
the MBL transition; we will return to this issue at length later.
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FIG. 2. Disorder-averaged eigenstate polarization M [Eq. (4)]
vs disorder strength W for different system sizes L. (a), (b) Show
data on linear and logarithmic scales, respectively. The vertical red
dotted line is a guide to the eye for the MBL transition at Wc 	 3.5
[55]. The black dashed line denotes the result in the MBL0 case of
Ji = 0 (see Appendix).

Further insight into the behavior of the local polarizations
(3) can be obtained from their probability distributions. In
particular, we consider two distributions. The first, defined as

PMi
(m) = L−1

L∑
i=1

δ(Mi − m), (5)

is a distribution of the local polarization over both real-space
sites and disorder realizations. The second, defined by

PMS
(m) = δ(MS − m) = δ

(
L−1

L∑
i=1

Mi − m

)
, (6)

is the distribution of the sample-averaged polarization MS

over disorder realizations.
Numerical results for the two distributions are shown in

Fig. 3. In the ergodic phase, both PMi and PMS are sharply
peaked near zero and the distributions are rather narrow, con-
sistent with ETH [56]. At intermediate disorder and near the

FIG. 3. Probability distributions of the eigenstate polarization for
different disorder strengths W . (a) Shows distributions of the local
polarization Mi over both real-space sites and disorder realizations
[Eq. (5)]. (b) Shows the distribution (6) over disorder realizations of
the site-averaged polarization MS. Insets show same distributions as
main panel, but on a linear scale. Data shown is for L = 15.

MBL transition, both distributions become broad. Note that
we refer here to the distribution as being broad if it has a
finite second central moment in the thermodynamic limit, and
narrow otherwise (the support of the distributions is strictly
compact ∈ [0, 1], so none of the moments can diverge).

A qualitative difference between the two distributions
emerges in the MBL phase. While PMi remains broad with
a peak appearing at m � 1, PMS becomes narrow again, as
indicated by the exponential decay of the distribution away
from its own peak at m � 1. The broadness in PMi throughout
the MBL phase can be understood physically as follows. In
any disorder realization, there would be a finite density of
spins which locally experience a disorder strength weaker
than the critical one. These spins thus attempt to thermalize,
and contribute to the weight of the distribution PMi at m ∼ 0.
The remaining spins, on the other hand, retain their σ z polar-
izations to various degrees, and as such populate the rest of
the support of PMi (m) for m ∈ (0, 1]. The distribution PMi

is therefore broad. Note that the same picture was borne out
by the Fock-space percolation proxy of the MBL transition
[18,31], and an argument based on the picture was used to
rationalize the fractal nature of the eigenstates on Fock space
in the MBL phase [19,40]. On the other hand, the distribution
PMS of the site-averaged polarization appears to be narrow
deep inside either phase, but broad in the critical regime. This
implies that MS is self-averaging in either of the two phases,
but not so near the critical point.

The above features of the distributions can be quantified
via their second central moments. The fluctuation in Mi over
both real-space sites and disorder realizations is defined as

χ = L−1
L∑

i=1

M2
i −

(
L−1

L∑
i=1

Mi

)2

, (7)

which is simply the second central moment of PMi , while the
second central moment of PMS is

χinter = M2
S − (M)2, (8)

and physically quantifies the fluctuation over disorder realiza-
tions of the sample-averaged local polarization MS.

Figure 4 shows numerical results for χ and χinter. In the
ergodic phase both χinter and χ decay to zero with L as man-
dated by ETH. This reflects the fact that both distributions
PMi and PMS are narrow in the ergodic phase. In the MBL
phase, by contrast, while χinter vanishes with increasing L, χ

saturates to a finite value. This is consistent with PMS and
PMi being, respectively, narrow and broad in the MBL phase
(see Fig. 3). Although χinter vanishes with increasing L within
each phase, it appears to saturate to an L-independent peak at
the critical point [the residual L dependence seen in Fig. 4(b)
is not systematic with L]. This reflects the broadness of PMS

and the absence of self-averaging in MS at the critical point.
As evident in Fig. 4(b), this L-independent peak is in excellent
agreement with the estimated critical Wc (vertical dotted line).
We also add that the peak in χ itself [Fig. 4(a)] is of no
significance, as χ is expected to be, respectively, finite and
vanishing throughout the MBL and ergodic phases. Indeed,
the data in Fig. 4(a) show that the L dependence of χ is
consistent with the estimated Wc 	 3.5 [55]; for W < Wc, χ
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FIG. 4. The total and intersample fluctuations in the eigenstate
polarization χ [(a)] and χinter [(b)], defined via Eqs. (7) and (8), vs
disorder strength W for different system sizes L. χ decays system-
atically with L in the ergodic phase and tends to a finite value with
increasing L in the MBL phase. χinter decays systematically with L in
both phases, but shows a finite-L-independent peak at the transition.

decays systematically with L, whereas for W > Wc it is L
independent.

III. SPATIAL CORRELATIONS OF EIGENSTATES
ON FOCK SPACE

Having established the behavior of the local polarizations
across the MBL transition, we now turn to spatial correlations
in the eigenstates on the Fock space, and show how they
encode the local polarizations and signatures of the MBL
transition in general.

The Fock space of the model (1) in the basis of σ z-product
states is an L-dimensional hypercube with NH = 2L vertices,
as illustrated in Fig. 5. A vertex, denoted as |I〉, is a many-
body quantum state of L spins, which is an eigenstate of the σ z

i
operator σ z

i |I〉 = Si,I |I〉, where Si,I = ±1. Since the links on
the Fock-space graph are generated by the term

∑
i σ

x
i in the

FIG. 5. Fock-space graph of the disordered Ising chain in
Eq. (1) in the basis of σ z-product states, with L = 8. A Fock-space
site, denoted by |I0〉 and here chosen to have all spins up, is placed
at the apex, and any Fock-space site I with rII0 = r is a Hamming
distance r from I0. Note that two sites with the same rII0 can lie
at a distance 2s from each other, where s = 0, 1, . . . , min(r, L − r).
Representative examples are shown by the red and yellow colored
sites.

Hamiltonian, each Fock-space site is connected to precisely L
others, each corresponding to flipping the spin at a particular
real-space site.

An eigenstate |E〉 can be decomposed on the Fock space
as |E〉 = ∑

I AI |I〉, with
∑

I |AI |2 = 1 from normalization
(while the amplitudes AI depend on the eigenstate |E〉, we
omit it notationally since we always focus on a single eigen-
state). As a measure of distance between two vertices on
the Fock-space graph we use the Hamming distance, which
is the number of real-space sites on which the spin orien-
tation differs between the vertices. For the specific model
(1) considered, the Hamming distance is equivalently the
shortest distance between the vertices. The distance between
two vertices (Fock-space sites henceforth) |I〉 and |K〉 can be
expressed as

rIK = 1

4

L∑
i=1

(Si,I − Si,K )2 (9)

or equivalently L−1 ∑
i Si,I Si,K = 1 − 2rIK/L. This relation

between the distance on the Fock-space graph and the spin
orientations plays a central role in connecting the Fock-space
landscape of eigenstates to the local polarizations measured
with respect to them.

A. Eigenstate correlations and local polarizations

The local polarization MS , a real-space diagnostic of the
MBL transition, can be expressed in terms of the Fock-space
amplitudes as

MS = L−1
L∑

i=1

∑
I,K

|AI |2|AK |2Si,I Si,K

=
∑
I,K

|AI |2|AK |2(1 − 2rIK/L) (10)

[using Eq. (9) in the second line]. Equation (10) motivates a
spatial correlation on the Fock space for an eigenstate as

F (r) =
∑

I,K :rIK =r

|AI |2|AK |2, (11)

in terms of which the local polarization MS = ∑
r F (r)(1 −

2r/L). The correlation function F (r) is closely connected
to the nonlocal propagator on the Fock space GIK (ω) =
〈I|(ω + i0+ − H )−1|K〉 by

F (r) =
∑

I,K :rIK =r

|ResE GIK (ω)|2, (12)

with ResE GIK (ω) the residue of the GIK (ω) at eigenen-
ergy E . The normalization of the eigenfunctions leads to∑L

r=0 F (r) = 1, so that F (r) can be interpreted as a normal-
ized probability distribution over r. This allows us to define a
mean distance on the Fock space as

〈r〉 =
L∑

r=0

rF (r). (13)

At the same time, the real-space site-averaged polarization
MS can be expressed in terms of 〈r〉 using Eqs. (10), (11),
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FIG. 6. (a) Spatial correlation of eigenstates on the Fock space
F (r) [see Eq. (11)] vs r/L for various disorder strengths W . Dark
blue dashed line denotes the binomial distribution B(L, p = 1

2 ).

(b) Same data as in (a) but rescaled with Nr = (L
r ). Light and dark

blue horizontal dashed lines correspond, respectively, to 3/NH and
1/NH, in agreement with Eq. (16). Data marked with red crosses
correspond to the critical Wc = 3.5. Results are shown for L = 14.

and (13) as

MS = 1 − 2
〈r〉
L

. (14)

This provides a direct relation between the mean local po-
larization in real space, and the structure of eigenstates on
Fock space. The variance of the distribution F (r) can also be
defined as

〈(δr)2〉 =
L∑

r=0

r2F (r) − 〈r〉2 . (15)

Numerical results for F (r) are shown in Fig. 6. Deep in the
ergodic phase, the eigenstate amplitudes AI are independent
and normally distributed, with zero mean and a variance N−1

H .
Using this in Eq. (11) gives

Ferg(r) = 3

NH
δr,0 + (1 − δr,0)

Nr

NH
, (16)

with Nr = (L
r ) the number of Fock-space sites at distance r

from any site on the Fock-space graph. As NH = 2L, Ferg(r) in
Eq. (16) is equivalent to a binomial distribution B(L, p) with
p = 1

2 , except for the δr,0N−1
H correction.1 As indicated by

the blue dashed line in Fig. 6(a), this binomial distribution is
indeed in excellent agreement with the data at weak disorder.
Concomitantly, when scaled by Nr [as in Fig. 6(b)], the data
agree perfectly with the prediction of Eq. (16), including the
correction at r = 0. Using this form of F (r) in Eqs. (13) and
(15) gives

〈r〉erg

L
= 1

2
;

〈(δr)2〉erg

L
= 1

4
(17)

1A random number x ∼ B(L, p) distributed according to a binomial
distribution has a probability distribution function (L

x )px (1 − p)L−x .

FIG. 7. Mean distance 〈r〉 and its variance 〈(δr)2〉 [Eqs. (13) and
(15), respectively] vs disorder strength W for various system sizes
L. Blue horizontal dashed lines correspond to the ergodic values of
〈r〉/L = 1

2 and 〈(δr)2〉/L = 1
4 . Black dashed lines show results for

the MBL0 limit of Ji = 0.

in the ergodic phase. This is also evident in the numerical
results presented in Fig. 7. With increasing L the data tend
towards the values in Eq. (17) not only at weak disorder but
also for the system sizes accessible to exact diagonalization,
at intermediate disorder strengths within the ergodic phase
and sufficiently far from the transition. We will return to a
more sophisticated analysis near the critical point in Secs. IV
and V.

In the MBL phase, the data in Figs. 6 and 7 are again
consistent with a binomial form F (r) = (L

r )pr (1 − p)L−r , but

with p(W ) < 1
2 , which implies

〈r〉MBL

L
= p(W );

〈(δr)2〉MBL

L
= p(W )[1 − p(W )], (18)

and with p(W ) decreasing monotonically with W . This is
well evidenced in the data in Fig. 7, where both 〈r〉/L and
〈(δr)2〉/L are L independent in the MBL phase.

Deep in the MBL phase, the model (1) is perturbatively
connected to the noninteracting limit of Ji = 0 (referred to
as MBL0 henceforth). Here, while the system is “trivially”
MBL since it is a set of noninteracting spins, the behavior
on the Fock space is nevertheless nontrivial. The correlation
function can be obtained exactly in this limit (see Appendix 1
for details),

FMBL0 (r) =
(

L

r

)
pr (1 − p)L−r, p = tan−1(W )

2W
, (19)

and the corresponding 〈r〉MBL0
and 〈(δr)2〉MBL0

are shown by
the black dashed lines in Fig. 7. Note that the effective p(W )
is slightly greater in the interacting MBL phase compared
to the noninteracting one, Eq. (19), reflecting the fact that
eigenstates of the former are in relative terms less localized
on the Fock space due to the presence of interactions. From
Fig. 7, as well as Fig. 2, it is also evident that the MBL0 limit
is indeed approached asymptotically with increasing disorder
strength W .

The picture suggested by the data is then, inside either
phase, that F (r) is described by a binomial distribution
B(L, p), with p = 1

2 in the ergodic phase and p < 1
2 in the

MBL phase. As the MBL transition is approached from the

174201-6



FOCK-SPACE ANATOMY OF EIGENSTATES ACROSS … PHYSICAL REVIEW B 104, 174201 (2021)

FIG. 8. (a) Correlation function CF (r, s) [Eq. (20)], represented
as a color map in the (r, s) plane for different disorder strengths, with
L = 15. Lower-right panel shows results for the noninteracting limit.
(b) In the ergodic phase, the red dashed line shows a fit to the form
ln χinter = −a ln NH + b ln ln NH with a = 1.95, implying that χinter

decays exponentially with L. (c) In the MBL phase, χinter decays as
a power law in L with an exponent ∼1. Blue data correspond to the
interacting model, and orange data to the noninteracting limit.

localized side, p(W ) appears to approach a value strictly less
than 1

2 , suggesting that 〈r〉/L, and consequently M, is dis-
continuous across the transition. While the behavior near the
critical point is not completely clear from the data shown here,
it will be substantiated in Secs. IV and V via a more sophis-
ticated analysis. It is also seen from the data, Fig. 7(b), that
〈(δr)2〉 /L appears to grow unboundedly with L at the critical
point. In Sec. V C we will in fact argue that this divergence is
of the form 〈(δr)2〉 /L ∼ L.

We turn next to fluctuations of the local polarization, and
discuss how their behavior is manifest in the Fock-space
correlations. In particular, we focus on χinter, defined in Eq.
(8), as it exhibits a peak at the MBL transition [Fig. 4(b)].
Using the relation (9) between the spin configurations on the
Fock-space sites and the distances between them, together
with the definiton (11) of F (r), χinter can be expressed as

χinter = 4

L2

L∑
r,s=0

rsCF (r, s), where

CF (r, s) = [F (r)F (s) − F (r)F (s)]. (20)

Physically, CF (r, s) encodes the fluctuation over disorder real-
izations of how the eigenstate is distributed over Fock-space
sites distant by r and s simultaneously. Consider for simplicity

r = s, where CF (r, r) = F 2(r) − F (r)
2

is simply the fluctu-
ation over disorder realizations of the correlation function
F (r). It takes a finite (positive) value in a case where there
is a strong inhomogeneity in the spread of the eigenstate on
the Fock space. However, the sum rule

∑
r,s CF (r, s) = 0 then

requires that CF (r, s) < 0 for some r �= s. Such a pattern is
indeed visible near the MBL transition and in the MBL phase
in the numerical results shown in Fig. 8(a), indicating the
inhomogeneous nature of the eigenstate on Fock space in that
regime. The structure in CF (r, s) characteristic of the MBL
phase decays with increasing r and s in such a fashion that
χinter [related to CF (r, s) via Eq. (20)] decays with L as a power
law, as is shown explicitly in Fig. 8(c); and with increasing W ,

the structure is increasingly well captured by that arising in the
MBL0 limit, also shown in Fig. 8(a) for W = 7.

In the ergodic phase at weak disorder strength, by con-
trast, using the fact that the AI ∼ N (0, N−1

H ) it can be shown
that |CF (r, s)| ∼ N−2

H . It is thus completely featureless in the
thermodynamic limit, indicating the homgeneity of the spatial
correlations, as also seen clearly in Fig. 8(a) for W = 1. This
also suggests that χinter should decay to zero exponentially
with L in the ergodic phase, evidence for which is presented
in Fig. 8(b); χinter ∼ N−2

H modulo ln NH corrections.

B. Radial probability distribution

A quantity related to F (r) was studied extensively in
Ref. [40]. Referred to as the radial probability distribution,
it is defined for an eigenstate |E〉 = ∑

I AI |I〉 as

�(r) =
∑

K :rI0K =r

|AK |2, (21)

where I0 is the Fock-space site on which the wave function
has maximum amplitude, i.e., |AI0 |2 = maxI |AI |2. Physically,
�(r) is a measure of the relative support of the eigenstate
on Fock-space sites at Hamming distance r from I0, the
Fock-space site on which the state is localized for � = 0.
The connection between F (r) and �(r) follows by noting
that F (r) [Eq. (11)] can be written as F (r) = ∑

I |AI |2FI (r)
where FI (r) = ∑

K :rIK =r |AK |2, from which it is obvious that
�(r) = FI0 (r). While �(r) is certainly informative (we briefly
consider it further in Sec. V D), one advantage of F (r) is
that it is a correlation function summed over all Fock-space
sites, and as such does not make any Fock-space site “special.”
�(r) also relies on being able to identify the Fock-space site
I0, which is naturally ambiguous in the ergodic phase, and
potentially so in the MBL phase due to the fractal scaling of
eigenstate amplitudes.

Since
∑L

r=0 �(r) = 1 due to wave-function normalization,
�(r), like F (r), can be interpreted as a probability distribution
on the Fock space, such that one can define a mean distance
and an associated variance as

〈d〉 =
L∑

r=0

r�(r), 〈(δd )2〉 =
L∑

r=0

r2�(r) − 〈d〉2 . (22)

The form of �(r) bears many similarities to that of F (r).
We refer to Ref. [40] for a detailed analysis of �(r) and
briefly summarize the results here. In the ergodic phase, since
the wave functions are uniformly spread on the Fock space,
�(r) = 2−L(L

r ) with 〈d〉 = L/2 and 〈(δd )2〉 = L/4; as ex-
pected, this is the same behavior as arises for F (r). In the
MBL phase �(r), like F (r), is described by a binomial distri-
bution �(r) = (L

r

)
[p�(W )]r[1 − p�(W )]L−r with p�(W ) <

1
2 . This is qualitatively similar to the results for F (r) [Eq.
(18)], although p�(W ) differs quantitatively from p(W ). In
particular, in the MBL0 case, p�(W ) = [W − (

√
W 2 + 1 −

1)]/2W [40], which differs from the corresponding quantity
p(W ) for F (r) in Eq. (19). Finally, at the critical point, �(r)
is broad in r such that 〈d〉 = p�(Wc)L where p�(Wc) < 1

2 but

the variance scales as 〈(δd )2〉 ∼ La with a > 1.
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IV. EIGENSTATE CORRELATIONS AND FOCK-SPACE IPR

The distribution of wave-function amplitudes on the Fock
space is central in characterizing eigenstates in either phase.
They are often quantified via generalized participation en-
tropies (PE) or inverse participation ratios (IPR). The qth IPR
for an eigenstate |E〉 = ∑

I AI |I〉 is defined as

Lq =
∑

I

|AI |2q = �qN
−τq

H , (23)

where τq defines the fractal dimension. For an ergodic phase
τq = (q − 1), whereas an MBL phase is signaled by τq <

(q − 1). As elaborated below, in the ergodic phase the multi-
plicative factor �q > 1 can be understood as a nonergodicity
volume, while �q < 1 throughout the MBL phase and �q = 1
at the MBL transition [19]. In the following, we will focus on
the case of q = 2 since L2 is directly related to the Fock-space
correlation F (r) [Eq. (11)] by

F (r = 0) =
∑

I

|AI |4 = L2. (24)

A scaling theory of the MBL transition based on the IPRs in
Fock space is clearly desirable, for it sheds light on the critical
behavior of local observables such as eigenstate polarizations,
via their relation to the Fock-space correlations [see Eqs. (13)
and (14)].

In a comprehensive analysis [19], Macé et al. showed
that the MBL transition in a disordered XXZ chain can be
described by a scaling theory for the PEs, in which the scaling
forms are asymmetrical on the two sides of the transition: on
the ergodic side the PEs follow a “volumic” scaling form,
while on the MBL side, they follow a “linear” scaling form.
Here we perform a similar analysis for the disordered Ising
chain (1), focusing on the IPRs. The results arising form an
important element (Sec. V and following) in understanding
the behavior of emergent length scales in Fock space, in either
phase as well as their critical behavior. Following Ref. [19],
we use the scaling ansatz

L2/L2,c =
{
Fvol

(NH
�2

)
: W < Wc,

Flin

( ln NH
ξ

)
: W > Wc,

(25)

where L2,c = N−τ2,c

H is the average IPR as the critical point is
approached from the MBL side, W → W +

c . Such an ansatz is
rooted in the scaling theory of Anderson transitions on random
graphs formally in infinite dimension [48].

In the ergodic phase τ2 = 1 is expected asymptotically
(L → ∞), such that L2 = �2/NH with �2 interpreted as a
nonergodicity volume [19]. For scales NH � �2, one’s phys-
ical intuition is that eigenstates reside sparsely on the Fock
space, while for scales NH � �2 the sparse structure repeats
itself and leads to full ergodicity on the largest scales. This
motivates a volumic scaling function Fvol(NH/�2) of the
form

Fvol(x) =
{

x(τ2,c−1) : x � 1,

1 : x → 0.
(26)

From this scaling function for L2/L2,c, one obtains L2 =
�

1−τ2,c

2 /NH in the asymptotic limit NH � �2, while in the op-
posite limit NH � �2 one has the critical scaling L2 → L2,c.

FIG. 9. Scaling of the mean IPR, L2, relative to its critical value
L2,c: ln[L2/L2,c] vs (ln NH)/ξ for the MBL phase (top panel), and
vs ln[NH/�2] for the ergodic phase (lower panel). MBL phase data
show collapse onto a scaling function of (ln NH)/ξ , where the length
scale ξ diverges ξ ∼ (W − Wc )−β with β ≈ 0.76 (upper inset). Er-
godic phase data collapse onto a scaling function of NH/�2, where
the volume �2 diverges �2 ∼ exp([Wc − W ]−α ) with α ≈ 0.5 (lower
inset). The analysis used Wc = 3.5, with data obtained for system
sizes L = 8–15.

As evident in Fig. 9 (lower panel), a volumic scaling function
indeed leads to an excellent collapse of the numerical data
in the ergodic phase, with the nonergodicity volume found to
diverge at the critical point as ln �2 ∼ |δW |−α with a critical
exponent α ≈ 0.5, where δW = (W − Wc)/Wc. The asymp-
totic form of the numerically determined scaling function is
moreover seen to be in excellent agreement with Eq. (26) with
τ2,c ≈ 0.43.

Turning now to the MBL phase, the physical intuition here
is that eigenstates are supported sparsely on some “strands”
on the Fock-space graph with a finite correlation length ξF

on the strands. This motivates the linear scaling function [19]
Flin[ln(NH)/ξ ] for L2/L2,c, with an emergent length scale
ξ . In the limit ln NH ∝ L � ξ the critical scaling L2 → L2,c

arises, whereas in the opposite limit ln NH ∝ L � ξ one ex-
pects L2 ∼ N−τ2

H ≡ N−τ2,c

H Flin[ln(NH)/ξ ]. This suggests the
scaling function to have the asymptotic behavior

Flin(x) =
{

eτ2,cx : x � 1,

1 : x → 0 (27)

[with x = (ln NH)/ξ ], where

ξ = (1 − τ2 /τ2,c)−1 (28)

provides a direct relation between the length scale ξ and the
IPR fractal dimensions (and we will further relate ξ to ξF in
Sec. V A).
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The numerical results of Fig. 9 (upper panel) indeed show
that with the linear scaling ansatz Flin[(ln NH)/ξ ], the data
exhibit excellent scaling collapse, with ξ ∼ |δW |−β found to
diverge on approaching the transition, with exponent β ≈ 0.8.
The collapsed data are also in excellent agreement with the
aysmptotic form of the scaling function in Eq. (27) with τ2,c ≈
0.43, which, consistently, is the same value obtained from the
scaling analysis on the ergodic side.

As with the disordered XXZ chain [19], the picture that
emerges is thus as follows. The entire ergodic phase is char-
acterized by τ2 = 1, with a nonergodicity volume �2 which
diverges on approaching the transition from the ergodic side
as �2 ∼ e(Wc−W )−α

with α ≈ 0.5. As the MBL transition is
crossed, τ2 jumps discontinuously to a value of τ2,c ≈ 0.43
for the disordered spin- 1

2 chain (1) in the σ z basis, indicating
that the eigenstates at the critical point have fractal statistics.

In fact, the entire MBL phase hosts fractal eigenstates on
the Fock space, with τ2 decreasing continuously from τ2,c

upon increasing the disorder strength above Wc. This naturally
suggests the critical point belongs to the same nonergodic
class as the rest of the MBL phase, and hence that it can be
regarded as the terminal end point of a line of fixed points (in
the RG sense) characterizing the MBL phase. This interpreta-
tion, along with the form of the divergence of the nonergodic
volume at the transition on approaching it from the ergodic
side, is consistent with a Kosterlitz-Thouless–type scaling at
the MBL transition [15,17,20,57,58].

In the analysis above, the exponent τ2 was that obtained
from the average IPR, L2. However, as evident from Eq.
(23) for L2, in general τ2 has a distribution over disorder
realizations, and the discontinuous jump in τ2 across the MBL
transition naturally invites questions about the distribution. To
obtain further insight into this, we extract the distribution Pτ2

numerically by noting [Eq. (23)] that

τ2 = − lnL2

ln NH
+ ln �2

ln NH
, (29)

and transforming over the distributions of L2. The distribution
of τ2 was also studied in Ref. [40], where the contribution
from the second term in Eq. (29) was neglected. While the
latter is certainly valid in the thermodynamic limit, we find
that for the system sizes accessible to exact diagonalization
this contribution is not in fact negligible. To take it into ac-
count, we thus extract it as the intercept to a linear fit of lnL2

versus ln NH (taking �2 to be δ distributed).
The results for Pτ2 are shown in Fig. 10. In the ergodic

phase [Fig. 10(a1)], the distribution rapidly converges towards
a δ function at τ2 = 1. This is confirmed by the variance
of the distribution 〈(δτ2)2〉 [Fig. 10(c)], vanishing ∼N−1

H ex-
ponentially with L. Deep in the ergodic phase, this can be
understood simply by regarding the eigenstate amplitudes to
be normally distributed independent random numbers, with
zero mean and a variance N−1

H . In the MBL phase as well
[Fig. 10(a3)], the distribution Pτ2 narrows with increasing L.
Here, however, it does so in a qualitatively slower fashion
compared to the ergodic phase, with the variance 〈(δτ2)2〉 ∝
1/L as shown numerically in Fig. 10(d). In the MBL0 case,
it can in fact be shown analytically that 〈(δτ2)2〉 ∼ 1/L (see
Appendix Sec. A2). At the critical point, the situation is

FIG. 10. Distributions of IPR fractal exponent τ2 across the MBL
transition. In the ergodic phase [(a1)], Pτ2 rapidly converges to a δ

function at τ2 = 1. In the MBL phase [(a3)], Pτ2 also narrows with
increasing L, with a peak at τ2 < 1 indicating the fractal nature of
MBL eigenstates. This is reflected in the variance of τ2 decreasing
with L in either phase; in the ergodic phase it decays exponentially
with L [(c)], while in the MBL phase it decays ∼1/L [(d)]. At the
critical point by contrast [(a2)], the distribution does not narrow with
increasing L, and the variance appears to saturate with L to a finite
value [(b)].

qualitatively different from either of the two phases: the distri-
bution Pτ2 [Fig. 10(a2)] is broad in the sense that the variance
〈(δτ2)2〉 [Fig. 10(b)] remains finite as L → ∞ (Pτ2 has of
course a strictly bounded support ∈ [0, 1], hence none of its
moments can diverge).

V. LENGTH SCALES ON FOCK SPACE

We turn now to the central question of how a length scale
emerges on the Fock space from the spatial correlations em-
bodied in F (r). Based on the relation between F (r) and the
IPR L2, together with a scaling theory for the latter (Sec. IV),
we infer the behavior of this length scale in each phase, as
well as in the vicinity of the transition. The critical behavior
of ξF can then be used to obtain the critical behavior of
local observables, such as local polarizations, by exploiting
the relation between them and the Fock-space correlation
function.

A. Correlation length

The Fock-space correlation function F (r) [Eq. (11)] entails
a sum of the eigenstate amplitudes |AI |2|AK |2, over all pairs
of Fock-space sites separated by a given Hamming distance
rIK = r. Sufficiently deep in an ergodic phase, one expects
|AI |2|AK |2 to be independent of r (and ∼N−2

H ). In an MBL
phase, by contrast, our physical intuition is that the eigenstate
correlation |AI |2|AK |2 will, on an average, decay exponentially
with rIK . At the same time, however, the number of Fock-
space sites at distance r from any given Fock-space site, Nr =
(L

r ), grows exponentially with r (for r � L/2). As we will
show shortly, it is the competition between these exponentials
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FIG. 11. Exponential decay in the MBL phase of the rescaled
correlation function f (r) [Eq. (31)], with a finite correlation length
ξF . With increasing system size, data fall on the exponential decay
(indicated by red dotted lines) for a larger range of r. Black dashed
lines show the MBL0 case, which naturally has a slightly smaller
correlation length.

in the correlation function, together with the normalization of
F (r), which lies at the heart of the fractal scaling of the IPR
in the MBL phase.

From the above considerations, one anticipates the
disorder-averaged correlation function F (r) ∝ Nre−r/ξF ,
where ξF denotes the length scale for exponential decay of
the average correlation function between any two Fock-space
sites. Imposing the normalization

∑L
r=0 F (r) = 1 [as follows

exactly from the definition (11)] gives

F (r) = Nr
e−r/ξF

(1 + e−1/ξF )L
, (30)

which can be recast equivalently as

F (r) ≡ NHNr f (r), f (r) = e−r/ξF

2L(1 + e−1/ξF )L
, (31)

where f (r) encodes the average eigenstate correlation be-
tween two Fock-space sites a Hamming distance r apart.

Figure 11 presents numerical results for f (r), for two
values of W in the MBL phase. These indeed show clearly
the exponential decay of f (r), with an L-independent length
scale. With increasing system size for given W , f (r) falls onto
the common exponential decay for a larger range of r.

While the arguments above for the form of F (r) were
physically motivated, it is important to note that Eq. (31) also
arises constructively in the “strong disorder” MBL0 case of
Ji = 0 (which is perturbatively connected to the interacting
MBL phase for sufficiently large W ). Here, from Eq. (19), one
has directly that

fMBL0
(r) = [2/(1 − p)]−Le−r ln[(1−p)/p]. (32)

This is precisely of form Eq. (31), with the correlation length
given by

ξ−1
F = ln[(1 − p)/p] : MBL0, (33)

and p ≡ p(W ) given explicitly in Eq. (19). Note that, for a
given disorder strength, ξF for the MBL0 case (also indicated
in Fig. 11) is slightly smaller than that for the interacting MBL
phase, as the latter is naturally less localized than the former.

Having established the presence of a length scale ξF on the
Fock space via the correlation function F (r), we can exploit
the latter’s relation to the IPR to study the properties of ξF

across the MBL transition. The central relation here, from
Eqs. (24) and (31), is

ln(L2) = −L ln(1 + e−1/ξF ). (34)

Recalling (Sec. IV) that ln(L2) = −L × τ2 ln 2 in the asymp-
totic limit in either phase, Eq. (34) leads to the identification

τ2 = ln(1 + e−1/ξF )/ ln 2. (35)

A finite ξF in Eq. (35) implies that τ2 < 1, which shows
how the fractal nature of MBL eigenstates on the Fock-space
emerges out of the competition between an exponential decay
of f (r) and the exponential growth of Nr = (L

r ). As the fractal-
ity of the eigenstates persists throughout the MBL phase, the
correlation length ξF is finite in the entire phase. Throughout
the ergodic phase, by contrast, τ2 = 1, which is consistent
with a divergent ξF in the asymptotic limit. Indeed, directly
setting ξF = ∞ in Eq. (30) gives F (r) = 2−LNr , which is just
the behavior observed numerically (Fig. 6) deep in the ergodic
phase.

With the behavior of ξF established in the two phases
asymptotically, we turn next to their behavior at and in the
vicinity of the critical point. First, recall (Sec. IV) that at
the MBL transition one has lnL2,c = −Lτ2,c ln 2 which, using
Eq. (34), gives

ξ−1
F,c = − ln(2τ2,c − 1). (36)

Since (0 <) τ2,c < 1, this implies that the correlation length
at the MBL transition is finite, which is consistent with the
phenomenology that the eigenstates at the critical point lie in
the same class of nonergodic multifractal states as the entire
MBL phase.

The critical properties of ξF on approaching the transition
from the MBL side then follow readily. From the scaling
behavior of L2 in the MBL phase obtained in Sec. IV and
Eq. (34), one obtains

−L ln(1 + e−1/ξF ) = −Lτ2,c(1 − 1/ξ ) ln 2

⇒ 1

ξF
− 1

ξF,c

ξ�1∼ 1

ξ

(
τ2,c

1 − 2−τ2,c
ln 2

)
, (37)

thereby relating ξF to the length scale ξ which (Sec. IV)
diverges as ξ ∼ |δW |−β on approaching the transition. This
implies that ξF,c − ξF ∼ |δW |β vanishes with the same ex-
ponent, as too does τ2,c − τ2 [from Eq. (28)]. We note that
similar scaling for the typical localization length is found for
Anderson transitions on random regular graphs [51], and for
a typical real-space localization length in phenomenological
RG approaches to MBL [17].

We turn now to critical behavior on approaching the tran-
sition from the ergodic side. Since ξF is a length scale on the
Fock space, diverging in the thermodynamic limit throughout
the ergodic phase, one naturally expects it to scale as ξF =
γ L + b ∼ γ L. This is concomitant with the volumic scaling
of the IPR on the ergodic side of the transition. The scaling
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L2 = �2N−1
H in the ergodic phase gives

−L ln[1 + e−1/(γ L)] = ln �2 − L ln 2

L�1⇒ γ = 1

2 ln �2

, (38)

which implies that γ ∼ |δW |α vanishes as the transition is
approached, controlled by the same exponent α with which
the nonergodicity volume �2 ∼ e(Wc−W )−α

diverges (Sec. IV).
As summarized in Fig. 1, one thus concludes the following.

ξF is finite throughout the MBL phase, and tends to a finite
ξF,c at the critical point on approaching the transition from the
MBL side; ξF − ξF,c vanishing as a power law in δW , with
the same exponent with which τ2 approaches τ2,c. Across the
transition into the ergodic phase, ξF jumps discontinuously to
a divergent value in the thermodynamic limit, consistent with
the discontinuous jump in τ2 to 1. In the ergodic phase, ξF

diverges as γ L, where γ vanishes at the transition as a power
law in |δW |, with the same critical exponent with which the
logarithm of the nonergodicity volume ln �2 diverges.

B. Connection to local polarization

The form of F (r) in Eq. (31) immediately yields, via
Eq. (14), a direct relation between the length scale ξF and the
average local polarization M,

M = 1 − 2
〈r〉
L

= 1 − 2(1 + e1/ξF )−1. (39)

A finite ξF implies 0 < M < 1, as is indeed the case through-
out the MBL phase, including at the transition. By contrast, a
divergent ξF in the ergodic phase implies M = 0 in the ther-
modynamic limit. This is consistent with the results obtained
from exact diagonalization in Sec. II. An important conclusion
is therefore that the local polarization, which is a diagnostic of
the MBL transition, is discontinuous across the transition, as
depicted schematically in Fig. 1. This result is also consistent
with predictions based on entanglement entropies, which are
spatially global quantities, that the MBL critical point itself is
nonergodic [13].

C. Distributions of correlation length

In the analysis above, it was implicitly assumed that the
physics is captured by a single Fock-space correlation length
ξF which was obtained from L2 [Eq. (34)]; in other words,
the distribution PξF (ξF ) of ξF over disorder realizations is
presumed to tend to a δ function in the thermodynamic limit,
in either phase. To examine this, we study the distribution
PξF , obtained via L2 from L2 = (1 + e−1/ξF )−L. As shown in
Fig. 12, PξF indeed sharpens with increasing L in each phase.
This is quantified by considering the variance of the distri-
bution 〈(δξF )2〉, which decays to zero with L in both phases
as shown in Fig. 12(b), with the decay being, respectively,
exponential and power law in L in the ergodic and MBL
phases [Figs. 12(c) and 12(d)]. The presence of a single length
scale is also consistent with the scaling of 〈(δr)2〉 [defined in
Eq. (15)] with L. Using Eq. (31), one obtains

〈(δr)2〉
L

= e1/ξF

(1 + e1/ξF )2
. (40)

FIG. 12. Behavior of the Fock-space correlation length ξF across
the MBL transition. Panels (a1)–(a3), respectively, show the distri-
butions PξF of ξF in the ergodic phase, at the MBL transition, and in
the MBL phase. In the ergodic phase, PξF shifts linearly with L while
simultaneoulsy narrowing, implying ξF = γ L with the distribution
of γ tending to a δ function as L → ∞. This is also reflected in
the variance 〈(δξF )2〉 decaying exponentially with L [(b) and (c)].
In the MBL phase PξF again narrows with increasing L, but its
mean converges to an O(1) value. In contrast to the ergodic phase,
〈(δξF )2〉 ∼ 1/L [(d)]. At the MBL transition, the distributions visibly
broaden with L, as reflected in the variance of ξF diverging with L
[(b)].

In the ergodic phase a divergent ξF in Eq. (40) implies
〈(δr)2〉/L = 1

4 , which is consistent with the numerical results
obtained in Sec. III [see Eq. (17) and Fig. 7(b)]. In the MBL
phase the scaling continues to be 〈(δr)2〉 ∝ L, as likewise
found in Sec. III.

At the critical point, however, it is insufficient to consider
ξF as δ-function distributed. Here, while the mode of PξF

remains of order unity, as seen in Fig. 7(b), the variance
〈(δr)2〉 ∼ La with a > 1, which is in qualitative contrast to
Eq. (40). A superlinear scaling of 〈(δr)2〉 can, however, arise
from a distribution of ξF which is not δ distributed in the
thermodynamic limit. In such a case, one obtains

〈(δr)2〉
L2

=
∫

dξF PξF
(ξF )

1 + L−1e1/ξF

(1 + e1/ξF )2

−
(∫

dξF PξF
(ξF )

1

1 + e1/ξF

)2

. (41)

In general, for a distribution PξF which is not δ distributed, the
right-hand side of Eq. (41) will be finite, hence 〈(δr)2〉 ∼ L2

at the critical point. In contrast, with the distribution PξF a δ

function in Eq. (41), as is the case inside either phase, one
recovers Eq. (40) and hence 〈(δr)2〉 ∼ L.

D. An alternative Fock-space length scale

In Sec. III B the radial probability distribution �(r) [40]
was discussed. Our physical intuition here is that, on an av-
erage, the wave-function density on Fock-space sites decays
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exponentially with the distance of the sites from the “apex”
site I0 (on which the wave function has maximal amplitude),
i.e., that

|AK |2 = ∣∣AI0

∣∣2
exp

[−rI0K/ξ�

]
, (42)

which provides us with an alternative length scale on the Fock
space. �(r) [Eq. (21)] can then be recast as

�(r) = Nr π (r), (43)

where π (r) = |AI0 |2 exp[−r/ξ�] is the average wave-function
density on a Fock-space site at Hamming distance r from I0.
Enforcing the (exact) normalization

∑L
r=0 �(r) = 1 gives

π (r) = e−r/ξ�

(1 + e−1/ξ� )L
. (44)

The behavior of the length scale ξ� is qualitatively similar to
that of ξF , i.e., is finite in the MBL phase and divergent in
the ergodic phase. In Appendix 3, we provide exact results
for �(r) in the MBL0 case, showing in particular that the
functional form (42)–(44) indeed arises, and obtaining ξ� ≡
ξ�(W ).

While ξ� seems not to be explicitly related to any spatially
local autocorrelation or eigenstate expectation value, it can
be connected heuristically to the (real-space) l-bit localization
length. Within the l-bit picture [59,60], which is expected to
hold at least sufficiently deep in the MBL phase, the MBL
eigenstates are understood to be adiabatically connected to the
W → ∞ eigenstates via quasilocal unitary transformations:
|E〉 = U |I0〉 where U is the quasilocal unitary in question.
The l-bit picture also states that the MBL eigenstates are si-
multaneous eigenstates of dressed versions of the σ z operators
τ z

i = Uσ z
i U †. It can be shown that the average distance 〈d〉,

defined in Eq. (22), can be expressed as [40]

〈d〉
L

= (1 + e1/ξ� )−1 = 1

2
− 1

2L

∑
i

〈n|σ z
i τ z

i |n〉. (45)

Heuristically, the l-bit operator can be expressed as

τ z
i = 1

N

⎡
⎣hiσ

z
i + �σ x

i√
h2

i + �2
sgn(hi )+

∑
j �=i,μ

Jj,μe−|i− j|/ζ σμ
j + · · ·

⎤
⎦,

(46)

where the first term denotes the canting of the spins in the
noninteracting limit, and the second term with 〈J2

j,μ〉 = J2

denotes the exponentially decaying support of the l-bit op-
erators with a length scale ζ ≡ ζ (W, J ). The normalization
factor N , obtained by ensuring that the operator norm of τ z

i is
conserved, can be estimated as

N ≈ [1 + J2/(1 − e−2/ζ )]1/2. (47)

Using Eq. (46) in (45), an explicit relation between the Fock-
space length scale ξ� and the l-bit localization length ζ can
then be obtained as

1 + J2

1 − e−2/ζ
= g2

W

(
e1/ξ� + 1

e1/ξ� − 1

)2

, (48)

FIG. 13. Inhomogeneity or its absence in eigenstate densities on
the Fock space, in the MBL and ergodic phases, respectively. Top and
bottom rows correspond, respectively, to ergodic (W = 1) and MBL
(W = 6) phases. In each panel, the corresponding quantity (|AI |2,
|BI |2, and |DI |2) is shown on the Fock space (for L = 12) where the
relative size of the blob and its color denote the value on each Fock-
space site (darker colors indicate larger values). The Fock space is
arranged such that the site I0 with maximum amplitude is on the top,
and all sites on row r lie at distance r from I0.

where gW = (
√

W 2 + 1 − 1)/W [and which for J = 0 recov-
ers correctly Eq. (A17) for ξ�].

Given that ξ�, like ξF , remains finite in the MBL phase up
to the transition, Eq. (48) implies that the l-bit localization
length is also finite at the MBL transition, consistent with
recent phenomenological and numerical studies [15,20,61].

VI. INHOMOGENEITIES ON FOCK SPACE

The correlation function F (r), and the radial probability
distribution �(r), probe average properties of the eigen-
states on the Fock space. For example, the form of π (r) =
|AI0 |2 exp[−r/ξ�] implies that the wave function in the MBL
phase decays exponentially on an average with r, away from
its maximum on the Fock-space site I0. Such measures are,
however, insensitive to the finer structures, such as whether or
not the exponential decay is homogeneous across all Nr = (L

r )
Fock-space sites at given distance r from I0. Aside from
probing the structure of the wave function across the Fock
space, the importance of the question lies in the fact that the
linear and volumic scaling of the IPRs in the MBL and ergodic
phases was motivated from the physical picture that, in the for-
mer, eigenstates reside on a sparse network in the Fock space,
whereas in the latter the states are spread homogeneously. In
this section, we present results which show this picture to be
correct.

To give first a broad qualitative view of the inhomogeneous
structure of the eigenstates, we define wave-function densities
|BI |2, normalized on each row of the Fock space correspond-
ing to the given distance from I0, as

|BI |2 = |AI |2∑
K :rI0K =rI0 I

|AK |2 , |DI |2 = NrI0 I
|BI |2. (49)
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Figure 13 shows the numerical distribution of |AI |2 and
|BI |2 in both the ergodic and MBL phases, with the Fock
space arranged such that the site I0 with maximum |AI0 |2
lies at the top and sites at consecutive rows are at increasing
Hamming distance from I0. The relative size denotes the value
of |AI |2 or |BI |2 on the Fock-space site. In the ergodic phase,
homogeneity prevails: the distribution of |AI |2 is uniform on
the Fock space. In the MBL phase, by contrast, the state is
localized near I0, with the weights decaying with increasing r.

The results for |BI |2 in the MBL phase render the inhomo-
geneity clear visually. On each row, there are a few Fock-space
sites where the weight is significantly larger than the remain-
ing sites in the row, suggestive of the sparse-network structure
of states on the Fock space. In the ergodic phase, on the other
hand, the |BI |2 are uniform in the bulk of the Fock space,
indicating homogeneity. Note that the weights near both apical
sites of the Fock space appear relatively large in either phase;
this is simply due to the fact that the number of Fock-space
sites on those rows are small [in fact on the apical sites at
r = 0 and L, Eq. (49) forces |BI |2 = 1]. To distill this effect
out, one can consider the wave-function density on a site I
relative to the average density on a site on its row; this is
encoded in the quantity |DI |2 defined in Eq. (49). The results,
shown in the third column in Fig. 13, are consonant with
the picture obtained from |BI |2. While in the ergodic phase
|DI |2 is homogeneous all over the Fock space, in the MBL
phase there are a few sites on each row where the weight is
significantly larger than the average weight on that row.

Having shown qualitatively the inhomogeneity of eigen-
states on Fock space in the MBL phase, and lack of it in
the ergodic phase, we now discuss quantitative results for
them. One measure to quantify the inhomogeneity is the
average eigenstate correlation between a pair of Fock-space
sites on the same row, I and K , such that rI0I = rI0K . Note
that the distance rIK between two such Fock-space sites is
necessarily even [there are no links between Fock-space sites
on the same row for the model (1)]: rIK = 2s where s =
0, 1, . . . , min[r, L − r]. The appropriate correlation function
is then defined as

T (r, s) = 1

NrN (r)
s

∑
I, K :

rI0 I = r = rI0K ,

rIK = 2s

|AI |2|AK |2, (50)

where N (r)
s = (L − r

s )(r
s) is the number of sites on row r at

Hamming distance 2s from any given site on the row. The
quantity can be interpreted as a higher two-point generaliza-
tion of the radial probability distribution. Numerical results
for it are shown in Fig. 14.

In the ergodic phase, the homogeneity of the eigenstates
across the entire Fock space leads to the expectation that
T (r, s) is independent of r and s and ∼N−2

H . This is indeed
evident in the results shown in Figs. 14(a) and 14(c). In the
MBL phase, we expect T (r, s) to have an exponentially de-
caying envelope with r, reflecting the exponential decay of
the wave-function densities with r. However, a homogeneous
decay across all sites at a given r would imply no depen-
dence of T (r, s) on s. On the contrary, the results shown in
Fig. 14(b) suggest that T (r, s) decays exponentially with s as

FIG. 14. The correlation function T (r, s), defined in Eq. (50), in
the ergodic phase [(a) and(c)] and in the MBL phase [(b) and (d)].
(a), (b) Show the logarithm of T (r, s)/T (0, 0) as a three-dimensional
scatter plot in the space of r and s for L = 14; the color map in the
bottom plane shows the same data. (c), (d) Show the logarithm of
T (r, s)/T (r, 0) as function of s for different r. The data in (d) suggest
the decay length scale in s is r independent.

well. Indeed, the common initial slopes of the results shown
in Fig. 14(d) suggest that the length scale associated with the
exponential decay in s is r independent. This implies the form

T (r, s) ∝ exp

(
− r

ξr

)
exp

(
− s

ξs

)
, (51)

where the length scales ξr and ξs are, respectively, finite and
divergent in the MBL and ergodic phases. Precisely this form
for T (r, s) can in fact be shown explicitly to arise in the MBL0

case, as considered in Appendix 4 where analytical expres-
sions for T (r, s) and ξr/s are obtained. The W dependence of
ξr/s in the MBL0 case is qualitatively similar to that of ξF and
ξ� (see Fig. 16).

A complementary means of quantifying eigenstate inho-
mogeneity within a given Fock-space row is via the moments
of wave-function densities |BI |2 [Eq. (49)], normalized on
each row at a given distance from I0. To this end we define
a distance-resolved IPR as

Iq(r) =
∑

I:rI0 I =r

|BI |2q (52)

[such that by definition I1(r) = 1 ∀ r], and study its scaling
with the number of Fock-space sites Nr [= (L

r )] at distance r

from I0: Iq(r) ∼ N
−νq
r where the exponent νq is the analog

of the fractal exponent. For a state which is homogeneously
distributed across the entire row, |BI |2 ∼ N−1

r will be in-
dependent of I on an average, and hence νq = q − 1. By
contrast, 0 < νq < 1 indicates that the wave functions show
fractal scalings within the rows and are thus inhomogeneously
distributed on the rows. We focus on q = 2, and in Fig. 15
show representative numerical results, in both the ergodic
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FIG. 15. Scaling of the distance-resolved IPR I2 [Eq. (52)], with
the number of Fock-space sites Nr at a given distance from the
wave-function maximum. Data are shown for three different disor-
der strengths (different plot markers), corresponding to the ergodic
phase, the critical point, and the MBL phase. The fractal scaling
within each row of the Fock space in the MBL phase and at the
critical point, and lack thereof in the ergodic phase, is evident from
the scaling.

and MBL phases as well as at the critical point. For W = 1
in the ergodic phase I2(r) ∼ N−1

r for a range of different
r and L, showing the wave functions to be homogeneously
distributed within the rows. By contrast, in the MBL phase
and at the critical point I2(r) ∼ N−ν2

r with ν2 < 1, indicating
inhomogeneity. We find the exponents ν2 to be quite close
to those for the exponent τ2 characterizing the overall mean
Fock-space IPR (Sec. IV). It is reasonable to expect that ν2

is also discontinuous across the MBL transition, although
a large-scale numerical study of the critical behavior of ν2

remains for future work.

VII. SUMMARY AND DISCUSSION

In summary, we have studied in detail the structure of
eigenstates on the Fock space across the MBL transition,
via spatial correlations between eigenstate densities on the
Fock-space graph. These correlation functions were motivated
by their direct connection to eigenstate expectation values,
and infinite-time autocorrelation functions, of spatially local
observables which diagnose the MBL phase and the MBL
transition.

A central result is that the correlation length associated
with the Fock-space correlations changes abruptly across the
MBL transition, which in turn implies that the local observ-
ables are also discontinuous across the transition. The critical
behavior of the correlation length is obtained from a scaling
theory [19] based on the Fock-space IPRs, which the cor-
relation functions directly encode. The discontinuity in the
length scale is intimately connected to the discontinuity in
the multifractal exponent across the MBL transition [19,40].
Our analysis shows that, throughout the MBL phase and at
the MBL transition, the correlation length is finite, which
results in the eigenstates exhibiting fractal statistics on the
Fock space. Throughout the ergodic phase, on the other hand,
the multifractal exponent has a value of unity; this is manifest
in the correlation length diverging linearly with system size

L. Importantly, the scaling of the IPRs in the ergodic phase
is characterized by a nonergodicity volume which diverges
with an essential singularity at the MBL transition [19]. The
picture emerging, therefore, that the MBL transition can be
interpreted as a terminal end point of a line of fixed points,
suggests that the transition is characterized by a Kosterlitz-
Thouless–type scaling, consistent with the predictions from
phenomenological treatments in real space [15–17,20,22].

We further probed the finer structures of the eigenstates via
generalizations of the Fock-space correlations, which showed
that MBL eigenstates are strongly inhomogeneous on the
Fock space. It is the presence of these inhomogeneities in the
MBL phase, and their absence in the ergodic phase, which
lies at the heart of the asymmetrical scaling of the Fock-space
IPRs in the two phases.

This work establishes a concrete connection, across the
MBL transition, between the behavior of real space, local
observables, and the structure of eigenstates on the Fock
space. As such, it naturally provides a pathway towards further
study of important questions about the former from the Fock-
space perspective, and possibly to unify theories for the MBL
transition based on real space and Fock space. For instance,
the Fock-space correlations in this work were motivated by
local polarizations averaged over the system. In Ref. [57],
on the other hand, extremal values of the local polarization
were considered. Their finite-size scaling was shown to be
controlled by a length scale which diverges exponentially on
approaching the transition from the MBL side. The Fock-
space representation of such a quantity and the possibility of a
Fock-space correlation length that also diverges exponentially
remains an interesting open question.

While we have here studied spatial correlations on the Fock
space in individual eigenstates, generalizing it to include spa-
tial correlations between eigenstates of different energy, and
hence spatiotemporal correlations on the Fock space which
encode the real-time dynamics of local autocorrelations, is
of immediate interest [62]. In this work, within the l-bit pic-
ture of the MBL phase, we also made a heuristic connection
between a Fock-space length scale and the l-bit localiza-
tion length. Several spectral and dynamical properties of the
MBL phase are, however, determined by rare, spatially local
resonances between these l-bit integrals of motion [63–66].
Understanding how such resonances are manifest in the in-
homogeneous structure of the MBL eigenstates on the Fock
space is a question of evident interest.

Finally, we have considered a system where the disor-
dered real-space fields and couplings are uncorrelated random
variables. In such systems, the absence of self-averaging and
broad distributions in certain quantities near the transition, as
we observed, may be attributed to Griffiths effects [67,68].
Such effects are, however, absent in MBL systems with
quasiperiodic Hamiltonians; indeed, distributions of quanti-
ties that are broad near the MBL transition in disordered
systems typically remain narrow in quasiperiodic systems
[69]. The nature of the MBL transition may thus be different
in quasiperiodic systems [14]. It would therefore be worth-
while to develop a scaling theory of the MBL transition in
quasiperiodic systems, and to understand the behavior of local
observables along the lines discussed in this work.
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APPENDIX: ANALYTICAL RESULTS DEEP
IN THE MBL PHASE

In this Appendix we provide some analytical results valid
at strong disorder deep in the MBL phase. In this regime the
MBL phase is adiabatically connected to the noninteracting
limit of Ji = 0, such that the model describes a collection
of noninteracting spins and is thus “trivially” MBL. Never-
theless, the tensor-product structure of the Fock space still
renders nontrivial many properties of the eigenstates on the
Fock space. This limit faithfully captures certain aspects of
the genuine MBL phase in the presence of interactions, in
particular the scaling of several quantities on the Fock space
with system size.

The Hamiltonian in this case, referred to as MBL0 in the
text, is

HMBL0 =
∑

i

[
σ x

i + hi σ
z
i

]
. (A1)

Its eigenstates are product states in the τ z basis, with the τ z

operators given by

τ z
i = hiσ

z
i + σ x

i√
h2

i + 1
sgn(hi ). (A2)

An eigenstate |E〉 can be labeled by its configuration of τ

spins, |E〉 = |τ1, τ2, . . . , τL〉, where τi = ±1. With this nota-
tion, the overlap of the eigenstate with a Fock-space site I (in
the σ z basis) can be expressed as

|AI |2 =
L∏

i=1

pi,I , (A3)

where

pi,I = p+
i δ

SI
i ,+τi

+ p−
i δ

SI
i ,−τi

(A4)

with

p±
i = 1

2

(
1 ± |hi|√

h2
i + 1

)
. (A5)

It will prove useful to define the following notation for the
(i-independent) disorder averages:

p± ≡ p±
i = [W ± (

√
W 2 + 1 − 1)]/2W, (A6)

q± ≡ (p±
i )2 = 1

2

(
1 − tan−1 W

2W
±

√
W 2 + 1 − 1

W

)
, (A7)

q ≡ p+
i p−

i = (tan−1 W )/4W. (A8)

FIG. 16. W dependence of the four Fock-space length scales in
the MBL0 case. All have qualitatively similar behavior.

1. Spatial correlations in Fock space

The correlation function F (r) in the MBL0 case can be
computed as follows. For two Fock-space sites I and K such
that rIK = r, there are by definition r real-space sites with
SI

i = −SK
i , while the remaining L − r real-space sites have

SI
i = SK

i . On the former category of real-space sites, we have
pi,I = p+

i and pi,K = p−
i , or pi,I = p−

i and pi,K = p+
i . For the

latter category, we have pi,I = p+
i = pi,K or pi,I = p−

i = pi,K .
Hence, on the average,

|AI |2|AK |2 = (qr )[(q+ + q−)/2]L−r, (A9)

such that

FMBL0 (r) = NHNr (qr )[(q+ + q−)/2]L−r . (A10)

With NH = 2L, and noting that q+ + q− = 1 − 2q, Eq. (A10)
rearranges to

FMBL0 (r) = Nr (1 − 2q)L exp

[
−r ln

(
1 − 2q

2q

)]
. (A11)

This is precisely Eq. (19), recognizing [Eq. (A8)] that 2q ≡ p
as defined therein. The length scale ξF can thus be identified as
ξ−1

F = ln[(1 − p)/p]. Figure 16 shows the resultant behavior
of ξF with disorder strength W .

2. IPR exponent and fluctuations

For the MBL0 case, the IPR L2 = ∑
I |AI |4 of the eigen-

state can be expressed as

L2 =
L∏

i=1

∑
sI

i =±1

p2
i,I =

L∏
i=1

[(p+
i )2 + (p−

i )2] (A12)

which for the average leads to L2 = (1 − p)L with p = 2q =
(tan−1 W )/2W , and hence τ2 = − ln(1 − p)/ ln 2. Noting that
τ2 ∼ − lnL2/ ln NH for a given realization, the variance of τ2

can be obtained as

〈(δτ2)2〉 = 1

L

u

(ln 2)2
, (A13)

where u = 〈ln2[1 + h2/(h2 + 1)]〉 − 〈ln[1 + h2/(h2 + 1)]〉2.
This 1/L decay of 〈(δτ2)2〉 persists in the interacting MBL
phase as well at strong disorder [see Fig. 10(d)].
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3. Radial probability distribution and associated length scale

The radial probability distribution in the MBL0 case can
be obtained as follows. Given an eigenstate |E〉 = |{τi}〉, and
noting [Eq. (A5)] that p+

i > p−
i , the Fock-space site |I0〉 for

which the wave-function amplitude is maximal is uniquely
identified as that for which τi = Si,I0 for all real-space sites
i. One thus has

∣∣AI0

∣∣2 =
L∏

i=1

p+
i = (p+)L, (A14)

and for any Fock-space site K such that rI0K = r,

|AK |2 = (p−)r (p+)L−r . (A15)

From Eq. (A15), �(r) [Eq. (21)] follows directly as

�(r) = Nr (p−)r (p+)L−r = Nr (p+)Le−r ln ( p+
p− )

. (A16)

This is indeed precisely of form Eqs. (43) and (44), with ξ�

given explicitly by

ξ−1
� = ln

(
p+
p−

)
= ln

[
W + (

√
W 2 + 1 − 1)

W − (
√

W 2 + 1 − 1)

]
(A17)

[using Eq. (A6) for the second equality]. The length scales ξ�

and ξF are compared in Fig. 16, and their behaviors with W
are seen to be qualitatively similar.

4. Correlation function T (r, s)

The correlation function T (r, s) defined in Eq. (50) can
be obtained in the MBL0 case using Eqs. (A3) and (A4) as
follows. The Hamming distance between two Fock-space sites
I and K such that rI0I = r = rI0K is necessarily even, rIK = 2s,
due to topology of the graph associated with the Hamiltonian
(1). r real-space sites in I have sI

i = −τi, likewise r sites in
K have sK

i = −τi. Of these two overlapping sets of r sites,
r − s of them must have sI

i = sK
i (= −τi ) since the Hamming

distance rIK = 2s, and hence have pi,I pi,K = (p−
i )2. It follows

that 2s sites then have sI
i = −sK

i (= ±τi ) and hence pi,I pi,K =
p−

i p+
i , while the remaining L − r − s real-space sites have

sI
i = sK

i = +τi, and thus have pi,I pi,K = (p+
i )2. Noting Eqs.

(A7) and (A8) we therefore have, for the average,

T (r, s) = |AI |2|AK |2 = (q2s)(qL−r−s
+ )(qr−s

− ). (A18)

This can be recast as

T (r, s) = (qL
+) exp

[
−r ln

(
q+
q−

)]
exp

[
−s ln

(
q+q−

q2

)]
(A19)

[where the r = 0 = s limit yields (q+)L = |AI0 |4]. This is pre-
cisely of the form (51), and leads to the identification of the
length scales ξr and ξs as

ξ−1
r = ln(q+/q−), ξ−1

s = ln(q+q−/q2), (A20)

with the relevant expressions given in Eqs. (A7) and (A8). As
seen in Fig. 16, the qualitative behavior of ξr and ξs is the same
as that of ξF and ξ�.
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