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A B S T R A C T

We propose a method for developing the flows of stochastic dynamical systems, posed as Ito’s stochastic
differential equations, on a Riemannian manifold identified through a suitably constructed metric. The
framework used for the stochastic development, viz. an orthonormal frame bundle that relates a vector on
the tangent space of the manifold to its counterpart in the Euclidean space of the same dimension, is the
same as that used for developing a standard Brownian motion on the manifold. Mainly drawing upon some
aspects of the energetics so as to constrain the flow according to any known or prescribed conditions, we
show how to expediently arrive at a suitable metric, thus briefly demonstrating the application of the method
to a broad range of problems of general scientific interest. These include simulations of Brownian dynamics
trapped in a potential well, a numerical integration scheme that reproduces the linear increase in the mean
energy of conservative dynamical systems under additive noise and non-convex optimization. The simplicity
of the method and the sharp contrast in its performance vis-á-vis the correspondent Euclidean schemes in our
numerical work provide a compelling evidence to its potential, especially in the context of numerical schemes
for systems with the ready availability of an energy functional, e.g. those in nonlinear elasticity.
. Introduction

As a tool in the modelling of physical phenomena, physicists have
ong grappled with non-Euclidean differential geometry — starting
erhaps with Einstein’s work on the general theory of relativity based
n a four dimensional Riemannian manifold [1] to the modelling of
hells in the mechanics of solids [2]. In the physical world, a Rieman-
ian manifold affords an ideal framework to study evolutions on or
f generally curved objects. Unlike the Euclidean space, two tangent
paces to any two distinct points on a curved Riemannian manifold
re not canonically isomorophic [3]. In order to move between two
eighbouring points on such a manifold, the notion of a connection is
herefore introduced which usurps the traditional concept of derivative
or differential) in the Euclidean setting. Once subsumed within a
athematical model, this concept therefore enables a precise tracking

f the evolution of a field on a Riemannian manifold, i.e. a curved
ypersurface. This construct is thus useful, not just in a more insightful
odelling of the physical world, but in the development of substan-

ively more robust numerical algorithms that are more informed of the
ntrinsic structure or the given constraints of a flow generated by the
odel at hand. As an example, one may consider the flow of a Hamilto-
ian dynamical system that evolves on a constant-energy hypersurface,
hich is a manifold embedded in the ambient phase space of positions
nd momenta. Unfortunately, despite some promising work done in the

∗ Corresponding author at: Centre of Excellence in Advanced Mechanics of Materials, Indian Institute of Science, Bangalore 560012, India.
E-mail address: royd@iisc.ac.in (D. Roy).

broad area of optimization, efforts at developing numerical schemes on
Riemannian manifolds appear to be somewhat scarce.

One such well-established method for solving constrained optimiza-
tion problems in a deterministic setting is the gradient projection
method (see [4] and [5] discussing this for linear and non-linear
constraints respectively). In the work of Luenberger [6], the point of
view was to consider an analogue of the geodesic on a constrained
hypersurface, which was considered a Riemannian manifold, within a
constrained optimization problem. In that setting, the geodesic would
be a straight line for an unconstrained problem. Exploiting the Rieman-
nian connection, i.e. the notion of the covariant derivative, Smith [7]
has proposed extensions of Newton’s method and the conjugate gradi-
ent method to a Riemannian manifold setting. A Riemannian manifold
variant of the BFGS quasi-Newton scheme may be found in [8]. The
perspective we adopt in this work is however able to pose even an
unconstrained optimization problem on a Riemannian manifold.

For non-convex, global optimization problems, stochastic search
schemes are typically preferred over deterministic, gradient-based
methods. Most stochastic algorithms for such global optimization are
based on heuristics, common examples being particle swarm optimiza-
tion [9], ant colony optimization [10], genetic algorithms [11], etc.
These methods typically work without needing explicit information
on the derivatives of the objective functional. Though widely used,
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they generally lack a rigorous mathematical basis. COMBEO [12] is a
stochastic algorithm that poses optimization as a martingale problem.
Although it is based on a sound mathematical principle, its implemen-
tation lacks the simplicity and the intuitive features of methods based
on metaheuristics. A much simpler variant of optimization based on
stochastic search is provided by the family of stochastic approximation
schemes [13]. Using a retraction mapping which is an expedient means
to implement the exponential map, [14] has recently extended stochas-
tic approximation to the case where the constraint set constitutes a
Riemannian manifold.

The flow generated by a dynamical system, with or without any
additionally specified constraints, typically has a structure of its own.
For instance, a conservative dynamical system must evolve over a
constant-energy hypersurface which could be non-Euclidean. In this
work, we are specifically concerned with the posing and solutions
for stochastic dynamical systems, governed by a set of stochastic dif-
ferential equations (SDEs), in the Riemannian manifold setting. For
this purpose, we exploit the principle of stochastic development [15],
thus bypassing the generally problematic issue of embedding within
an ambient Euclidean space. Having identified the manifold structure
associated with a stochastic dynamical system based on a metric, we
use an orthonormal frame bundle structure to relate a vector in the
Euclidean space with its unique counterpart on a tangent space to
the manifold of the same dimension. More interestingly, the motion
governed by a vector field in the Euclidean space could be tracked
on the Riemannian manifold through its projection via the horizon-
tal part of the tangent space to the orthonormal frame bundle. This
requires a parallel transport of vectors and hence information about
the Levi-Civita connection on the manifold, which is also shared by
the horizontal part of the tangent space to the frame. This is the
essence of stochastic development, which we use to rewrite an SDE with
non-zero drift on a Riemannian manifold. For purposes of illustration
and to demonstrate the wide spread of possible applications of this
approach, we consider the problems of Brownian motion restricted by a
potential well, energy-drift conserving numerical integration of a noisy,
undamped nonlinear mechanical oscillator without an external force,
and global optimization involving a non-convex objective function.
In each case, as appropriate to the nature of response we seek, the
Riemannian metric and the associated connection are derived based on
a chosen energy-like function. The metric and connection are in turn
used to obtain the developed SDEs, which are numerically integrated
with the basic Euler–Maruyama explicit method. In the case of the
non-convex optimization problem, for instance, the objective function
(which is strictly positive) is itself interpreted as the energy and the
design variables are evolved according to a stochastically developed
Langevin dynamics implemented along with a simulated annealing
scheme. In order to emphasize the role played by stochastic develop-
ment, we always contrast the solutions of developed SDEs with those
in the classical Euclidean setting.

The rest of the paper is organized as follows. In Section 2.1, we
provide a brief recap of certain elements of Riemannian geometry
for completeness and follow this up in Sections 2.2 and 2.3 with a
detailed exposition of the method of stochastic development for SDEs.
In Section 3, the illustrative applications and the numerical results
are provided. A brief discussion on certain future possibilities is also
included in the same section. The article is wound up in Section 4 with
a few concluding remarks.

2. Stochastic development of an SDE on Riemannian manifold

By way of a ready reference, we give brief reviews of a few basic
concepts in differential geometry and stochastic development in Sec-
tions 2.1 and 2.2 respectively. In Section 2.3, we use the notion of frame
bundles on Riemannian manifolds to develop an SDE with a non-zero
drift.
2

2.1. A brief review of concepts from differential geometry

Differential geometry is the mathematical machinery for performing
calculus over an arbitrarily shaped hypersurface in any dimension, say
R𝑑 and can be seen as a useful generalization of standard calculus
in the Euclidean setting. The departure from the Euclidean set-up is
specifically captured through certain incompatibility tensors, e.g. the
curvature tensor in Riemannian geometry. A small neighbourhood
around every point in the hypersurface, which is referred to as the
manifold, is represented by a local co-ordinate chart, possibly drawn
from the embedding Euclidean space. The embedding Euclidean space
is of a strictly higher dimension, say R𝑛 with 𝑛 > 𝑑. These local
charts overlap smoothly to enable calculations on the manifold as a
whole. An important concept in the theory of differential geometry is
that of a tangent plane. As the name suggests, it is the unique plane
tangent to the manifold at a given point. Formally, a manifold is called
Riemannian if the tangent plane at every point 𝑝 is equipped with an
inner product with respect to a given metric 𝑔 such that, if 𝑋𝑝 and 𝑌𝑝
are two vectors on the tangent plane, we have

⟨𝑋𝑝, 𝑌𝑝⟩ = [𝑔𝑝]𝑖𝑗𝑥𝑖𝑦𝑗 (1)

here 𝑋𝑝 = 𝑥𝑖𝑒𝑖 , 𝑌𝑝 = 𝑦𝑗𝑒𝑗 ; {𝑒𝑖}𝑑𝑖=1being the canonical basis vectors in
𝑑 .

In the Euclidean setting, we have 𝑔𝑖𝑗 = 𝛿𝑖𝑗 where 𝛿𝑖𝑗 represent the
ronecker delta symbols. Loosely speaking, 𝑔 encapsulates the notion
f how distances and angles between two vectors are measured on a
angent plane. It is known that every Riemannian manifold (RM) is
ssociated with a unique Riemannian metric. Now that we have seen
hat every point on the RM has a tangent plane attached to it and that
very tangent plane in turn has a unique metric, one must also figure
ut a way to smoothly move from one tangent plane to another in a
lose neighbourhood of the former (parallel transport of vector and
ensor fields). This is precisely where the concept of a connection comes
n. For a given Riemannian metric 𝑔, the coordinate representation of
he connection is given as

𝑘
𝑖𝑗 =

1
2
𝑔𝑘𝑙[𝜕𝑖𝑔𝑗𝑙 + 𝜕𝑗𝑔𝑖𝑙 − 𝜕𝑙𝑔𝑖𝑗 ] (2)

n the above equation, 𝑔𝑘𝑙 = 𝑔−1𝑘𝑙 and the symbols 𝛾𝑘𝑖𝑗 are also referred to
s the Christoffel symbols. It must be noted that 𝛾 is not a tensor, as it
oes not transform like one under a smooth change of co-ordinates. The
sual concept of derivatives of vectors in R𝑛 does not apply on the RM,
ince any two vectors lying in two different tangent planes are objects
f different vector spaces, and hence cannot be added or subtracted in
he usual way. The equivalent notion of derivative on the RM is known
s covariant derivative and it is defined in terms of the connection.
he covariant derivative of a vector 𝑌 along a vector 𝑋 in terms of the
hristoffel symbols is defined as follows:

𝑋𝑌 = [𝑋𝑌 𝑘 +𝑋𝑖𝑌 𝑗𝛾𝑘𝑖𝑗 ]𝑒𝑘 (3)

here 𝑋 = 𝑋𝑖𝑒𝑖, 𝑌 = 𝑌 𝑗𝑒𝑗 , 𝑒𝑖 is the unit vector in the 𝑖th co-ordinate
irection in terms of a local chart. We emphasize that Eq. (3) is valid
nly within the cutlocus; roughly speaking the cutlocus at a point 𝑝
n the manifold is that neighbourhood (on the manifold) every point
n which has a geodesic connecting the point 𝑝 (see below for the
efinition of a geodesic on the RM).

Now that we have a way of moving from one point on the manifold
o another using the connection, we can define curves. An important
xample of a curve on the manifold, parametrized by 𝑡, is that of
geodesic. It is the shortest path joining two given points on the
anifold. The equation of a geodesic is as follows:

̈𝑘(𝑡) + �̇�𝑖𝑡�̇�
𝑗
𝑡 𝛾

𝑘
𝑖𝑗 (𝑥(𝑡)) = 0 (4)

he Euclidean equivalent of the above equation is just �̈�𝑘(𝑡) = 0,
olutions to which are straight lines.
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2.2. The concept of stochastic development

We may combine the basics of stochastic calculus with differential
geometry to recast an SDE, originally posed in a 𝑑 dimensional Eu-
clidean space, on a Riemannian manifold 𝑀 of the same dimension. A
systematic framework for this is provided by stochastic development,
which has been used in [15] to recast a Brownian motion on 𝑀 . We
presently use a similar strategy for SDEs that have a non-zero drift.
In order to relate the canonical 𝑑- dimensional Euclidean basis to a
basis of the tangent plane 𝑇𝑥𝑀 at the point 𝑥 ∈ 𝑀 , we need an
additional construct of a 𝑑 + 𝑑2 dimensional manifold called the frame
bundle 𝐹 (𝑀). While the 𝑑-dimensional component of 𝐹 (𝑀) is the base

anifold 𝑀 itself, the remaining 𝑑2-dimensional part corresponds to
rthogonal linear transformations applied to vectors on 𝑇𝑥𝑀 . We now
eflect on how the connection ∇ on 𝑀 manifests itself on the frame
undle 𝐹 (𝑀). Clearly, a frame at a point 𝑥 ∈ 𝑀 provides a linear
somorphism between the Euclidean space R𝑑 where the solution of

standard SDE evolves and the 𝑑-dimensional tangent plane 𝑇𝑥𝑀 to
on which the solution needs to be projected. Thus, it is through the

rame bundle that we can track these paths on 𝑀 once we know how
t evolves in R𝑑 . Let 𝐸1,… , 𝐸𝑑 be the co-ordinate basis vectors of the
-dimensional Euclidean space. Now considering a frame 𝑞 at 𝑥, we
ote that the vectors 𝑞𝐸1,… , 𝑞𝐸𝑑 make up a basis for 𝑇𝑥𝑀 .

We denote by 𝐹 (𝑀)𝑥 the set of all frames at 𝑥 so that the elements of
(𝑀)𝑥 may be acted upon by 𝐺𝐿(𝑑,R), the general linear group. This
eans that any linear transformation of 𝐹 (𝑀)𝑥 is also a valid frame

t 𝑥. 𝐹 (𝑀)𝑥 is also called a fibre at 𝑥. However, the base manifold 𝑀
is presently Riemannian so that the torsion tensor is zero, and thus an
orthonormal frame remains orthonormal upon parallel transport along
𝑀 . There is thus no loss of generality in restricting the general linear
group to the orthogonal group 𝑂(𝑀). Roughly speaking, a fibre 𝑥 at
a point 𝑥 on 𝑀 is defined as a space attached to that point. We may
now define a surjective or onto map 𝜋 ∶  ()𝑥 ⟶ 𝑀 . We define the
frame bundle as the union of sets of frames at different points on the
manifold, i.e. 𝐹 (𝑀) =

⋃

𝑥∈𝑀 𝐹 (𝑀)𝑥. At this stage, we may actually look
upon 𝐹 (𝑀) itself as a (differentiable) manifold of dimension 𝑑 + 𝑑2.
Accordingly, the projection map 𝜋 ∶ 𝐹 (𝑀) ⟶ 𝑀 is also smooth.
Now we consider a point 𝑞 ∈ 𝐹 (𝑀) and the associated tangent space
𝑇𝑞𝐹 (𝑀) at the same point. It is a vector space of dimension 𝑑 + 𝑑2.

e refer to a tangent vector 𝑌 ∈ 𝑇𝑞𝐹 (𝑀) as vertical if 𝑌 is tangent
to the frame 𝐹 (𝑀)𝜋𝑞 . These vertical tangent vectors form a subspace
𝑉𝑞𝐹 (𝑀) of 𝑇𝑞𝐹 (𝑀) and it is of dimension 𝑑2. Let the base manifold
𝑀 be equipped with a Riemannian connection ∇. Then a curve 𝑞𝑡 in
(𝑀), which is basically a smoothly varying field of frames, could be
rojected to a smooth curve 𝑥𝑡 = 𝜋𝑞𝑡 on 𝑀 . We call the frame field 𝑞𝑡
orizontal if the vector field 𝑞𝑡𝐸 is parallel along the projected curve
𝑡 on the base manifold 𝑀 for an arbitrary vector 𝐸 ∈ R𝑑 . We recall
ere that a vector field 𝑉 along the curve 𝑥𝑡 on 𝑀 is called parallel
long 𝑥𝑡 if ∇�̇�𝑉 = 0 for every 𝑡. This is just an extension of the notion
f parallel vectors in the Euclidean setting. The vector 𝑉𝑥𝑡 at 𝑥𝑡 is the
arallel transport of the vector 𝑉𝑥0 at 𝑥0.

We call a tangent vector 𝑋 ∈ 𝑇𝑞𝐹 (𝑀) horizontal if it is tangent to
the horizontal curve 𝑞𝑡. The space of horizontal vectors at 𝑞 is denoted
by 𝐻𝑞𝐹 (𝑀); it is a subspace of 𝑇𝑞𝐹 (𝑀) and is of dimension 𝑑. We thus
have the direct-sum decomposition

𝑇𝑞𝐹 (𝑀) = 𝑉𝑞𝐹 (𝑀)⊕𝐻𝑞𝐹 (𝑀)

Using the projection 𝜋 ∶ 𝐹 (𝑀) ⟶ 𝑀 , a pushforward operation 𝜋∗ ∶
𝐻𝑞𝐹 (𝑀) ⟶ 𝑇𝑥𝑀 may be defined. Specifically, consider any vector
𝑋 ∈ 𝑇𝑥𝑀 and a frame 𝑄 at 𝑥, with 𝑄 acting on 𝑋. The horizontal
lift of 𝑋 is then a unique horizontal vector 𝑋∗ ∈ 𝐻𝑞𝐹 (𝑀) such that
its projection returns the original vector itself, i.e. 𝜋∗𝑋∗ = 𝑋. Now
consider any Euclidean vector 𝐸 ∈ R𝑑 . The vector 𝐻𝐸 (𝑞) at the point
𝑞 in 𝐹 (𝑀) is defined by the horizontal lift of the vector 𝑞𝐸 on 𝑀 ,

∗ ∗
i.e. 𝐻𝐸 (𝑞) = (𝑞𝐸) . Hence, (𝑞𝐸) may be interpreted as a horizontal

3

vector field on 𝐹 (𝑀). Corresponding to the unit (orthonormal) coordi-
nate vectors 𝐸1,… , 𝐸𝑑 in R𝑑 , we note that 𝐻𝑖 ∶= 𝐻𝐸𝑖

, 𝑖 = 1,… , 𝑑, are
the associated horizontal vector fields of the frame bundle that span
the horizontal subspace 𝐻𝑞𝐹 (𝑀) at each 𝑞 ∈ 𝐹 (𝑀).

We may adopt any valid local chart 𝑥 = {𝑥𝑖} in a neighbourhood
𝑂 ⊂ 𝑀 . Using the inverse of the projection map, this local chart on
the base manifold 𝑀 induces a local chart �̃� = 𝜋−1(𝑂) in 𝐹 (𝑀). Thus,
let 𝑋𝑖 =

𝜕
𝜕𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑑, be the coordinate basis vectors. For a frame

𝑞 ∈ �̃�, we have 𝑞𝐸𝑖 = 𝑄𝑗
𝑖𝑋𝑗 for some matrix 𝑄 = (𝑄𝑖

𝑗 ). Accordingly, we
get (𝑥,𝑄) ∈ R𝑑+𝑑2 as the local chart for �̃�. Then, the vertical subspace
𝑉𝑞𝐹 (𝑀) is spanned by 𝑋𝑘𝑗 = 𝜕

𝜕𝑄𝑘
𝑗
, 1 ≤ 𝑗, 𝑘 ≤ 𝑑. Also, the vector

fields {𝑋𝑖, 𝑋𝑖𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑑} span 𝑇𝑞𝐹 (𝑀), 𝑞 ∈ �̃�. An expression for
he horizontal vector field 𝐻𝑖 in terms of the local coordinates is given
s follows.

𝑖(𝑞) = 𝑄𝑗
𝑖𝑋𝑗 −𝑄𝑗

𝑖𝑄
𝑙
𝑚𝛾

𝑘
𝑗𝑙(𝑥)𝑋𝑘𝑚 (5)

or the sake of brevity, we skip the proof here and refer to [15].
From the definition of 𝑞𝑡, which is the horizontal lift of a smooth

urve 𝑥𝑡 on 𝑀 , we have 𝑞−1𝑡 �̇�𝑡 ∈ R𝑑 since �̇�𝑡 ∈ 𝑇𝑥𝑡𝑀 . We define the anti-
evelopment of {𝑥𝑡} on 𝑀 as a curve 𝑢𝑡 in R𝑑 such that the following
quation is satisfied.

𝑡 = ∫

𝑡

0
𝑞−1𝑠 �̇�𝑠𝑑𝑠.

n other words, 𝑞𝑡�̇�𝑡 = �̇�𝑡 and by the definition of horizontal vector
ields, we have 𝐻�̇�𝑡 (𝑞𝑡) = (𝑞𝑡�̇�𝑡)∗ = (�̇�𝑡)∗ = �̇�𝑡, i.e. the anti-development
𝑡 and the horizontal lift 𝑞𝑡 of a curve 𝑥𝑡 on 𝑀 are simply related by an
rdinary differential equation (ODE). In view of our work in the next
ubsection, it is expedient to rewrite the last equation as

�̇�𝑡 = 𝐻𝑖(𝑞𝑡)�̇�𝑖𝑡 (6)

f we start from an Euclidean curve 𝑢𝑡 in R𝑑 and a frame 𝑞0 at the point
0 on 𝑀 , the unique solution of the above ODE is given by a horizontal
urve 𝑞𝑡 in 𝐹 (𝑀). We refer to this horizontal curve as the development
f 𝑢𝑡 in the frame manifold 𝐹 (𝑀). Its projection on 𝑀 given by 𝜋𝑞𝑡 is
alled the development of 𝑢𝑡 in 𝑀 .

.3. Local coordinate expression of a developed SDE on RM

We extend equation (6) to the stochastic case and write it in the
tratonovich sense as:

𝑞𝑡 = 𝐻𝑖𝑞(𝑡)◦𝑑𝑊 𝑖
𝑡 (7)

here the Ito SDE for the Euclidean stochastic process 𝑊𝑡 has the
ollowing form:

𝑊 𝑖
𝑡 = 𝛼𝑖(𝑊𝑡)𝑑𝑡 + 𝛽𝑖𝑗 (𝑊𝑡)𝑑𝐵

𝑗
𝑡 (8)

rom [15] (see proposition 2.1.3), the horizontal vector fields are
ocally given by the equation below.

𝑖(𝑞) = 𝑄𝑖
𝑗𝑋𝑗 −𝑄𝑖

𝑗𝑄
𝑙
𝑚𝛾

𝑘
𝑗𝑙𝑋𝑘𝑚 (9)

here

𝑖 =
𝜕
𝜕𝑥𝑖

𝑋𝑘𝑚 = 𝜕
𝜕𝑄𝑘

𝑚
(10)

Hence, written in the Stratonovich sense, the equation for 𝑞𝑡 = {𝑥𝑖𝑡, 𝑄
𝑖
𝑗 (𝑡)}

is

𝑑𝑥𝑖𝑡 = 𝑄𝑖
𝑗 (𝑡)◦𝑑𝑊

𝑗
𝑡 (11)

𝑑𝑄𝑖
𝑗 (𝑡) = −𝛾 𝑖𝑘𝑙(𝑥𝑡)𝑄

𝑙
𝑗 (𝑡)𝑄

𝑘
𝑚(𝑡)◦𝑑𝑊

𝑚
𝑡 (12)

rom Eq. (11) and in the Ito sense, we have

𝑥𝑖𝑡 = 𝑄𝑖
𝑗 (𝑡)𝑑𝑊

𝑗
𝑡 + 1

2
𝑑⟨𝑄𝑖

𝑗 (𝑡), 𝑑𝑊
𝑗
𝑡 ⟩ (13)

= 𝑄𝑖 (𝑡)𝛼𝑗 (𝑊 )𝑑𝑡 +𝑄𝑖 (𝑡)𝛽𝑗 (𝑊 )𝑑𝐵𝑚 + 1𝑑⟨𝑄𝑖 (𝑡), 𝑑𝑊 𝑗
⟩
𝑗 𝑡 𝑗 𝑚 𝑡 𝑡 2 𝑗 𝑡
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Let 𝑑𝑀 𝑖
𝑡 = 𝑄𝑖

𝑗 (𝑡)𝛽
𝑗
𝑚(𝑊𝑡)𝑑𝐵𝑚

𝑡 be the martingale part. Then we have

⟨𝑀 𝑖
𝑡 ,𝑀

𝑗
𝑡 ⟩ = ⟨𝑄𝑖

𝑚(𝑡)𝛽
𝑚
𝑟 (𝑊𝑡)𝑑𝐵𝑟

𝑡 , 𝑄
𝑗
𝑛(𝑡)𝛽

𝑛
𝑠 (𝑊𝑡)𝑑𝐵𝑠

𝑡 ⟩ (14)

= 𝑄𝑖
𝑚(𝑡)𝛽

𝑚
𝑟 (𝑊𝑡)𝑄𝑗

𝑛(𝑡)𝛽
𝑛
𝑟 (𝑊𝑡)𝑑𝑡 (15)

However, we have 𝑞𝐸𝑙 = 𝑄𝑖
𝑙𝑋𝑖 and 𝛿𝑙𝑚 = ⟨𝑞𝐸𝑙 , 𝑞𝐸𝑚⟩ = ⟨𝑄𝑝

𝑙𝑋𝑝, 𝑄
𝑞
𝑚𝑋𝑞⟩ =

𝑄𝑝
𝑙𝑄

𝑞
𝑚⟨𝑋𝑝, 𝑋𝑞⟩ = 𝑔𝑝𝑞𝑄

𝑝
𝑙𝑄

𝑞
𝑚. Thus, 𝑄𝑔𝑄𝑇 = 𝐼 or 𝑄𝑇𝑄 = 𝑔−1. Observe

that the notion of orthonormality here must be based on the non-trivial
Riemannian metric. Accordingly, we may write

𝑑⟨𝑀 𝑖
𝑡 ,𝑀

𝑗
𝑡 ⟩ = [𝛽𝑇 𝑔−1𝛽]𝑖𝑗𝑑𝑡 (16)

Now, let 𝜎 = 𝑄𝛽 =
√

𝑔−1𝛽. Note that the identity 𝑄 =
√

𝑔−1 is
direct consequence of the torsion-free nature of the frame-bundle,

.e. the orthonormal frame retains the orthonormality upon parallel
ransport along a smooth curve on the base manifold. It is equivalent to
he requirement that the connection 1-forms in the cotangent space at
ny point on the base manifold are skew symmetric. Indeed, the same
dentity has been used in the literature while developing Brownian
otion on a Riemannian manifold. We may now write

𝑀 𝑖
𝑡 = [𝑄𝛽]𝑖𝑚𝑑𝐵

𝑚
𝑡 (17)

= 𝜎𝑖𝑚𝑑𝐵
𝑚
𝑡 (18)

rom Eq. (12), we have

𝑄𝑖
𝑗 (𝑡) = −𝛾 𝑖𝑘𝑙(𝑥𝑡)𝑄

𝑙
𝑗 (𝑡)𝑄

𝑘
𝑚(𝑡)𝑑𝑊

𝑚
𝑡 + 1

2
𝑑⟨−𝛾 𝑖𝑘𝑙(𝑥𝑡)𝑄

𝑙
𝑗 (𝑡)𝑄

𝑘
𝑚(𝑡), 𝑑𝑊

𝑚
𝑡 ⟩ (19)

Thus, the last term on the RHS of Eq. (13) becomes

𝑑⟨𝑄𝑖
𝑗 , 𝑑𝑊

𝑗
𝑡 ⟩ = ⟨𝑑𝑄𝑖

𝑗 , 𝑑𝑊
𝑗
𝑡 ⟩ (20)

= ⟨−𝛾 𝑖𝑘𝑙(𝑥𝑡)𝑄
𝑙
𝑗 (𝑡)𝑄

𝑘
𝑚(𝑡)𝑑𝑊

𝑚
𝑡 , 𝑑𝑊 𝑗

𝑡 ⟩

= ⟨−𝛾 𝑖𝑘𝑙(𝑥𝑡)𝑄
𝑙
𝑗 (𝑡)𝑄

𝑘
𝑚(𝑡)[𝛼

𝑚(𝑊𝑡)𝑑𝑡 + 𝛽𝑚𝑝 (𝑊𝑡)𝑑𝐵
𝑝
𝑡 ],

[𝛼𝑗 (𝑊𝑡)𝑑𝑡 + 𝛽𝑗𝑞 (𝑊𝑡)𝑑𝐵
𝑞
𝑡 ]⟩

= −𝛾 𝑖𝑘𝑙(𝑥𝑡)𝑄
𝑙
𝑗 (𝑡)𝑄

𝑘
𝑚(𝑡)𝛽

𝑚
𝑝 𝛽

𝑗
𝑞 ⟨𝑑𝐵

𝑝
𝑡 , 𝑑𝐵

𝑞
𝑡 ⟩

= −𝛾 𝑖𝑘𝑙(𝑥𝑡)𝑄
𝑙
𝑗 (𝑡)𝑄

𝑘
𝑚(𝑡)𝛽

𝑚
𝑝 𝛽

𝑗
𝑝𝑑𝑡

= −𝛾 𝑖𝑘𝑙(𝑥𝑡)[𝑄𝛽]𝑙𝑝[𝑄𝛽]𝑘𝑝𝑑𝑡

= −𝛾 𝑖𝑘𝑙(𝑥𝑡)𝜎
𝑙
𝑝𝜎

𝑘
𝑝𝑑𝑡

Note that the contraction 𝛽𝑚𝑝 𝛽
𝑗
𝑝 over 𝑝 makes sense as the diffusion

coefficient 𝛽 in equation (8) has the same representation in its covari-
ant, contravariant or mixed forms. Substituting in Eq. (13), we get the
developed SDE.

𝑑𝑥𝑖𝑡 = [
√

𝑔−1(𝑥𝑡)]𝑖𝑗𝛼
𝑗 (𝑥𝑡)𝑑𝑡 + 𝜎𝑖𝑚𝑑𝐵

𝑚
𝑡 − 1

2
𝜎𝑙𝑝𝜎

𝑘
𝑝 𝛾

𝑖
𝑘𝑙(𝑥𝑡)𝑑𝑡 (21)

Finally, we must emphasize the important role the Ito representation
plays in incorporating the evolution of the frame field given by Eq. (19)
within the local coordinate expression for the developed SDE as above.
In particular, we do not need an additional SDE describing the evolving
frame field. Without the Ito correction term in Eq. (13), this would not
have been possible.

3. Applications and illustrations

We now demonstrate how the developed flows of stochastic dynam-
ical systems could be meaningfully exploited to arrive at significantly
improved numerical approaches for a broad range of applications.
These include simulations of a Brownian particle trapped in a potential
well, a numerical integration scheme that can preserve the mean-
energy drift for a stochastic Hamiltonian flow under additive noise
and a stochastic search scheme for non-convex optimization. In all
these illustrations, the developed SDEs on the RM are integrated by a
most basic version of the explicit Euler–Maruyama (EM) scheme with
a strong error order (

√

𝛥𝑡), where 𝛥𝑡 is the integration step size,
presently assumed to be uniform. To showcase the improvement, a
solution through the geometric approach is always compared with that
4

of the standard SDE in the Euclidean setting — both integrated via the
explicit EM method. As we shall see, the design of an energy-like term
plays a pivotal role in each case. Since we are primarily interested in
showcasing the possible benefits of a method that uses geometry vis-
á-vis one that does not, we do not provide an explicit comparison of
our schemes with myriad others, some of which could indeed be very
efficient even when not geometrically inspired. When such a study is
taken up in the future, a fair comparison should be between any such
existing method and its geometrically modified variant.

3.1. Brownian motion in a potential well

Brownian motion in a potential well is widely studied to understand
myriad phenomena at the molecular level, e.g. to model the determin-
istic and stochastic forces at play. This is also the underlying principle
for optical and acoustic tweezers. The trapping of Brownian particles
via optical/acoustic tweezers has proved pivotal in the experimental
understanding of numerous phenomena in science and engineering,
and this is an important development that cannot be realized with
unrestricted BM. First introduced in [16], the simplest application of
an optical tweezer is to laser-trap a single Brownian particle, viz. a
dielectric object of the size of a nanometre to a micrometre [17]. This
is typically done for molecular motion or force measurements or for
non-invasive manipulations of a single cell. Considerable work has been
reported on optical tweezers; see [18] for a review. However, a similar
non-contact immobilization of cells or particles in microfluidic systems
is also possible with acoustic traps [19], where ultrasound standing
waves are used for trapping purposes. Acoustic traps are known to be
safer and hence more suitable for biological applications, especially as
optical traps may kill some organisms to be studied due to excessive
heating from lasers.

Modelling of these tweezers requires that the equation of motion
of a Brownian particle be trapped in a potential well. One way of
simulating such motion is to apply Doob’s h-transform [20], where an
appropriate drift term to trap the Brownian particle could, in principle,
be found based on a change of measures. Implementing this within
a numerical approach is however quite formidable and requires an
accurate inversion of the heat kernel. We presently simulate such a
Brownian motion via equation (21) by requiring that the original drift
field of the Euclidean SDE be zero. This is also the well-known equation
for Brownian motion on an RM available in the literature [15]. The
Riemannian metric and the connection for this are arrived at from the
expression of the potential well. Equations for the potential well 𝐸
about the point 𝜆 and the Riemannian metric 𝑔 are given below. The
associated Levi-Civita connection may be derived from the expression
for 𝑔; see Appendix A.

𝐸(𝑥) = exp (𝑥 − 𝜆)𝑇 [𝛼](𝑥 − 𝜆) (22)

Assuming that 𝛼 is a diagonal matrix with entries 𝑑1, 𝑑2...𝑑𝑛 where 𝑛 is
the dimension of 𝑥, we have:

𝑔𝑖𝑗 =
1
2
𝜕2𝐸(𝑥)
𝜕𝑥𝑖𝜕𝑥𝑗

= 2𝑑(𝑖)𝑑(𝑗)(𝑥 − 𝜆)(𝑖)(𝑥 − 𝜆)(𝑗) exp(𝑑𝑝(𝑥 − 𝜆)2𝑝) + 𝑑(𝑗)𝛿𝑖𝑗 exp(𝑑𝑝(𝑥 − 𝜆)2𝑝)

(23)

ote that the indices in brackets imply no sum. The developed SDE
orresponding to the Euclidean SDE 𝑑𝑋𝑡 = 𝑑𝐵𝑡 is as follows:

𝑋𝑖
𝑡 = [

√

𝑔−1(𝑥𝑡)]𝑖𝑗𝑑𝐵
𝑗
𝑡 −

1
2
𝑔−1𝑘𝑙 𝛾

𝑖
𝑘𝑙𝑑𝑡 (24)

The results from our numerical simulations are shown in Fig. 1, where
they are compared with the standard Euclidean Brownian motion.
Exploiting the metric as well as the connection, the developed SDE
(24) restricts the Brownian dynamics close to the potential well and
this feature is clearly brought forth in the figure.

Since we are dealing with solutions of developed SDEs, the metric
defined through certain energy criteria could lose positive definiteness
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o

Fig. 1. Comparison between the geometric and Euclidean methods for the time history of Brownian motion components 𝐵1 and 𝐵2 are shown in (a) and (b) respectively. Time
history of only geometric Brownian motion is shown in (c) and (d) for clarity. Comparison of Brownian motion path in space is shown in (e), while (f) shows the inset from (e)
for the geometric method. Problem parameters: 𝛥𝑡 = 0.01, 𝑑1 = 𝑑2 = 400, the centre of potential well assumed as 𝜆1 = 1, 𝜆2 = 2.
w
r
n

owing to the random fluctuations. One way to address this issue could
be based on an additive regularization as outlined below. Suppose
that we were to start from an ensemble of random initial conditions,
given by the vector valued random variable 𝑋0 with density 𝑝(𝜉). If
we take − log 𝑝(𝜉) as an energy-like potential, then its Hessian given
by [𝑔0]𝑖𝑗 = − 𝜕2 log 𝑝(𝜉)

𝜕𝜉𝑖𝜕𝜉𝑗
could be taken as the additive regularizer to

ur original metric 𝑔. Specifically, if 𝑝(𝜉) is multivariate Gaussian with
mean 𝜇0 and covariance 𝛴0, then we have 𝑔0 = 𝛴0

−1. A particularly
expedient choice, which we frequently use in the examples to follow,
is the uncorrelated case given by 𝛴0

−1 = 𝛶𝐼 , where 𝛶 is a positive real
and 𝐼 the identity matrix.

3.2. Energy-drift preserving numerical integration of SDEs

The SDEs arising in scientific and engineering applications typ-
ically have a drift field that often contains important information
on the underlying energetics. This is particularly so for Hamiltonian
systems that are extensively used in myriad applications. When such
systems are strictly deterministic and not explicitly time dependent,
the energy (i.e. the Hamiltonian) appears as a first integral of motion
which is a constant in time. These systems are also symplectic, where
their motion preserves the phase space area given by the symplectic
two-form. In the absence of dissipation, e.g. damping, errors in the
5

numerical integration of such systems could quickly build up. There
are several schemes that are either symplectic or energy conserving
during time recursion [21–23]. As an extension of this line of work
to the stochastic case, numerical schemes to preserve the symplectic
structure for Hamiltonian systems under additive noise have been
reported in [24]. A few studies on the preservation of certain integral
invariants, e.g. energy, in such systems are also available; see [25]. This
last class of extensions has typically considered Hamiltonian dynamics
under appropriate multiplicative noises and the methods have been
proposed in the Stratonovich sense wherein one may exploit many
features of similar schemes used in the deterministic setting. It may be
shown using Ito’s formula that, under an additive noise with a constant
intensity, the mean energy of a Hamiltonian system grows linearly in
time [26]. Our purpose here is to show that an exploitation of stochastic
development could be used to expediently impose a known constraint
on the mean energy growth within the numerical integration scheme.

Consider, for instance, a Duffing oscillator which is undamped and
unforced except for an additive noise. The equation of motion here is:

�̈� + 𝑘𝑥 + 𝛼𝑥3 = 𝜎�̇�𝑡 (25)

here 𝑘 and 𝛼 are the mechanical stiffness parameters associated
espectively with the linear and cubic terms in 𝑥, and 𝜎 is the diffusive
oise coefficient, presently assumed constant. Note that �̇� is not a valid
𝑡
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Fig. 2. Drift preserving integration based on stochastic development. Subfigures (a) and (b) show the displacement and velocity plots respectively, while (c) and (d) show the
energy and the error in energy with respect to theoretical. Figure (e) gives the comparison of energy values between the EM and the proposed methods. The parameters are:
ensemble size 𝑁 = 50, 𝛥𝑡 = 0.01, 𝑘 = 1000, 𝛼 = 300, 𝜎 = 0.05, the regularization parameter 𝛶 = 104, the initial conditions are 𝑋1,0 = 0.1, 𝑋2,0 = 0.1.
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unction as 𝐵𝑡 is almost nowhere differentiable. It is more appropriately
ewritten in the incremental state space form with 𝑋1,𝑡 ∶= 𝑥(𝑡) and
2,𝑡 ∶= �̇�(𝑡). We thus have the following SDE:

𝑋1,𝑡 = 𝑋2,𝑡𝑑𝑡 (26)
𝑋2,𝑡 = (−𝑘𝑋1,𝑡 − 𝛼𝑋3

1,𝑡)𝑑𝑡 + 𝜎𝑑𝐵𝑡

or 𝜎 = 0, the energy of the oscillator above is a constant of motion
iven by 𝐻(𝑥1,𝑡, 𝑥2,𝑡) =

1
2𝑥2,𝑡

2 + 𝑘
2 𝑥1,𝑡

2 + 𝛼
4 𝑥1,𝑡

4 = 𝐻0, where 𝐻0 is the
nitial energy that depends on the initial conditions alone. However,
or 𝜎 ≠ 0, the mean of the energy increases linearly in time and is
iven by E[𝐻(𝑥1,𝑡, 𝑥2,𝑡)] = E[𝐻(𝑥1,0, 𝑥2,0)] +

1
2𝜎

2𝑡. Now, the numerical
ntegration of an SDE requires integrating 𝑑𝐵𝑡 over a finite step size and

the variance of this term grows linearly in 𝛥𝑡. This is quite in contrast
ith the discretized drift terms whose variance increases quadratically

n 𝛥𝑡. It is also known that, unlike deterministic ODEs for which
any higher order integration schemes are available, such schemes

re scarce for SDEs. The difficulty arises in dealing with the multiple
tochastic integrals in the Ito–Taylor expansion that forms the basis of
ny numerical integration scheme. For instance, the strong error order
n the explicit EM scheme, which we use in this work, is just (

√

𝛥𝑡).
ndeed, the same error order will formally continue to hold even when
e use it to solve the SDE developed on the RM. Even so, as we shall
6

oon see, the geometric route can drastically improve the qualitative
ature of the numerical solution.

Similar to the previous example on Brownian motion in a potential
ell, we make use of the following energy-like term to constrain the

low around the linearly drifting mean energy.

𝑡 = exp 𝛽(
𝑥22,𝑡
2

+
𝑘𝑥21,𝑡
2

+
𝛼𝑥41,𝑡
4

−𝑍𝑡)2 − 1 (27)

where

𝑍𝑡 = E[𝐻(𝑥1,𝑡, 𝑥2,𝑡)] = E[𝐻(𝑥1,0, 𝑥2,0)] +
1
2
𝜎2𝑡 = 𝐻0 +

1
2
𝜎2𝑡 (28)

erivations of the metric as well as the Christoffel symbols are on the
ame lines as in the last illustration (see Appendix B for details). The
eveloped SDE takes the form:

𝑋𝑖
𝑡 =

√

𝑔−1𝑖𝑗𝑓
𝑗 (𝑋𝑡)𝑑𝑡 + [

√

𝑔−1𝛴]𝑖𝑗𝑑𝐵
𝑗
𝑡 −

1
2
[
√

𝑔−1𝛴𝛴𝑇
√

𝑔−1
𝑇
]𝑗𝑘𝛾 𝑖𝑗𝑘𝑑𝑡

(29)

here

(𝑋𝑡) =

[

𝑋2,𝑡
−𝑘𝑋 − 𝛼𝑋3

]

1,𝑡 1,𝑡
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Fig. 3. 40-dimensional Ackley function minimization: results by the proposed method are shown in (a) and those via its Euclidean counterpart in (b). Evolutions of function
values pertaining to the geometric and Euclidean methods are compared in (c). The problem parameters used are as follows: ensemble size 𝑁 = 5, 𝑎 = 20, 𝑏 = 0.2, 𝑐 = 2𝜋, 𝛥𝑡 = 0.5,
(Euclidean: 𝛥𝑡 = 0.0.01). 𝛽 is an annealing parameter, starting with 𝛽0 = 50,000 (Euclidean: 𝛽0 = 1000) and reduced with iterations as per 𝛽𝑘+1 = 𝛽𝑘∕(exp 0.01 × 𝑘) until 𝛽 becomes
less than 0.5. The regularization parameter 𝛶 = 106.
I

𝑑

w

𝑔

T

𝛴 =
[

0 0
0 𝜎

]

and
√

𝑔−1 denotes the matrix square root of 𝑔−1.

We continue to use an explicit EM scheme to numerically integrate
he original and developed SDEs; the results are reported in Fig. 2.
he displacement and velocity curves as obtained by integrating the
eveloped SDEs are shown respectively in Figs. 2(a) and 2(b); the
esults via the standard EM integration scheme blow off quickly and
ence not shown. Fig. 2(c) shows a comparison of the theoretical
nergy (see Eq. (28)) versus the one based on the proposed method; the
MSE plot for the same is reported in Fig. 2(d). Fig. 2(e) depicts the
nergy plots via the proposed and EM methods over a relatively shorter
nitial time window. The vastly superior performance of the geometric
ethod is self evident. It is perhaps worth reemphasizing that the
ovelty in the present approach lies in the way geometry is exploited to
ield a simple yet effective numerical scheme for preserving the energy
rift in the flow. This is not to imply that the same end cannot be
chieved through a suitable non-geometric integration approach.

.3. Non-convex optimization

In this section, we consider the application of stochastic develop-
ent to an optimization problem that involves a non-convex objective

unction. The aim of our optimization scheme is then to minimize
his function. Within a stochastic search framework, we specifically
o this by developing the overdamped Langevin SDE whose evolution
s additionally guided by a simulated annealing procedure. In this
ontext, note that a strictly positive, smooth, scalar-valued and non-
onvex objective function 𝑓 (𝑥) could be looked upon, at least locally,

as an energy-like functional in the space of the design variables. Now
consider, for example, the minimization of the Ackley function which
constitutes one of the benchmark problems [27], often used to test the
performance of an optimization scheme. Treating 𝑓 (𝑥) as the energy,
we may readily determine 𝑔 and 𝛾; see Appendix C for details. During
a stochastic search involving a non-convex function, 𝑔 may some-
times become negative-definite, particularly during the initial stages.
7

As noted before, we use an additive regularizer of the type 𝛶𝐼 in order
to ensure positive-definiteness of 𝑔. We then use the developed SDE
for the overdamped Langevin dynamics with simulated annealing to
carry out the evolutionary search for the global minimum of 𝑓 (𝑥). The
results so obtained are also contrasted with those via the overdamped
Langevin dynamics with simulated annealing, but without stochastic
development. One may note that the simulated annealing step expedites
a more exhaustive search of the design space during the initial stages.

The Ackley function 𝑓 (𝑥) to be minimized is given by:

𝑓 (𝐱) = 𝑓 (𝑥1,… , 𝑥𝑛)

= −𝑎 exp(−𝑏

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
𝑥2𝑖 ) − exp( 1

𝑛

𝑛
∑

𝑖=1
cos(𝑐𝑥𝑖)) + 𝑎 + exp(1) (30)

where 𝑛 is the dimension of 𝑥, the design variable. The overdamped
Langevin SDE is of the following form.

𝑑𝑋𝑡 = −𝛽𝑡∇𝑓 (𝑋𝑡)𝑑𝑡 +
√

2𝛽𝑡𝑑𝐵𝑡 (31)

ts stochastically developed version is given by:

𝑋𝑖
𝑡 = −𝛽𝑡[

√

𝑔−1]𝑖𝑗∇𝑗𝑓 (𝑋𝑡)𝑑𝑡 +
√

2𝛽𝑡[
√

𝑔−1]𝑖𝑗𝑑𝐵
𝑗
𝑡 − 𝛽𝑡𝑔

−1
𝑘𝑙 𝛾

𝑖
𝑘𝑙𝑑𝑡 (32)

here

𝑖𝑗 =
1
2
𝜕2𝑓 (𝐱)
𝜕𝑥𝑖𝜕𝑥𝑗

+ 𝛶𝛿𝑖𝑗 (33)

he Christoffel symbols 𝛾 can be obtained from the derivatives of 𝑔
(Appendix C). Since we need to compute 𝑔 and 𝛾 to arrive at the
developed SDE, our scheme is not gradient-free unlike most others
based on metaheuristics, e.g. the genetic algorithm. However, when
the gradient of the objective function is available, it is expected that
the present approach should have the benefit of a relatively faster
convergence. For a 40-dimensional Ackley function, we have reported
the results in Fig. 3. An ensemble size of only five particles has been
used for this purpose. As can be seen in the figure, the solution through
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Fig. 4. 2-dimensional Ackley function minimization: comparison between the proposed method and its Euclidean counterpart. The 𝑥1 and 𝑥2 components are shown in subfigures
(a) and (b) respectively while the comparison of function values is shown in (c). Problem parameters are taken as follows: ensemble size 𝑁 = 5, 𝑎 = 20, 𝑏 = 0.2, 𝑐 = 2𝜋, 𝛥𝑡 = 0.5,
Euclidean: 𝛥𝑡 = 0.0.01). 𝛽 is an annealing like parameter, starting with 𝛽0 = 1000 (Euclidean: 𝛽0 = 50) and reduced with iterations as per 𝛽𝑘+1 = 𝛽𝑘∕(exp 0.01 × 𝑘) until 𝛽 becomes
ess than 0.5. The regularization parameter 𝛶 = 106.
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he Euclidean route fails to converge for the 40-dimensional problem
ven as the stochastically developed version converges within 40 steps.
e may note that the Euclidean version works for the 2-dimensional

ase; see Fig. 4. However, in this case too, the quality of performance
f the geometric version is much better. In reporting these results, the
lgorithm parameters are so chosen (by trial and error) as to represent
he best performance of each method. By way of a brief comparison
ith other competing stochastic search (gradient-free) methods, one
ay see from Table 10.4 in Ref. [20] that they typically take far more

terations and a substantively higher ensemble size for convergence.
We have only provided the basic outlines of what seems to be

potentially powerful and geometrically inspired search algorithm,
pplications of which could be many, deferring a more detailed ex-
loration to a future article. We may presently add that this approach
as non-trivial consequences in numerical schemes for problems in
onlinear hyperelasticity wherein the energy functional could be di-
ectly discretized (e.g. with the finite element method) and solved
or its global minimum via the geometric scheme outlined herein,
ypassing the usual weak form. Note that, even though the hyper-
lastic solid body, post-deformation, could itself be flat Riemannian
i.e. with zero curvature), the solution based on our optimization
rotocol would evolve on a non-trivial (curved) Riemannian manifold
hich might offer faster convergence than is possible with the stan-
ard weak variational formulation. The same argument holds even for
ixed variational formulations in nonlinear elasticity. We would like

o emphasize yet another novel aspect in our approach, viz. that the
iemannian structure in the optimization scheme appears directly out
f a non-quadratic form of the objective function, even in the absence
f any specified constraints.

In the presence of an equality constraint, one may readily modify
he energy function by adding a term that penalizes the violation
f the constraint. While we have adopted an energy-based route for
he stochastic search, a geometrically adapted version of a martin-
ale based approach [12] could as well be used. Yet another option
ould be to explore a geometric variant of the stochastic approxima-

ion framework [28]. Note that, within the current setup, constrained
 s

8

ptimization problems could also be solved through an appropriate
odification of the energy, viz. via a penalty term similar to the first

wo problems. Indeed, given any cost function (path dependent or
therwise) and a diffusion process, one may construct an appropriate
eynman–Kac path integral from which an action functional could be
dentified. This action functional could offer a general approach to
onstruct a Riemannian metric and hence stochastically develop the
nderlying diffusion process. We intend to consider these issues in a
uture article.

We are presently in the final stages of developing a novel Markov
hain Monte Carlo algorithm which is on the lines of the optimiza-
ion approach discussed here. The scheme is based on the stochasti-
ally developed (overdamped) Langevin diffusion equation, wherein
he Riemannian metric is given by the Fisher information matrix. This
pproach may be looked upon as the differential geometric version of
he well-known MALA (Metropolis adjusted Langevin algorithm). As is
he case with the optimization scheme presented here, the geometric
CMC also exhibits faster mixing times, higher acceptance rate, better

ffective sample size at an affordable increase in the computation cost.
he details will however be published elsewhere.

. Concluding remarks

The central theme of this article has been a novel scheme for de-
eloping solutions of stochastic differential equations on a Riemannian
anifold, leading to a demonstration on how this idea constitutes a
owerful tool towards more efficacious numerical solutions for a wide
ange of problems with applications in science and engineering. The
ethod may be viewed as an extension to a concept well known to
athematicians, viz. a Brownian motion on a Riemannian manifold
hose generator is the Laplace–Beltrami operator. Through a range
f applications — from the Brownian dynamics in a potential well to
he search for the global minimum of a non-convex objective function,
e have tried to glean insights into how the stochastically developed
olution enforces certain constraints on the flow that are natural to
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and physically consistent with the underlying dynamics. For instance,
by deriving the Riemannian metric using an energy-like barrier, we
could readily design a numerical integration scheme that preserved
the drift of the mean-energy in a Hamiltonian dynamical system under
additive noise. Most importantly, by requiring solutions to the over-
damped Langevin flow to equilibrate around a minimum of an objective
function, we could arrive at a novel stochastic search scheme for non-
convex optimization. Indeed, much of the power of the stochastic
development method is derived from a good choice of the metric and,
as we have shown, the second derivative of energy or some cleverly
constructed energy-like function (perhaps including the negative of
the entropy for dissipative systems) could be expediently used for this
purpose across a broad spectrum of scenarios.

It is curious that the Brownian noise, whose development on the
manifold results in the only term involving the Levi-Civita connection
in the developed equation, should play such a pivotal role in our
approach. One wonders if the quality of solutions could be further
enhanced by explicitly incorporating information on the Riemannian
curvature tensor within the evolving dynamics. This seems feasible if
we were to borrow ideas from Cartan’s moving frames [3] and write
the dynamics using the language of exterior calculus whilst exploiting
Cartan’s structure equations. We wish to take this up in a future article.
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Appendix A. Brownian motion in a potential well

Let 𝑑𝐵𝑡 be an 𝑛-dimensional Brownian motion

𝑑𝑋𝑡 = 𝑑𝐵𝑡

The equation for the potential well for 𝑥 to be near 𝛽 is taken as

𝐸(𝑥) = exp (𝑥 − 𝜆)𝑇 [𝛼2](𝑥 − 𝜆)

et [𝛼2] be a diagonal matrix with entries 𝑑1, 𝑑2...𝑑𝑛. This is related to
the sharpness of the potential well — higher 𝑑 values imply a sharper
potential well. Then, the energy-like term can be written as

𝐸(𝑥) = exp (𝑑𝑝(𝑥 − 𝜆)2𝑝)

ow,

𝑖𝑗 = 1
2
𝜕2𝐸(𝑥)
𝜕𝑥𝑖𝜕𝑥𝑗

= 1
2

𝜕
𝜕𝑥𝑖

(
𝜕𝐸(𝑥)
𝜕𝑥𝑗

)

𝜕𝐸(𝑥)
𝜕𝑥𝑗

=
𝜕 exp (𝑑𝑝(𝑥 − 𝜆)2𝑝)

𝜕𝑥𝑗
= 2𝑑(𝑗)(𝑥 − 𝜆)(𝑗) exp (𝑑𝑝(𝑥 − 𝜆)2𝑝)

Note that indices in round brackets imply no sum. Therefore, we have

𝜕
𝜕𝑥𝑖

(
𝜕𝐸(𝑥)
𝜕𝑥𝑗

) =
𝜕{2𝑑(𝑗)(𝑥 − 𝜆)(𝑗) exp (𝑑𝑝(𝑥 − 𝜆)2𝑝)}

𝜕𝑥𝑖
= 4𝑑(𝑖)𝑑(𝑗)(𝑥 − 𝜆)(𝑖)(𝑥 − 𝜆)(𝑗) exp (𝑑𝑝(𝑥 − 𝜆)2𝑝)

+ 2𝑑(𝑗)𝛿𝑖𝑗 exp (𝑑𝑝(𝑥 − 𝜆)2𝑝)

𝑔𝑖𝑗 = 2𝑑(𝑖)𝑑(𝑗)(𝑥 − 𝜆)(𝑖)(𝑥 − 𝜆)(𝑗) exp (𝑑𝑝(𝑥 − 𝜆)2𝑝) + 𝑑(𝑗)𝛿𝑖𝑗 exp (𝑑𝑝(𝑥 − 𝜆)2𝑝)

Derivatives of 𝑔

𝜕𝑔𝑖𝑗 =
𝜕{2𝑑(𝑖)𝑑(𝑗)(𝑥 − 𝜆)(𝑖)(𝑥 − 𝜆)(𝑗) exp (𝑑𝑝(𝑥 − 𝜆)2𝑝)}
𝜕𝑥𝑘 𝜕𝑥𝑘

9

+
𝜕{𝑑(𝑗)𝛿𝑖𝑗 exp (𝑑𝑝(𝑥 − 𝜆)2𝑝)}

𝜕𝑥𝑘
= 2𝑑(𝑖)𝑑(𝑗)(𝑥 − 𝜆)(𝑗) exp (𝑑𝑝(𝑥 − 𝜆)2𝑝)𝛿𝑖𝑘

+2𝑑(𝑖)𝑑(𝑗)(𝑥 − 𝜆)(𝑖) exp (𝑑𝑝(𝑥 − 𝜆)2𝑝)𝛿𝑗𝑘
+4𝑑(𝑖)𝑑(𝑗)𝑑(𝑘)(𝑥 − 𝜆)(𝑖)(𝑥 − 𝜆)(𝑗)(𝑥 − 𝜆)(𝑘) exp (𝑑𝑝(𝑥 − 𝜆)2𝑝)

+ 2𝑑(𝑗)𝑑(𝑘)𝛿𝑖𝑗 (𝑥 − 𝜆)(𝑘) exp (𝑑𝑝(𝑥 − 𝜆)2𝑝)

he expressions for the Christoffel symbols can then be determined
rom the equations for the metric 𝑔 and its derivatives.

ppendix B. Drift preserving integration of Duffing equation

The following equation can be used to determine the mean energy
as a function of time) of a stochastic Hamiltonian system under
dditive noise [26] in terms of its displacement 𝑥1,𝑡 and velocity 𝑥2,𝑡.

𝑡 = E[𝐻(𝑥1,𝑡, 𝑥2,𝑡)] = E[𝐻(𝑥1,0, 𝑥2,0)] +
1
2
Tr(𝛴𝑇𝛴)𝑡

where 𝛴 is the noise intensity matrix and 𝐻 represents the Hamiltonian
of the system which for the Duffing oscillator is given by

𝑥22,𝑡
2 +

𝑘𝑥21,𝑡
2 +

𝛼𝑥41,𝑡
4 . Suppressing the time indices from the states, the energy-like term

to be used for the drift preserving integration is taken as follows.

𝐸𝑡 = exp 𝛽(
𝑥22
2

+
𝑘𝑥21
2

+
𝛼𝑥41
4

−𝑍𝑡)2 − 1

where 𝛽 is an algorithm parameter. Let

𝑉𝑡 =
𝑥22
2

+
𝑘𝑥21
2

+
𝛼𝑥41
4

Then we have

𝐸𝑡 = exp (𝛽[𝑉𝑡 −𝑍𝑡]2) − 1

The Riemannian metric 𝑔 can be determined from the energy-like term
as follows.

𝑔𝑖𝑗 =
1
2

𝜕2𝐸𝑡
𝜕𝑥𝑖𝜕𝑥𝑗

+ 𝛶𝛿𝑖𝑗 , 𝑖, 𝑗 = 1, 2

Now,
𝜕𝐸𝑡
𝜕𝑥𝑗

= 2𝛽(𝑉𝑡 −𝑍𝑡) exp (𝛽[𝑉𝑡 −𝑍𝑡]2)
𝜕𝑉𝑡
𝜕𝑥𝑗

Therefore,
𝜕2𝐸𝑡
𝜕𝑥𝑖𝜕𝑥𝑗

= 𝜕
𝜕𝑥𝑖

(
𝜕𝐸𝑡
𝜕𝑥𝑗

)

= 𝜕
𝜕𝑥𝑖

({2𝛽(𝑉𝑡 −𝑍𝑡) exp (𝛽[𝑉𝑡 −𝑍𝑡]2)}
𝜕𝑉𝑡
𝜕𝑥𝑗

)

= 2𝛽 exp (𝛽[𝑉𝑡 −𝑍𝑡]2)
𝜕𝑉𝑡
𝜕𝑥𝑗

𝜕𝑉𝑡
𝜕𝑥𝑖

+{2𝛽(𝑉𝑡 −𝑍𝑡)}2 exp (𝛽[𝑉𝑡 −𝑍𝑡]2)
𝜕𝑉𝑡
𝜕𝑥𝑖

𝜕𝑉𝑡
𝜕𝑥𝑗

+{2𝛽(𝑉𝑡 −𝑍𝑡) exp (𝛽[𝑉𝑡 −𝑍𝑡]2)}
𝜕2𝑉𝑡
𝜕𝑥𝑖𝜕𝑥𝑗

Derivative of 𝑔
The derivative of 𝑔 along with 𝑔 itself is required to determine

the Christoffel symbols 𝛾. We would specifically need the following
derivatives.
𝜕𝑔𝑖𝑗
𝜕𝑥𝑘

= 1
2

𝜕3𝐸𝑡
𝜕𝑥𝑘𝜕𝑥𝑖𝜕𝑥𝑗

𝜕3𝐸𝑡
𝜕𝑥𝑘𝜕𝑥𝑖𝜕𝑥𝑗

= 𝜕
𝜕𝑥𝑘

(
𝜕2𝐸𝑡
𝜕𝑥𝑖𝜕𝑥𝑗

)

= 𝜕
𝜕𝑥𝑘

(2𝛽 exp (𝛽[𝑉𝑡 −𝑍𝑡]2)
𝜕𝑉𝑡
𝜕𝑥𝑗

𝜕𝑉𝑡
𝜕𝑥𝑖

)

+ 𝜕 ({2𝛽(𝑉𝑡 −𝑍𝑡)}2 exp (𝛽[𝑉𝑡 −𝑍𝑡]2)
𝜕𝑉𝑡 𝜕𝑉𝑡 )
𝜕𝑥𝑘 𝜕𝑥𝑖 𝜕𝑥𝑗



M. Mamajiwala and D. Roy Probabilistic Engineering Mechanics 67 (2022) 103179

𝐴

T

𝐵

A

𝑓

T

T

𝑔

+ 𝜕
𝜕𝑥𝑘

({1 + 2𝛽(𝑉𝑡 −𝑍𝑡) exp (𝛽[𝑉𝑡 −𝑍𝑡]2)}
𝜕2𝑉𝑡
𝜕𝑥𝑖𝜕𝑥𝑗

)

For the third derivatives, let

= 𝜕
𝜕𝑥𝑘

(2𝛽 exp (𝛽[𝑉𝑡 −𝑍𝑡]2)
𝜕𝑉𝑡
𝜕𝑥𝑗

𝜕𝑉𝑡
𝜕𝑥𝑖

)

𝐵 = 𝜕
𝜕𝑥𝑘

({2𝛽(𝑉𝑡 −𝑍𝑡)}2 exp (𝛽[𝑉𝑡 −𝑍𝑡]2)
𝜕𝑉𝑡
𝜕𝑥𝑖

𝜕𝑉𝑡
𝜕𝑥𝑗

)

𝐶 = 𝜕
𝜕𝑥𝑘

({1 + 2𝛽(𝑉𝑡 −𝑍𝑡) exp (𝛽[𝑉𝑡 −𝑍𝑡]2)}
𝜕2𝑉𝑡
𝜕𝑥𝑖𝜕𝑥𝑗

)

hen
𝜕3𝐸𝑡

𝜕𝑥𝑘𝜕𝑥𝑖𝜕𝑥𝑗
= 𝐴 + 𝐵 + 𝐶

Simplifying 𝐴,𝐵, 𝐶, we have

𝐴 = {2𝛽}2(𝑉𝑡 −𝑍𝑡) exp (𝛽[𝑉𝑡 −𝑍𝑡]2)
𝜕𝑉𝑡
𝜕𝑥𝑘

𝜕𝑉𝑡
𝜕𝑥𝑗

𝜕𝑉𝑡
𝜕𝑥𝑖

+2𝛽 exp (𝛽[𝑉𝑡 −𝑍𝑡]2)
𝜕𝑉𝑡
𝜕𝑥𝑖

𝜕2𝑉𝑡
𝜕𝑥𝑘𝜕𝑥𝑗

+2𝛽 exp (𝛽[𝑉𝑡 −𝑍𝑡]2)
𝜕𝑉𝑡
𝜕𝑥𝑗

𝜕2𝑉𝑡
𝜕𝑥𝑘𝜕𝑥𝑖

= 8𝛽2(𝑉𝑡 −𝑍𝑡) exp (𝛽[𝑉𝑡 −𝑍𝑡]2)
𝜕𝑉𝑡
𝜕𝑥𝑖

𝜕𝑉𝑡
𝜕𝑥𝑗

𝜕𝑉𝑡
𝜕𝑥𝑘

+{2𝛽(𝑉𝑡 −𝑍𝑡)}3 exp (𝛽[𝑉𝑡 −𝑍𝑡]2)
𝜕𝑉𝑡
𝜕𝑥𝑖

𝜕𝑉𝑡
𝜕𝑥𝑗

𝜕𝑉𝑡
𝜕𝑥𝑘

+4𝛽2(𝑉𝑡 −𝑍𝑡)2 exp (𝛽[𝑉𝑡 −𝑍𝑡]2)
𝜕𝑉𝑡
𝜕𝑥𝑗

𝜕2𝑉𝑡
𝜕𝑥𝑖𝜕𝑥𝑘

+4𝛽2(𝑉𝑡 −𝑍𝑡)2 exp (𝛽[𝑉𝑡 −𝑍𝑡]2)
𝜕𝑉𝑡
𝜕𝑥𝑖

𝜕2𝑉𝑡
𝜕𝑥𝑗𝜕𝑥𝑘

𝐶 = 2𝛽 exp (𝛽[𝑉𝑡 −𝑍𝑡]2)
𝜕2𝑉𝑡
𝜕𝑥𝑖𝜕𝑥𝑗

𝜕𝑉𝑡
𝜕𝑥𝑘

+{2𝛽(𝑉𝑡 −𝑍𝑡)}2 exp (𝛽[𝑉𝑡 −𝑍𝑡]2)
𝜕2𝑉𝑡
𝜕𝑥𝑖𝜕𝑥𝑗

𝜕𝑉𝑡
𝜕𝑥𝑘

+{2𝛽(𝑉𝑡 −𝑍𝑡) exp (𝛽[𝑉𝑡 −𝑍𝑡]2)}
𝜕3𝑉𝑡

𝜕𝑥𝑘𝜕𝑥𝑖𝜕𝑥𝑗

ppendix C. Non-convex optimization

(𝐱) = 𝑓 (𝑥1,… , 𝑥𝑛)

= −𝑎 exp(−𝑏

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
𝑥2𝑖 ) − exp( 1

𝑛

𝑛
∑

𝑖=1
cos(𝑐𝑥𝑖)) + 𝑎 + exp(1)

reat 𝑓 (𝑥) as an energy-like function to determine 𝑔 and 𝛾. The
Langevin SDE to be developed is given by:

𝑑𝑋𝑡 = −𝛽𝑡∇𝑓 (𝑋𝑡)𝑑𝑡 +
√

2𝛽𝑡𝑑𝐵𝑡

where 𝛽 is an annealing like parameter. The developed SDE in compo-
nent form is:

𝑑𝑋𝑖
𝑡 = −𝛽𝑡[

√

𝑔−1]𝑖𝑗∇𝑗𝑓 (𝑋𝑡)𝑑𝑡 +
√

2𝛽𝑡[
√

𝑔−1]𝑖𝑗𝑑𝐵
𝑗
𝑡 − 𝛽𝑡𝑔

−1
𝑘𝑙 𝛾

𝑖
𝑘𝑙𝑑𝑡

where

𝑔𝑖𝑗 =
1
2
𝜕2𝑓 (𝑥)
𝜕𝑥𝑖𝜕𝑥𝑗

+ 𝛶𝛿𝑖𝑗 (34)

Let

𝑇1(𝑥) = exp(−𝑏

√

√

√

√

1
𝑛

𝑛
∑

𝑥2𝑖 )

𝑖=1
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𝑇2(𝑥) = exp( 1
𝑛

𝑛
∑

𝑖=1
cos(𝑐𝑥𝑖))

herefore, 𝑔 and its derivatives can be written as

𝑖𝑗 = −𝑎
2
𝜕2𝑇1(𝑥)
𝜕𝑥𝑗𝜕𝑥𝑘

− 1
2
𝜕2𝑇2(𝑥)
𝜕𝑥𝑗𝜕𝑥𝑘

and
𝜕𝑔𝑖𝑗
𝜕𝑥𝑚

= −𝑎
2

𝜕3𝑇1(𝑥)
𝜕𝑥𝑗𝜕𝑥𝑘𝜕𝑥𝑘

− 1
2

𝜕3𝑇2(𝑥)
𝜕𝑥𝑗𝜕𝑥𝑘𝜕𝑥𝑘

We need the first, second and third derivatives of 𝑇1, 𝑇2 to determine 𝑔
and its derivatives which are determined as follows.

First derivative of 𝑇1

𝜕𝑇1(𝑥)
𝜕𝑥𝑗

=
𝜕 exp(− 𝑏

√

𝑛
(𝑥𝑖𝑥𝑖)

1
2 )

𝜕𝑥𝑗

= − 𝑏
√

𝑛
(𝑥𝑖𝑥𝑖)

− 1
2 𝑥𝑗𝑇1(𝑥)

Second derivative of 𝑇1
𝜕2𝑇1(𝑥)
𝜕𝑥𝑗𝜕𝑥𝑘

= 𝜕
𝜕𝑥𝑘

(− 𝑏
√

𝑛
(𝑥𝑖𝑥𝑖)

− 1
2 𝑥𝑗𝑇1(𝑥))

= 𝑏
√

𝑛
𝑥𝑗𝑥𝑘(𝑥𝑖𝑥𝑖)

− 3
2 𝑇1(𝑥)

− 𝑏
√

𝑛
(𝑥𝑖𝑥𝑖)

− 1
2 𝛿𝑗𝑘𝑇1(𝑥) −

𝑏
√

𝑛
(𝑥𝑖𝑥𝑖)

− 1
2 𝑥𝑗

𝜕(𝑇1(𝑥))
𝜕𝑥𝑘

Third derivative of 𝑇1
𝜕3𝑇1(𝑥)

𝜕𝑥𝑗𝜕𝑥𝑘𝜕𝑥𝑚
= 𝑏

√

𝑛
𝜕

𝜕𝑥𝑚
(𝑥𝑗𝑥𝑘(𝑥𝑖𝑥𝑖)

− 3
2 𝑇1(𝑥))

− 𝑏
√

𝑛
𝜕

𝜕𝑥𝑚
((𝑥𝑖𝑥𝑖)

− 1
2 𝛿𝑗𝑘𝑇1(𝑥))

− 𝑏
√

𝑛
𝜕

𝜕𝑥𝑚
((𝑥𝑖𝑥𝑖)

− 1
2 𝑥𝑗

𝜕(𝑇1(𝑥))
𝜕𝑥𝑘

)

= 𝑏
√

𝑛
𝑥𝑘(𝑥𝑖𝑥𝑖)

− 3
2 𝑇1(𝑥)𝛿𝑗𝑚 + 𝑏

√

𝑛
𝑥𝑗 (𝑥𝑖𝑥𝑖)

− 3
2 𝑇1(𝑥)𝛿𝑘𝑚

−3 𝑏
√

𝑛
𝑥𝑗𝑥𝑘𝑥𝑚(𝑥𝑖𝑥𝑖)

− 5
2 𝑇1(𝑥) +

𝑏
√

𝑛
𝑥𝑗𝑥𝑘(𝑥𝑖𝑥𝑖)

− 3
2
𝜕𝑇1(𝑥)
𝜕𝑥𝑚

𝑏
√

𝑛
𝛿𝑗𝑘𝑥𝑚(𝑥𝑖𝑥𝑖)

− 3
2 𝑇1(𝑥) −

𝑏
√

𝑛
(𝑥𝑖𝑥𝑖)

− 1
2 𝛿𝑗𝑘

𝜕𝑇1(𝑥)
𝜕𝑥𝑚

+ 𝑏
√

𝑛
𝑥𝑗𝑥𝑚(𝑥𝑖𝑥𝑖)

− 3
2
𝜕𝑇1(𝑥)
𝜕𝑥𝑘

− 𝑏
√

𝑛
(𝑥𝑖𝑥𝑖)

− 1
2
𝜕𝑇1(𝑥)
𝜕𝑥𝑘

𝛿𝑗𝑚

− 𝑏
√

𝑛
𝑥𝑗 (𝑥𝑖𝑥𝑖)

− 1
2
𝜕2𝑇1(𝑥)
𝜕𝑥𝑘𝜕𝑥𝑚

First derivative of 𝑇2
𝜕𝑇2(𝑥)
𝜕𝑥𝑗

= 𝜕
𝜕𝑥𝑗

(exp ( 1
𝑛

𝑛
∑

𝑖=1
cos (𝑐𝑥𝑖))) (35)

= − 𝑐
𝑛
sin (𝑐𝑥𝑗 )𝑇2(𝑥) (36)

Second derivative of 𝑇2
𝜕2𝑇2(𝑥)
𝜕𝑥𝑗𝜕𝑥𝑘

= − 𝑐
𝑛

𝜕
𝜕𝑥𝑘

(sin (𝑐𝑥𝑗 )𝑇2(𝑥))

= − 𝑐2

𝑛
𝛿𝑗𝑘 cos (𝑐𝑥𝑗 )𝑇2(𝑥) −

𝑐
𝑛
sin (𝑐𝑥𝑗 )

𝜕𝑇2(𝑥)
𝜕𝑥𝑘

Third derivative of 𝑇2
𝜕3𝑇2(𝑥)

𝜕𝑥𝑚𝜕𝑥𝑗𝜕𝑥𝑘
= 𝜕

𝜕𝑥𝑚
(− 𝑐2

𝑛
𝛿𝑗𝑘 cos (𝑐𝑥𝑗 )𝑇2(𝑥) −

𝑐
𝑛
sin (𝑐𝑥𝑗 )

𝜕𝑇2(𝑥)
𝜕𝑥𝑘

)

= 𝑐3 𝛿𝑘𝑚𝑇2(𝑥) sin (𝑐𝑥𝑗 ) −
𝑐 sin (𝑐𝑥𝑗 )

𝜕2𝑇2(𝑥)

𝑛 𝑛 𝜕𝑥𝑘𝜕𝑥𝑚
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− 𝑐2

𝑛
𝛿𝑗𝑘 cos (𝑐𝑥𝑗 )

𝜕𝑇2(𝑥)
𝜕𝑥𝑚

− 𝑐2

𝑛
𝛿𝑗𝑚

𝜕𝑇2(𝑥)
𝜕𝑥𝑘

(cos (𝑐𝑥𝑗 )) (37)

References

[1] A. Einstein, The foundation of the general theory of relativity (1916), Berlin
Years: Writings 1917 (1914) 146–200.

[2] R. Kupferman, J.P. Solomon, A Riemannian approach to reduced plate, shell,
and rod theories, J. Funct. Anal. 266 (5) (2014) 2989–3039.

[3] J.N. Clelland, From Frenet To Cartan: The Method of Moving Frames, in:
Graduate Studies in Mathematics, vol. 178, American Mathematical Society,
2017.

[4] J.B. Rosen, The gradient projection method for nonlinear programming. Part I.
Linear constraints, J. Soc. Ind. Appl. Math. 8 (1) (1960) 181–217.

[5] J. Rosen, The gradient projection method for nonlinear programming. Part II.
Nonlinear constraints, J. Soc. Ind. Appl. Math. 9 (4) (1961) 514–532.

[6] D.G. Luenberger, The gradient projection method along geodesics, Manage. Sci.
18 (11) (1972) 620–631.

[7] S.T. Smith, Optimization techniques on Riemannian manifolds, Fields Inst.
Commun. 3 (3) (1994) 113–135.

[8] W. Ring, B. Wirth, Optimization methods on Riemannian manifolds and their
application to shape space, SIAM J. Optim. 22 (2) (2012) 596–627.

[9] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of
ICNN’95-International Conference on Neural Networks, vol. 4, IEEE, 1995, pp.
1942–1948.

[10] M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization, IEEE Comput. Intell.
Mag. 1 (4) (2006) 28–39.

[11] D. Whitley, A genetic algorithm tutorial, Stat. Comput. 4 (2) (1994) 65–85.
[12] S. Sarkar, D. Roy, R.M. Vasu, A global optimization paradigm based on change

of measures, R. Soc. Open Sci. 2 (7) (2015) 150123.
[13] H. Robbins, S. Monro, A stochastic approximation method, Ann. Math. Stat.

(1951) 400–407.
[14] S.M. Shah, Stochastic approximation on Riemannian manifolds, Appl. Math.

Optim. (2019) 1–29.
[15] E.P. Hsu, Stochastic Analysis on Manifolds, in: Graduate Studies in Mathematics,

vol. 38, American Mathematical Society, Providence, R.I., 2002.
11
[16] A. Ashkin, Acceleration and trapping of particles by radiation pressure, Phys.
Rev. Lett. 24 (1970) 156–159.

[17] S. Chu, J.E. Bjorkholm, A. Ashkin, A. Cable, Experimental observation of optically
trapped atoms, Phys. Rev. Lett. 57 (1986) 314–317.

[18] A. Ashkin, Optical trapping and manipulation of neutral particles using lasers,
Proc. Natl. Acad. Sci. 94 (10) (1997) 4853–4860.

[19] J. Lee, S.-Y. Teh, A. Lee, H.H. Kim, C. Lee, K.K. Shung, Single beam acoustic
trapping, Appl. Phys. Lett. 95 (7) (2009) 073701.

[20] D. Roy, G.V. Rao, Stochastic Dynamics, Filtering and Optimization, Cambridge
University Press, 2017.

[21] H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A
150 (5–7) (1990) 262–268.

[22] P.J. Channell, C. Scovel, Symplectic integration of Hamiltonian systems,
Nonlinearity 3 (2) (1990) 231.

[23] Y. Ishimori, A high-order energy-conserving integration scheme for Hamiltonian
systems, Phys. Lett. A 372 (10) (2008) 1562–1573.

[24] G.N. Milstein, Y.M. Repin, M.V. Tretyakov, Symplectic integration of Hamiltonian
systems with additive noise, SIAM J. Numer. Anal. 39 (6) (2002) 2066–2088.

[25] D. Cohen, G. Dujardin, Energy-preserving integrators for stochastic Poisson
systems, Commun. Math. Sci. 12 (2014) 1523–1539.

[26] C. Chen, D. Cohen, R. D’Ambrosio, A. Lang, Drift-preserving numerical inte-
grators for stochastic Hamiltonian systems, Adv. Comput. Math. 46 (2) (2020)
1–22.

[27] K. Tang, X. Yáo, P.N. Suganthan, C. MacNish, Y.-P. Chen, C.-M. Chen, Z. Yang,
Benchmark Functions for the CEC’2008 Special Session and Competition on
Large Scale Global Optimization, vol. 24, Nature Inspired Computation and
Applications Laboratory, USTC, China, 2007, pp. 1–18.

[28] H. Kushner, G.G. Yin, Stochastic Approximation and Recursive Algorithms and
Applications, vol. 35, Springer Science & Business Media, 2003.

http://refhub.elsevier.com/S0266-8920(21)00063-1/sb1
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb1
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb1
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb2
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb2
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb2
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb3
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb3
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb3
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb3
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb3
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb4
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb4
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb4
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb5
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb5
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb5
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb6
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb6
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb6
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb7
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb7
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb7
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb8
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb8
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb8
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb9
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb9
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb9
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb9
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb9
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb10
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb10
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb10
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb11
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb12
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb12
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb12
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb13
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb13
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb13
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb14
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb14
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb14
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb15
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb15
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb15
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb16
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb16
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb16
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb17
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb17
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb17
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb18
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb18
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb18
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb19
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb19
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb19
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb20
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb20
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb20
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb21
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb21
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb21
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb22
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb22
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb22
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb23
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb23
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb23
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb24
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb24
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb24
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb25
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb25
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb25
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb26
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb26
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb26
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb26
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb26
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb27
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb27
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb27
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb27
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb27
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb27
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb27
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb28
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb28
http://refhub.elsevier.com/S0266-8920(21)00063-1/sb28

	Stochastic dynamical systems developed on Riemannian manifolds
	Introduction
	Stochastic development of an SDE on Riemannian manifold 
	A brief review of concepts from differential geometry
	The concept of stochastic development
	Local coordinate expression of a developed SDE on RM

	Applications and illustrations
	Brownian motion in a potential well
	Energy-drift preserving numerical integration of SDEs
	Non-convex optimization

	Concluding remarks
	Declaration of competing interest
	Appendix A. Brownian motion in a potential well
	Appendix B. Drift preserving integration of Duffing equation
	Appendix C. Non-convex optimization
	References


