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Abstract

The study of toppling on permutations with an extra labeled chip was initiated by
the first author with D. Hathcock and P. Tetali (arXiv:2010.11236), where the extra
chip was added in the middle. We extend this to all possible locations p as well as
values r of the extra chip and give a complete characterization of permutations which
topple to the identity. Further, we classify all permutations which are outcomes of the
toppling process in this generality, which we call resultant permutations. Resultant
permutations turn out to be certain decomposable permutations. The number of
configurations toppling to a given resultant permutation is shown to depend purely
on the number of left-to-right maxima (or records) of the permutation to the left of p
and the number of right-to-left minima to the right of p. The number of permutations
toppling to a given resultant permutation (identity or otherwise) is shown to be the
binomial transform of a poly-Bernoulli number of type B.

Mathematics Subject Classifications: 05A15, 05A10, 05A19

1 Introduction

Chip-firing (also called abelian sandpile model) is a stochastic discrete dynamical system
defined on a graph. Hopkins–McConville–Propp [HMP17] introduced a labeled version of
the chip-firing process on the infinite path graph. They showed the remarkable property
that when the chips start at the origin and the number of chips is even the chips always
end up in sorted order. Many variants of this original problem have been considered since
then [GHMP19, GHTA21, HP19, KL20, FK21].

∗Supported by the UGC Centre for Advanced Studies and by Department of Science and Technology
grant EMR/2016/006624.
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The first author with D. Hathcock and P. Tetali [AHT20] considered a variant where
a permutation of chips labeled 1 through n were placed contiguously on the path graph
and one extra chip, labelled r was added in the middle. In that case, they showed that
the final configuration is deterministic. They defined a toppleable permutation to be one
which results in the identity permutation for all values of r, and showed that the number
of toppleable permutations is a poly-Bernoulli number of type C, even though they did not
use that language.

In this paper we investigate this model in much greater generality and explain the
connection to the combinatorics of the poly-Bernoulli numbers. Poly-Bernoulli numbers
of types B and C arise naturally in many combinatorial problems, such as permutations
according to excedance sets, acyclic orientations of bipartite graphs, lonesum matrices,
Vesztergombi permutations and a lot more; see [BH17] for a review.

Our first results are a natural generalization of the formulation of [AHT20]. We add
the extra chip r to an arbitrary site p in the permutation. We consider toppleability in
two different but related ways. In the first, we fix p and count all possible configurations
that result in a sorted configuration. In the second, we count permutations which are
toppleable for fixed r and p. In both cases, we show that the numbers are related to
the poly-Bernoulli numbers of type B. Generalizing [AHT20, Theorem 2.4], we also count
permutations which are toppleable for all r for a fixed p. In this case, we show that we
always obtain poly-Bernoulli numbers of type C.

Our second results give a characterization of all the permutations that can arise as the
result of a toppling procedure, which we call resultant permutations. It turns out that
resultant permutations can be succintly characterized by left-to-right maxima to the left of
p and right-to-left minima to the right of p. We also enumerate toppling to these resultant
permutations. Here too we study configurations with a fixed p and permutations with a
fixed r and p. In both cases, we show that the enumeration is related to the poly-Bernoulli
numbers of type B.

The plan of the rest of this article is as follows. In Section 2, we introduce the model,
give the necessary background and state the main results. We give a self-contained sum-
mary of combinatorial aspects of poly-Bernoulli numbers of types B and C in Section 3.
Section 4 is devoted to the understanding of configurations and permutations which topple
to the sorted configuration. Finally, we classify all resultant permutations and enumerate
the number of configurations and permutations that topple to them in Section 5.

2 The toppling model

Let Ln be the line segment Ln = {0, 1, . . . , n + 1}. We distribute n + 1 chips labeled
by {1, 2, . . . , n + 1} on Ln as follows: we first distribute n of these chips on the sites 1
through n, and then we add the remaining chip on a site p, 1 6 p 6 n. The set of all such
configurations is denoted S(n, p).

We define a dynamical system on Ln by the process of toppling, which is defined as
follows:

the electronic journal of combinatorics 28(4) (2021), #P4.18 2



1. If no position in Ln has two or more chips stop. Else, go to step 2.

2. Choose a position i uniformly at random among positions occupied by more than
one chip.

3. Pick two chips α < β uniformly from those at site i.

4. Move α to position i− 1 and β to i+ 1.

5. Go to step 1.

For instance, the configuration denoted by C = (7, 3, 1, 5, (2, 4), 6, 8) ∈ S(7, 5) has two
chips on the fifth site and is depicted as

4
7 3 1 5 2 6 8

0 1 2 3 4 5 6 7 8
. (2.1)

Let Sn be the set of permutations of [n] = {1, 2, . . . , n}. Configurations in S(n, p) naturally
arise from permutations in Sn. Given a permutation π = π1π2 . . . πn in one-line notation
and an element r ∈ [n + 1], we first place the chips labeled by πi on site i for 1 6 i 6 n.
We then place the chip labeled by r on site p and increase each value πi > r by 1. It is
easy to see that every configuration can arise in two ways from a permutation in the above
described way by the choice of r at site p. For example, the configuration in (2.1) arises
from the permutation π = 6214357 with r = 2 and from the permutation σ = 6314257
with r = 4. An initial configuration C ∈ S(n, p) that arises from a permutation π ∈ Sn
and r ∈ [n + 1] is denoted π(r,p). The following result follows from the proof of [AHT20,
Proposition 2.1] with almost no change.

Proposition 1. 1. At every step the configuration lives in Ln. No chips moves to the
left of the site 0 or to the right of the site n+ 1.

2. The final configuration is deterministic containing exactly one chip on every site
except one.

Another important and useful property is the symmetry property. This is easy to prove
by analyzing what happens at a single toppling step.

Proposition 2 (Symmetry). For a positive integer n, fix p 6 n−1. The toppling dynamics
on a configuration C ∈ S(n, p) is isomorphic to that of Ĉ ∈ S(n, n−p), where Ĉ is obtained
by reversing the direction and subtracting each chip value in C from n+ 1.

Definition 3. We say that a configuration C ∈ S(n, p) is p-toppleable if the final configu-
ration is sorted.
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Our first main result is for the number of p-toppleable configurations. To state our
results, we recall the relevant sequences. The well-known polylogarithm function is given
by

Lik(z) =
∞∑
i=1

zi

ik
.

When the base k is a non-positive integer, then it is well-known to be a rational function.
In particular, for a non-negative integer m,

Li−m(z) =

m−1∑
j=0

〈
m
j

〉
zm−j

(1− z)m+1
,

where

〈
m
j

〉
is the number of permutations in Sn with j ascents. (Recall that a position k

is an ascent in a permutation if πk < πk+1.) Poly-Bernoulli numbers of type B are defined
by the generating function,

∞∑
n=0

Bn,k
xn

n!
=

Li−k(1− e−x)
1− e−x

, (2.2)

where k > 0. The reason for this terminology is that Li1(x) = − log(1− x) and so,

Li1(1− e−x)
1− e−x

=
x

1− e−x
,

the generating function of the Bernoulli numbers. The related family of poly-Bernoulli
numbers of type C are defined by the generating function,

∞∑
n=0

Cn,k
xn

n!
=

Li−k(1− e−x)
ex − 1

. (2.3)

It is also the value of the Arakawa-Kaneko function [AK99]

ξk(−n) = (−1)nCn,k,

where the Arakawa-Kaneko function is defined as

ξk(s) :=
1

Γ(s)

∫ ∞
0

ts−1

et − 1
Lik(1− e−t)dt.

See Table 1(a) and (b) for the first few poly-Bernoulli numbers of types B and C respec-
tively. In particular, notice the nontrivial symmetries, Bn,k = Bk,n and Cn+1,k = Ck+1,n.
Section 3 contains more details about these numbers and their relation to combinatorics.

Theorem 4. The number of p-toppleable configurations in S(n, p) is given by Bn−p+1,p/2.
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n\k 0 1 2 3 4

0 1 1 1 1 1
1 1 2 4 8 16
2 1 4 14 46 146
3 1 8 46 230 1066
4 1 16 146 1066 6906

n\k 0 1 2 3 4

0 1 0 0 0 0
1 1 1 1 1 1
2 1 3 7 15 31
3 1 7 31 115 391
4 1 15 115 675 3451

(a) (b)

Table 1: The poly-Bernoulli numbers Bn,k in (a) and Cn,k in (b) for 0 6 n, k 6 5.

Although it is not obvious from any of the definitions, it turns out that Bn,k is even if
n, k > 0; see Theorem 22. As a consequence, Theorem 4 makes sense. We also formulate
an analogous definition to Theorem 3 in terms of the corresponding permutations.

Definition 5. We say that a permutation π ∈ Sn is (r, p)-toppleable if starting with the
configuration π(r,p) the final configuration of the toppling process is sorted.

We denote the set of (r, p)-toppleable permutations of [n] by T (r,p)
n . Let ∆ be the discrete

(forward) difference operator, i.e. for any function f(n), ∆(f(n)) = f(n+ 1)− f(n). Then
the higher difference operators are obtained by composition. For example, ∆2(f(n)) =
f(n + 2) − 2f(n + 1) + f(n). Note that ∆0(f(n)) = f(n). Given a sequence (an), it’s
binomial transform [Knu73, Section 5.2.2, Exercise 36] is given by the sequence (bn) where

bn =
n∑
k=0

(−1)k
(
n

k

)
ak.

It is easy to see that ∆mf(n) is (−1)m times the (n+m)’th term of the binomial transform
of the sequence (f(n)). Our second main result is on the enumeration of (r, p)-toppleable
permutations.

Theorem 6. Let n, p, r be integers satisfying 1 6 p 6 n, 1 6 r 6 n − p + 1. Then
|T (r,p)
n | = ∆r−1(Bn−p+1−r,p

)
, where ∆ acts on the first index.

We then recover one of the main results of [AHT20] as a special case.

Corollary 7 ([AHT20, Theorem 3.4 and Lemma 3.5]). Let n be an odd integer and p =

b(n+ 1)/2c. Then for r = p and r = p+ 1, |T (r,p)
n | = Cb(n−1)/2c,b(n−1)/2c.

We next enumerate permutations in Sn which are (r, p) toppleable for every r with
arbitrary but fixed p. This generalizes [AHT20, Theorem 2.4] for p = dn/2e, where these
were called toppleable permutations.

Theorem 8. Fix a positive integer n and p, 1 6 p 6 n. Then π ∈
n+1⋂
r=1

T (r,p)
n if and only

if p + i − n 6 π−1i 6 p + i − 1, 1 6 i 6 n. Further, the number of such permutations is
Cp,n−p.
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Theorems 4, 6, 7 and 8 will be proved in Section 4. We next study the toppling process
from another point of view. We have seen that not every permutation topples to the
identity permutation, but it is possible to characterize those who topple to it. On the
other hand, it is also clear that not all permutations will be the final configuration after a
toppling process. For instance, in case of 4 chips, by adding a chip on the second position,
only the 4 permutations 1234, 1243, 2134, 2143 occur out of the 24; see Table 2.

The question naturally arises as to which permutations arise as the result of a toppling
process. Moreover, we would like to give a characterization of permutations that end in a
certain permutation.

Definition 9. We say that a configuration C ∈ S(n, p) topples to the permutation π ∈ Sn+1

if toppling C results in π. For π ∈ Sn+1, if there exists a C ∈ S(n, p) which topples to π,
we say that π is a p-resultant permutation.

The list of 2-resultant permutations in S4 and the number of configurations in S(3, 2)
that topple to them are given in Table 2.

Permutations Configurations Number
1234 1(23)4, 1(24)3, 1(34)2, 2(13)4, 2(14)3, 3(12)4, 3(14)2 7
1243 4(12)3, 4(13)2 2
2134 2(34)1, 3(24)1 2
2143 4(32)1 1

Table 2: The 2-resultant permutations in S4 on the left, configurations toppling to them
in the middle, and the number of configurations on the right.

The characterization of p-resultant permutations is then as follows.

Theorem 10. A permutation π ∈ Sn is a p-resultant permutation if and only if (π1, . . . ,
πn−p) ∈ Sn−p.

A permutation π in Sn is irreducible [Kla03] or indecomposable [Kin06] if there does
not exist an m, 1 6 m < n such that π([m]) = [m]. A permutation which is not irreducible
is called reducible or decomposable. Theorem 10 says that p-resultant permutations are
certain reducible or decomposable permutations.

To count the number of configurations toppling to a given p-resultant permutation, we
recall that a left-to-right maximum or a record of a permutation π is a value πj such that
πj = max{π1, . . . , πj}. By convention, π1 is taken to be a left-to-right maximum. It is a
standard fact that the number of permutations in Sn with k left-to-right maxima are given

by

[
n
k

]
, the (unsigned) Stirling number of the first kind ; see [GKP94, Problem 6.63] for

example. Similarly, one can define a right-to-left minimum for a permutation. If πi = j is
a left-to-right maximum for π, then one can show that π−1j = i is a right-to-left minimum
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for π−1. Therefore, the number of permutations of Sn with k right-to-left minima is also[
n
k

]
.

For a given p-resultant permutation π, let πleft be the induced permutation on [n− p]
and πright be the induced permutation on {n− p+ 1, . . . , n}. The point of these definitions
is the following lemma.

Lemma 11. The number of configurations toppling to a given p-resultant permutation
π ∈ Sn depends solely on the number of left-to-right maxima of πleft and the right-to-left
minima of πright.

For general n and p, we form an array T
(p)
n with n−p rows and p columns. The i’th row

of T
(p)
n is indexed by permutations of [n− p] with i left-to-right maxima. The j’th column

of T
(p)
n is indexed by permutations of {n + 1 − p, . . . , n} with j right-to-left minima. Let

the (i, j)’th entry of T
(p)
n be the number of configurations that topple to any permutation

π with i left-to-right maxima in πleft and j right-to-left minima in πright. Theorem 11
guarantees that this is well-defined. For example, see Table 3.

πleft\πright 65 56

4123, 4132, 4213, 4231, 4312, 4321 1 2
1423, 1432, 2143, 2413, 2431

2 7
3124, 3142, 3214, 3241, 3412, 3421
1243, 1324, 1342, 2134, 2314, 2341 4 23

1234 8 73

Table 3: The array T
(2)
6 as defined after Theorem 11.

Our next theorem gives a statement about the size of the set of configurations that
topple to a permutation in a class, i.e. with a given number of left-to-right maxima in πleft

and given number right-to-left minima of πright.

Theorem 12. The number of configurations that topple to a resultant permutation π with
i left-to-right maxima in πleft and j right-to-left minima of πright is 1

2
Bi,j.

To have the complete picture about resultant permutations, we now focus on the dis-
tinguished chip r in an initial configuration. More precisely, we consider configurations
of the form σr,p as σ varies. According to Theorem 10 and Theorem 11, the resultant
permutation π splits up into πleft of [n− p] and πright of {n− p+ 1, . . . , n}. However, not
all permutations of [n− p] and {n− p+ 1, . . . , n} will necessarily appear.

Theorem 13. A p-resultant permutation π ∈ Sn is obtained by toppling a permutation by
adding the chip r if and only if π satisfies the following conditions:

1. If r 6 n− p, then r is a left-to-right maximum of πleft,
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2. If r > n− p, then r is a right-to-left minimum of πright.

Theorems 10, 11, 12 and 13 will be proved in Section 5. The last theorem determines
the number of permutations Nπ ≡ Nπ(r, p) toppling to a given permutation for a fixed
value of r and p. Before stating the next result for p-resultant permutations in Sn obtained
by adding the chip r to site p, we give some data for n = 6 and p = r = 2 in Table 4.
Using Theorem 2, it suffices to look at r 6 n− p.

πleft\πright 65 56

2143, 2413, 2431 2 4
2134, 2314, 2341 4 14

1243 2 10
1234 4 32

Table 4: The 2-resultant permutations of S4 obtained by adding the chip r = 2 along with
the number of permutations toppling to them written as an array in the style of Table 3.

Theorem 14. Suppose r 6 n − p and π is a p-resultant permutation that satisfies the
conditions of Theorem 13. If the left-to-right maxima in (π1, . . . , πn−p) are {i1, . . . , ia, r, j1,
. . . , jb} in increasing order and there are k right-to-left minima in (πn−p+1, . . . , πn), Nπ =
∆a
(
Bb,k

)
, where ∆ acts on the first index.

Proof. This follows from Theorem 6 and the bijection in the proof of Theorem 12.

As a corollary of Theorem 14, we mention the special case where poly-Bernoulli numbers
of type C occur. The permutations π which occur and the corresponding Nπ’s for n = 6,
p = 3 for both r = 3, 4 are listed in Table 5.

πleft\πright 564, 654 465, 546, 645 456

312, 321 1 1 1
132, 213, 231 1 3 7

123 1 7 31

Table 5: The 3-resultant permutations of S6 obtained by adding either the chip r = 3 or
r = 4 along with the number of permutations toppling to them written as an array in the
style of Table 3.

Corollary 15. Suppose r = n − p and π is a p-resultant permutation that satisfies the
conditions of Theorem 13. Assume that there are i left-to-right maxima in (π1, . . . , πn−p)
and j right-to-left minima in (πn−p+1, . . . , πn). Then Nπ = Cj−1,i−1.

Proof. This follows from Theorem 7 and the bijection in the proof of Theorem 12.

Using Theorem 2, we observe that the poly-Bernoulli numbers of type C occur when
r = n− p or n− p+ 1.
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3 Poly-Bernoulli numbers

Here, we introduce the combinatorial sequences that will play the main role in this work.
Poly-Bernoulli numbers were introduced by M. Kaneko [Kan97] as a generalization of the
classical Bernoulli numbers during his investigations of multiple zeta values.

3.1 Poly-Bernoulli numbers of type B

For integers n > 0 and k, poly-Bernoulli numbers of type B were originally defined by the
generating function (2.2). From the combinatorial point of view poly-Bernoulli numbers
with negative indices are of interest, since these numbers are nonnegative integers and
there are several different combinatorial objects that are enumerated by these numbers.
The array appears in OEIS as [OEI20, A099594].

The combinatorics of poly-Bernoulli numbers is very rich. The first combinatorial
interpretation was given by Brewbaker [Bre08] as the number of n× k lonesum matrices,
which are {0, 1}-matrices uniquely determined by their row and column sum vectors. We
now give some combinatorial objects counted by poly-Bernoulli numbers of type B that
are relevant to the toppling process. For further examples, see [BH15] for instance.

Permutations with the restriction on the difference between position and value are
well studied [BH17, KKL13, Lau07, Sjo07, Ves74, LV78]. We follow the convention of
[BH15] and refer to them as Vesztergombi permutations since they were first studied by
Vesztergombi [Ves74].

Definition 16. Let 1 6 k, n. A permutation π ∈ Sk+n is said to be a (k, n)-Vesztergombi
permutation if −k 6 πi − i 6 n for 1 6 i 6 k + n.

Such permutations were first studied by Vesztergombi [Ves74]. An example of a (9, 6)-
Vesztergombi permutation in two-line notation is

σ =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 6 4 8 7 10 12 11 13 3 2 9 5 14 15

)
. (3.1)

Theorem 17 ([Lau07]). The number of (k, n)-Vesztergombi permutations is Bn,k.

The double exponential generating function of poly-Bernoulli numbers is given by the
elegant expression [Kan97]

∞∑
k=0

∞∑
n=0

Bn,k
xn

n!

yk

k!
=

ex+y

ex + ey − ex+y
.

Recall that

{
n
m

}
is the Stirling number of the second kind, which enumerates, among other

things, set partitions of [n] with m parts. The following three basic formulas were proven
combinatorially in the literature:
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1. the closed formula [BH15, Bre08],

Bn,k =

min(n,k)∑
m=0

(m!)2
{
n+ 1
m+ 1

}{
k + 1
m+ 1

}
, (3.2)

2. the inclusion-exclusion type formula [Bre08],

Bn,k =
n∑

m=0

(−1)n−mm!

{
n
m

}
(m+ 1)k, (3.3)

3. and the recurrence relation [BH15],

Bn,k+1 = Bn,k +
n∑

m=1

(
n

m

)
Bn−(m−1),k. (3.4)

The asymptotic for the diagonal entries is given in [KLM21]

Bn,n ∼

√
1

nπ(1− log 2)

(n!)2

(log 2)2n+1 .

We now define two other classes of objects counted by the poly-Bernoulli numbers. The
first definition appears in [OEI20, Sequence A099594] by D. Callan, hence the nomenclature
in [BH15].

Definition 18. Let 1 6 k, n. A permutation π ∈ Sk+n is said to be a (n, k)-Callan
permutation if each maximal contiguous substring whose support belongs to {1, 2, . . . , n}
(resp. {n+ 1, n+ 2, . . . , n+ k}) is increasing (resp. decreasing).

In order to emphasize the two types in the set we sometimes distinguish the elements
{1, 2, . . . , n} with an underline and the elements {n+1, n+2, . . . , n+k} with an overline. In
this terminology, a Callan permutation is an alternating sequence of increasing underlined
and decreasing overlined subsequences.

Example 19. The set of (2, 2)-Callan permutations ordered according to the first letter
is listed below:

1243; 1432; 1324; 1423;

2431; 2314; 2413;

3124; 3142; 3241;

4123; 4132; 4231; 4312.

Definition 20. For any simple, undirected graph, an orientation is an assignment of
arrows to the edges. An acyclic orientation (AO) is an orientation in which there is no
directed cycle. It is easy to see that every graph has an acyclic orientation and every
acyclic orientation has at least one source (vertex with no incoming arrows) and one sink
(vertex with no outgoing arrows).
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Recall that the complete bipartite graph Km,n is a graph with m+n vertices such that
the first m vertices are adjacent to the last n vertices, and there are no other edges. The
following result is a combination of several results in the literature.

Proposition 21. The poly-Bernoulli number Bn,k counts the following objects:

1. AOs of Kn,k,

2. (n, k)-Callan permutations.

Proof. Part (1) is due to [CGS14, Theorem 2.1]. We prove (2) by constructing an explicit
bijection between (k, n)-Callan permutations π and (k, n)-Vesztergombi permutations σ
such that π1 = σ−1n+1.

We sketch here a bijection along with an example. Since this bijection is essentially
the translation of the bijection between Vesztergombi permutations and lonesum matrices
given by Kim–Krotov–Lee [KKL13, Appendix], we will be sketchy. We refer the reader to
the original paper for the details.

Let π be a (9, 6)-Callan permutation, i.e., the number of underlined elements is k = 9
and the number of overlined elements is n = 6.

π = 5, 7, 12, 11, 1, 4, 8, 14, 3, 6, 9, 15, 13, 10, 2.

We determine the Vesztergombi permutation σ ∈ Sn+k in the two-line notation for a
permutation. First, we describe how to associate pairs (i, σi) to underlined elements. If
the starting block is underlined, say A0 = {a0,1, a0,2, . . . , a0,`0}, then we define the pairs:
(a0,1, n + 1), (a0,2, a0,1 + n + 1), . . ., (a0,`0−1, a0,`0 + n + 1). In our running example, we
have a starting underlined block 5, 7, so we get the pairs (5, 7) and (7, 12). For any other
underlined block, Ai = {ai,1, ai,2, . . . , ai,`i}, we define (ai,2, ai,1 + n+ 1), (ai,3, ai,2 + n+ 1),
. . ., (ai,`i , ai,`i−1

+n+ 1). In our case, 1, 4, 8 determines (4, 8) and (8, 11), 3, 6, 9 give (6, 10)
and (9, 13). The leading elements ri,1 (in our case 1, 2 and 3) will be dealt later. A similar
rule is applied for the overlined blocks. Given an overlined block Bi = {bi,1, bi,2, . . . , bi,`i},
we define (bi,2, bi,1 − k − 1), (bi,3, bi,2 − k − 1), . . ., (bi,`i , bi,`i−1

− k − 1). In our case,

12, 11→ (11, 2),

15, 13, 10→ (13, 5), (10, 3).

The leadings elements here are 12, 14, 15.
In our running example, we have so far,

σ =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

8 7 10 12 11 13 3 2 5

)
We now have to fill in the remaining elements. It can be checked that there are exactly
m such “missing” numbers from {1, . . . , k} and also m from {k + 1, . . . , n + k}. Let
c1 < c2 < · · · < cm be the “missing” numbers from {1, . . . , n} and d1 < · · · < dm the
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missing numbers from {n + 1, . . . , n + k}. In the example {c1, c2, c3} = {1, 4, 6} and
{d1, d2, d3} = {9, 14, 15}.

We connect the leading elements of the blocks and the missing elements as follows:
(ai,1, ci) and (bi,1, di). Doing so in our running example we obtain

(1, 1) (3, 4) (2, 6) (12, 9) (14, 14) (15, 15)

and so these pairs together give the Vesztergombi permutation σ in (3.1).

Remark 22. We can see that Bn,k are even integers for n, k > 0 as follows. It is trivial
in any combinatorial model that Bn,1 are powers of 2. For instance, in terms of Callan
permutations, Bn,1 counts permutations where all consecutive entries are in increasing
order except the element n+ 1. So, if i denotes the number of elements to the left of n, we
can count by

∑n
i=0

(
n
i

)
= 2n the different permutations with such a property. The parity

of Bn,k for k > 1 then follows from the recurrence (3.4).

3.2 Poly-Bernoulli numbers of type C

Poly-Bernoulli numbers of type C were introduced by Kaneko analytically for general k by
the generating function in (2.3). Several combinatorial sequences are enumerated by these
numbers as well when k is a nonnegative integer. We list them below.

Definition 23. An excedance of a permutation π is a position i such that πi > i. The
positions at which there are excedances for π is called the excedance set of π.

Recall the definition of Vesztergombi permutations from Theorem 16, Callan permuta-
tions from Theorem 18 and acyclic orientations from Theorem 20.

Theorem 24 ([BH17, Theorems 12, 10, 19, 16]). The poly-Bernoulli number Cn,k counts
the following objects:

1. the number of permutations in Sn+k having excedance set [k],

2. the number of permutations π in Sn+k with −k 6 π(i)− i < n,

3. the number of AOs of Kn,k with a unique sink,

4. (n, k)-Callan permutations that start with an underlined element.

The bivariate exponential generating function for Cn,k is given by

∞∑
n=1

∞∑
k=1

Cn,k
xn

n!

yk

k!
=

ex

ex + ey − ex+y
.

The analogue formulas to the ones of the poly-Bernoulli numbers of type B are as follows
[BH17]:
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1. the closed formula,

Cn,k =

min(n,k)∑
m=0

(m!)2
{
n+ 1
m+ 1

}{
k
m

}
, (3.5)

2. the inclusion-exclusion type formula,

Cn,k =
n∑

m=0

(−1)n+mm!(m+ 1)k
{
n+ 1
m+ 1

}
, (3.6)

3. and the recurrence relation

Cn,k+1 =
n∑

m=1

(
n

m

)
Cn−m+1,k, n > 1, k > 0. (3.7)

The relation between the two types of poly-Bernoulli numbers can be expressed by the
following equations.

Bn,k =
k∑
i=0

(
k

i

)
Cn,i and Cn,k = (−1)n

n∑
i=0

(−1)i
(
n

i

)
Bi,k, (3.8)

Bn,k = Cn,k + Cn+1,k−1.

The asymptotic for the diagonal entries is given in [dALN15]

Cn,n ∼
(

1

2 log 2
√

1− log 2
+ o(1)

)
n!

(2 log 2)n
.

4 Toppleable configurations and permutations

In this section, we will be interested in configurations and permutations that get sorted
after the toppling process, i.e., the final configuration is the identity permutation. The
data for the number of toppleable configurations is given in Table 6.

Since the order of the topplings does not influence the final configuration by Theorem 1,
we can define a special order of the topplings, that is easy to analyze. This idea leads to
the notion of a pass that we recall from [AHT20]. For the sake of simplicity, we focus
now only on the number of chips at each site. We start with the unlabeled configuration
( , 1, . . . , 1, 1, 2̂, 1, 1, . . . , 1, ) on Ln where the hat denotes the site p. The first toppling is
necessarily on site p, leading to ( , 1, . . . , 1, 2, ,̂ 2, 1, . . . , 1, ). Next, we topple the chips on
the sites to the left of p, (the (p−1)’th site) and to the right of p (the (p+1)’th site) to get
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n\p 1 2 3 4 5 6
1 1
2 2 2
3 4 7 4
4 16 73 115 73 16
5 32 227 533 533 227 32

Table 6: The number of toppleable configurations in S(n, p) for small values of n and p.

( , 1, . . . , 1, 2, , 2̂, , 2, 1, . . . , 1, ). From now on we leave the two chips on site p, while we
topple the chips on right and left, as long as it is possible. The sequence of these topplings
is called the first pass. After the first pass we end up with (1, , 1, . . . , 1, 1, 2̂, 1, 1, . . . , 1, , 1).
Clearly, if p is not in the center, on one side we will have more topplings. However, the
first pass includes all together n+ 1 topplings.

Similarly, we perform the second pass starting with the toppling of the two chips at site
p, and continue similarly as before ending up with (1, 1, , 1, . . . , 1, 1, 2̂, 1, 1, . . . , 1, , 1, 1).
We continue this way, settling the topplings in passes. After min(p, n + 1− p) passes, we
will arrive at a final configuration in which no site contains more than one chip.

The intermediate configuration after every pass can be decomposed into three parts
depending on the locations of the empty sites. We call the part of the configuration to the
left of the first empty site (1, 1, . . . , 1, ) the left arm, the part to the right of the second
empty site ( , 1, 1, . . . , 1) the right arm, and the part between the two empty parts the
active part.

We now list some important observations about these pass moves which follow from
[AHT20] when considering the toppling process on a configuration in S(n, p).

Remark 25. 1. At the end of any pass, the chips in the left and right arms are ‘frozen’,
i.e. these chips do not change their positions in any topplings or passes thereafter.

2. Every chip in the active part topples at least once during a pass.

3. After the last pass, there are only two parts: the left arm containing a chip each
on the sites 0, 1, . . . , n − p, and the right arm containing a chip each on the sites
n− p+ 2, . . . , n+ 1.

4. Assume a and b, with a < b, are the chips at the site p at the beginning of a pass.
In a pass, a propagates to the left, until it meets a smaller element, a1 say. At that
point, a is stuck at that position, and a1 moves to the left until it meets a smaller
element, and so on. Similarly b moves to the right, until it meets a greater element,
b1 say, after which it gets stuck. Then b1 moves right until it meets a greater element
and so on.

To summarize, to the left of site p, chips a > a1 > · · · > aj move some positions to
the left, while all the other chips are just shifted by one position to the right without
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changing their relative positions. Similarly, to the right of p, chips b < b1 < · · · bk
move some positions to the right, while all the other chips are only shifted by one
position to the left without changing their relative positions.

We define some more terminology in order to be able to talk about the toppling process
more precisely. We refer to the active sites i with i 6 p as the left part and those active
sites i with i > p as the right part. See Figure 1 for an illustration of the terminology used
in the proofs.

p

π1 πi πn+1πn+2−i

left arm right arm

Active part

left part
right part

Figure 1: Summary of the terminology used in the discussion regarding what happens at
the end of the i’th pass for a configuration in S(n, p).

Let S0 denote the set of chips that are on sites i 6 p, i.e. set of the chips in the left part
and the two chips at site p in the initial configuration. Similarly, let T0 be the set of chips
in the right part and on site p in the initial configuration. In general, let Sj be the set of
chips on the sites 6 p, and Tj be the set of chips on the sites > p after the j’th pass. It is
easy to see that the least element in S0 will topple during the first pass to the first position
as the first element in the left arm, becoming the first element of the resulting sorting, π1.
Similarly, the greatest element of T0 will topple to the last site during the first pass and
be frozen there.

By Theorem 25(1), if a configuration is toppleable then chips i and n − i + 1 have to
be in their correct positions after the i’th pass. This fact restricts the positions of the
chips in the initial configuration in a toppleable configuration. As we will see in the next
proposition this property characterizes toppleable configurations. The idea of the proof is
similar to that of the classification in [AHT20, Theorem 3.4] up to a point. The novelty
here is that the number of passes is potentially much smaller than bn/2c+ 1.

For a configuration C, let C−1(i) denote the position of the chip labeled by i in the
initial configuration.

Theorem 26. A configuration C ∈ S(n, p) is toppleable if and only if for 1 6 i 6 n+ 1

p+ i− n− 1 6 C−1(i) 6 p+ i− 1. (4.1)

It will be useful to state two lemmas explicitly as a preparation of the proof of the
theorem. The proof of the first one, Theorem 27 is directly based on the proof in [AHT20].
Let C−1j (i) denote the position of the chip i after the j’th pass.
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Lemma 27. Suppose that we have a configuration C ∈ S(n, p). If p + i − n − 1 6
C−1(i) 6 p + i − 1 holds for all chips i then after j (j 6 p) passes, the chips 1, 2, . . . , j
and n + 1, n, . . . , n − j + 2 are fixed in their correct positions. Furthermore, for the chips
i = j + 1, j + 2, . . . , p, C−1j (i) < p + i − j, while for i = n − j + 1, n − j, . . . p. C−1j (i) >
p+ i− 1− n+ j.

Proof. The lemma states that the distance between the chip labeled by i and the i’th site
is reduced by at least one in each pass.

We argue using induction on j. The base case is j = 0 which is fulfilled by assumption.
Now suppose the statement holds for the pass j − 1, and consider the j’th pass. For chip
i = j, we have C−1j−1(j) < p + j − (j − 1) = p + 1, which means C−1j−1(j) 6 p. Recall from
Theorem 25(3) that a chip to the left of p moves to the left arbitrary many (more precisely,
the number of consecutive greater elements to its left) sites to the left and at most one site
to the right.

Since j is the smallest non-fixed chip from C−1j−1(j) 6 p, j = minSj−1. Hence we deduce
that in the j’th pass, it will topple to the left until it is fixed, and so πj = j. Thus, after j
passes, the chips 1, 2, . . . , j are fixed in the right order.

For chips i = j, . . . , p, we use an inductive argument. We show that during the j’th
pass the chip i does not move to the right of site p+ i− j and must land strictly to the left
of the site p+ i− j. The base case is i = j and it follows from the previous consideration.
Assume now that the statement holds for j, j + 1, . . . , i − 1. Note that from the outer
induction we have C−1j−1(i) < p + i − j + 1. We want to show that after the j’th pass the
chip i is to the left of the site p+ i− j.

• if C−1j−1(i) < p, then the chip i can move in the j’th pass at most one site to the right.
Then it is still strictly to the left of p+ 1, which is included in p+ i− j for the values
of i considered here.

• if C−1j−1(i) > p then the chip i can move to the right multiple times. There are two
possibilities here: either it never reaches the site p+ i− j, in which case we are done,
or it reaches (or starts) at the site p + i − j. Note that according to the induction
hypothesis no chips smaller than i can reach the site p+ i− j. Thus, chip i “meets”
a greater chip at this site, and topples to the left during the j’th pass, landing to the
left of the site p+ i− j.

Hence, in either case, we have shown that C−1j (i) < p+ i− j.
A similar argument shows that the chips n+ 1, n, . . . , n− j + 2 (where j 6 p) are fixed

in their correct positions after the j’th pass and for the chips i = n− j+ 1, n− j, . . . , p the
condition C−1j (i) > p+ i− 1− n+ j holds.

Our next lemma shows that we can say even more about the positions of the chips after
a given number of passes based on their initial positions.

Lemma 28. Suppose that we have a configuration C ∈ S(n, p). If p+k−n−1 6 C−1(k) 6
p+ k − 1 holds for all chips k and i 6 p− 1, we have p+ i− 1− n+ j < C−1j (i).
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Proof. To prove this inequality we use now induction on the chips i = p− 1, p− 2, . . . and
on the passes, j. The initial case is when i = p − 1 and j = 1. We have to show that
p+ (p− 1)− 1− n+ 1 < C−11 (p− 1).

We focus on the moves of the chip p− 1 during the first pass. By Theorem 25(2), chip
p − 1 topples at least once during the pass. If this toppling is to the right, we are done.
But if either

(a) it is initially at the p’th site sharing this site with a greater chip,

(b) or a greater chip topples during the pass to the site of the chip p− 1,

the chip p− 1 will topple first to the left.
Moreover, if there is a greater chip to its left, then again topples to the left and so on,

until it “meets” a smaller chip. In the last toppling, p − 1 has to topple to the right and
does not move in the pass anymore. Let a1 denote the chip that is greater than p− 1 and
shares the site of p− 1 when it topples first to the left. In case (a), this is the other chip
on the site p in the initial configuration, in case (b) this is a chip that topples to the site of
p− 1 from the right side. Let a2 denote the next greater chip that p− 1 meets and forces
p− 1 topple to the left again, and so on. Let ak the last greater chip in this sequence, so
that after the chips ak and p− 1 shared a site, and since p− 1 < ak, p− 1 topples to the
left, but the next chip p− 1 meets is a smaller element. In other words on the site next to
the left of the chip ak – C−1(ak)−1 – there is a chip b < p−1. In the toppling where b and
p− 1 is on the site C−1(ak)− 1, the chip p− 1 topples to the right, i.e. back to the original
site of ak, C

−1(ak). We assumed that the condition p + i − n − 1 6 C−1(i) < p + i − 1
holds for all i, and so also for the chip i = ak. Therefore, we have

p+ ak − n− 1 6 C−1(ak) 6 p+ ak − 1.

Since ak > p− 1, we have

p+ (p− 1)− n− 1 + 1 6 p+ ak − n− 1 6 C−1(ak)

As we have seen that the chip p− 1 will land at the position of ak after the first pass,
it follows that after the first pass the position of p − 1 is at least p + p − 1 − n − 1 + 1,
which is what we wanted to show.

The same argument can be used for all the chips i 6 p in the first pass, hence we have
p + i − 1 − n + 1 < C−11 (i) for all i 6 p. Exactly the same kind of argument can be used
in all passes, which implies the general statement p+ i− 1− n+ j < C−1j (i).

Now we are ready to prove Theorem 26.

Proof of Theorem 26. First, we show that if a configuration C is toppleable, then (4.1)
holds. Let C ∈ S(n, p). Suppose that for an i with 1 6 i 6 p the condition (4.1) is not
fulfilled, C−1(i) > p + i − 1. (The left hand side, p + i − n − 1 6 C−1(i), holds again
trivially for i with 1 6 i 6 p). As noted in Theorem 25(3), a chip to the right of p (in a
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set Tj) moves during a pass arbitrary sites to the right, but at most one to the left. Hence,
if C−1(i) > p + i − 1, the chip i is after i − 1 passes still strictly to the right of the site
p. But, since in each pass one chip is fixed on the rightmost and leftmost active site, πi is
fixed after the (i− 1)’th pass. Hence, the chip that is fixed after the (i− 1)’th pass cannot
be the chip i. The case for p < i 6 n+ 1 follows by symmetry.

We show now that if the condition (4.1) holds for all i, the configuration is toppleable.
Note that the toppling process stops after min(p, n − p + 1) passes. Assume now that
n − p < p; the other case follows by symmtery. By Theorem 27 we know that after the
(n−p+1)’th pass, the chips 1, 2, . . . , n−p+1, and p, p+1, . . . , n+1 will be in their correct
order. However, the question remains as to what happens with the chips n−p+2, . . . , p−1.
We show next that these chips topple also in the correct order after the (n−p+1)’th pass.

Let i = n− p+ t, where 2 6 t 6 2p−n− 1. The condition of the theorem has the form

t− 1 6 C−1(n− p+ t) 6 n+ t− 1.

Since the right hand side is redundant, we have actually t− 1 6 C−1(n− p + t) 6 n + 1.
After n− p passes, the restriction modifies according by Theorem 27 and Theorem 28 for
all t to

n− p+ t− 1 6 C−1n−p(n− p+ t) 6 p.

As in the proofs of the previous lemmas, we again use an inductive argument. Consider
the base case t = 2p− n− 1, i.e., before the last pass the chip p− 1 belongs to one of the
sites in {p − 2, p − 1, p}. In the last pass it topples at least once by Theorem 25(2). If it
is on site p− 2 it has to topple to the right, since there are no greater elements that could
force it to topple to the left (recall that the elements p, . . . , n + 1 are fixed or topple now
to their correct places).

If it is on the (p − 1)’th or p’th site, one can see that it has to topple to its correct
position after a little bit of thought. Essentially, after the (p − 1)’th site there is simply
no other place where it could land, because the p’th and (p+ 1)’th sites will be necessarily
occupied by the chips p and p+ 1.

Finally, induction on t completes the proof: assume that for t, t + 1, . . . , 2p − n − 1
the chips n − p + t will land at the correct site after the (n − p + 1)’th pass, so the sites
n − p + t, . . . , p, p + 1, . . . , n + 1 will be occupied with the correct chips. Then before the
last pass the chip n − p + t − 1 was restricted between the sites n − p + t − 2 and p. So
there is no greater chip that could cause it to topple to the left from the (n− p+ t− 2)’th
site. In addition, there is no “free” place where it could land beside its correct site. Thus,
all the chips between n− p+ 1 and p have to topple to their correct sites finally in the last
pass, and this proves the result.

As explained in Section 2, we can associate to each p-toppleable configuration C =
(c1, . . . , (c

1
p, c

2
p), . . . , cn) ∈ S(n, p) two toppleable permutations; a (c1p, p)-toppleable and a

(c2p, p)-toppleable one. Let us distinguish one chip labeled by r on site p in the configuration
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C and call such configurations marked configurations. Clearly, there is a one-to-one corre-
spondence between the set of toppleable marked configurations on [n+ 1] chips and (r, p)-
toppleable permutations of [n]. To make this precise, we define a map w that associates
to each marked configuration Cr

p = (c1, . . . , (cp, r), . . . , cn) on n + 1 chips a permutation
w(Cr

p) = σ∗ of [n+ 1] as follows:

σ∗i =


ci 1 6 i 6 p,

r i = p+ 1,

ci−1 p+ 2 6 i 6 n.

Using Theorem 26 and the map w we can characterize (r, p)-toppleable permutations.
Recall the definition of Vesztergombi permutations from Theorem 16 and the definition of
Callan permutations from Theorem 18.

Proposition 29. The set of (r, p)-toppleable permutations of [n] is in one-to-one corre-
spondence with (n − p + 1, p)-Vesztergombi permutations σ such that σ−1p+1 = r and with
(n− p+ 1, p)-Callan permutations starting with the element r.

Proof. As we noted above, to each (r, p)-toppleable permutation one can associate a con-
figuration Cr

p ∈ S(n, p) that topples to the identity. Using the map w, we obtain a permu-
tation σ∗ of [n+ 1] with σ∗p+1 = r. The restriction on the positions of chips in Theorem 26
translates to a similar restriction on positions in σ∗ by shifting the right side inequality by
1, and we obtain p − n − 1 6 (σ∗)−1i − i 6 p. Note that this is the same restriction as
in the definition of (p, n − p + 1)-Vesztergombi permutation. Thus σ∗ is a (p, n − p + 1)-
Vesztergombi permutation with σ∗p+1 = r. Thus, the inverse of σ∗, that we denote by σ, is

a (n− p+ 1, p)-Vesztergombi permutation1 with σ−1p+1 = r, proving the first part.
The second part follows from the bijection in Theorem 21.

We are now in a position to prove the first main result of this section.

Proof of Theorem 4. The theorem follows from the characterization in Theorem 29, the
bijection in Theorem 21 and from the result in Theorem 17 that Vesztergombi permutations
are enumerated by the poly-Bernoulli numbers.

We now move towards proving Theorem 6 using combinatorial arguments. We first list
the number of (r, p)-toppleable permutations for all values of r in Table 7.

Poly-Bernoulli numbers of type B arise in the enumeration of toppleable permutations
also as the number of (1, p)-toppleable permutations.

1One can easily see that the inverse of a (k,m)-Vesztergombi permutation is an (m, k)-Vesztergombi
permutation.
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p\r 1 2 3 4 5 6
1 16 8 4 2 1 1
2 46 32 22 15 15 16
3 46 38 31 31 38 46
4 16 15 15 22 32 46
5 1 1 2 4 8 16

p\r 1 2 3 4 5
1 8 4 2 1 1
2 14 10 7 7 8
3 8 7 7 10 14
4 1 1 2 4 8

Table 7: The number of (r, p)-toppleable permutations for n = 5 on the left and n = 4 on
the right.

Proposition 30. We have |T (1,n)
n | = 1 and

|T (1,p)
n | =

n∑
r=1

|T (r,p)
n−1 |, 1 6 p 6 n− 1.

Proof. It is easy to see that if p = n and r = 1, there is a single permutation which topples
to the identity. Now, suppose p < n. Let π(1,p) ∈ T 1,p

n . Then 1 is at site p together with
another chip. Let a be this chip, 2 6 a 6 n+ 1. We define the left pass as the consecutive
topplings in a pass on the left hand side of p. Using our previous notation for unlabeled
configurations, we have

( , 1, . . . , 1, 2, ,̂ 2, 1, . . . , 1, )→ (1, , 1, . . . , 1, 1, 1, 1, 1̂, 2, 1, . . . , 1, ),

after a left pass. After the first left pass the chip 1 is frozen on the leftmost site, and the
chip a moves one site to the right, so to the (p+ 1)’th site. Thus, we have a configuration
where the first site (zeroth) is occupied by the chip 1, the next site (first) is empty, and
there are two chips at the (p + 1)’th site (of which one is the chip a). Ignoring the site
0 with the chip 1, and reducing all other chip labels by one, we obtain a configuration
on n chips with two chips at the p’th site (note that by ignoring the site 0 the sites are
shifted to the left). If our initial configuration was (1, p)-toppleable, this configuration has
to be (a− 1, p)-toppleable. Conversely, given a (a− 1, p)-toppleable permutation in Sn−1,
we can obtain a (a, p)-toppleable permutation in Sn by reversing the process above. Since
1 6 a− 1 6 n, the sum goes from 1 to n.

We can now count the number of (1, p)-toppleable permutations.

Corollary 31. The number of (1, p)-toppleable permutations in Sn is Bn−p,p.

Proof. By Theorem 30, we have to sum over the number of (r, p)-toppleable permutations
in Sn−1 for all possible r. But this is the same as twice the number of p-toppleable config-
urations in S(n− 1, p) because every such configuration is represented twice. Theorem 12
then proves the result.
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As an illustration of this result, compare the first column of the tables in Table 7
with the entries in Table 1(a). The characterisation in Theorem 29 gives us the class
of Vesztergombi permutations and the class of Callan permutations that corresponds to
(r, p)-toppleable permutations for a given r.

Using these correspondences we can generalize Theorem 30 and give a similar recursion
for arbitrary r.

Theorem 32.

|T (r,p)
n | =



n∑
i=r

|T (i,p)
n−1 | r 6 n− p+ 1,

r−1∑
i=1

|T (i,p−1)
n−1 | r > n− p+ 1.

Proof. We know from Theorem 29 that |T r,pn | is the number of (n − p + 1, p)-Callan per-
mutations starting with r. We need to consider two cases separately: r 6 n − p + 1 and
r > n − p + 1. If r 6 n − p + 1, i.e., r is an underlined element and by definition this
means that r is followed by a greater underlined element or an overlined element. If we
delete r and reduce the value of each element greater than r by one, we obtain a Callan
permutation with n−p underlined elements and p overlined elements. The number of such
permutations is the sum of |T (i,p)

n−1 | where i goes from r to n. Similarly, if r > n−p+1, which
means that r is an overlined element, then r is followed by a smaller overlined element or
an underlined element. After deleting r and reducing the remaining elements greater than
r by one, we obtain a Callan permutation with n − p + 1 underlined and p − 1 overlined
elements and a starting element smaller than r. The number of such permutations is the
sum |T (i,p−1)

n−1 | where i goes from 1 to r − 1.

We are now in a position to enumerate (r, p)-toppleable permutations.

Proof of Theorem 6. By Theorem 29, it suffices to look at (n−p+1, p)-Callan permutations
starting with r. The set of (n− p+ 1, p)-Callan permutations is enumerated by Bn−p+1,p.
As we showed in Theorem 30, the number of such permutations for r = 1 is Bn−p,p, which
is the same as ∆0

(
Bn−p,p

)
. Throughout, ∆ acts on the first index.

For r = 2, we have to consider Callan permutations starting with the underlined element
r = 2. Delete the starting element 2. What we get is a permutation on the set of underlined
elements {1, 3, 4, . . . , n− p+ 1} and overlined elements {n− p+ 2, . . . , n+ 1} starting with
an underlined element greater than 2, or with an overlined element. If we reduce the
elements greater than 2 by one, we get a permutation with n − p underlined elements
and p overlined elements not starting with 1. Thus, we see that the number of Callan
permutations of n + 1 elements starting with 2 is the difference of the number of Callan
permutations of n elements and Callan permutations of n elements starting with 1, namely
Bn−p,p −Bn−p−1,p, which is ∆1

(
Bn−p−1,p

)
.

In general we can argue the same way. Let r 6 n − p + 1 as in the condition of
the theorem which means that r is an underlined element in the corresponding Callan
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permutation. Now, given a Callan permutation starting with the underlined element r, if
we delete the starting element, we obtain Callan permutation of the underlined elements
{1, 2, . . . , r− 1, r+ 1, . . . , n− p+ 1} and overlined elements {n− p+ 2, . . . , n+ 1} starting
with an underlined element that is greater than r or with an overlined element. If we
reduce the elements greater than r by one, we obtain a Callan permutation of underlined
elements {1, . . . , n−p} and overlined elements {n−p+1, . . . , n} not starting with any of the
following elements: 1, 2, . . . , r − 1. Denoting by fn−p,p(r) the number of (n− p, p)-Callan
permutations starting with r we have shown that

fn+1−p,p(r) = Bn−p,p − fn−p,p(1)− · · · − fn−p,p(r − 1).

The remainder of the proof follows by induction on n. The result is easily verified for
small values of n by explicit computation. According to the induction hypothesis

fn−p,p(k) = ∆k−1(Bn−p−k,p) =
k−1∑
j=0

(−1)j
(
k − 1

j

)
Bn−p−j−1,p.

By the above equation,

fn+1−p,p(r) = Bn−p,p −
r−1∑
k=1

fn−p,p(k),

and plugging in the induction assumption, we obtain

fn+1−p,p(r) =Bn−p,p −
r−1∑
k=1

k−1∑
j=0

(−1)j
(
k − 1

j

)
Bn−p−j−1,p

=Bn−p,p −
r−2∑
j=0

(−1)jBn−p−j−1,p

r−1∑
k=j+1

(
k − 1

j

)
.

The inner sum on k now gives us
(
r−1
j+1

)
and we end up with

fn+1−p,p(r) = Bn−p,p −
r−2∑
j=0

(−1)j
(
r − 1

j + 1

)
Bn−p−j−1,p,

and the right hand side is exactly ∆r−1(Bn−p+1−r,p), completing the proof.

We now recover the result of [AHT20].

Proof of Theorem 7. The corollary
follows from the fact that the two types of poly-Bernoulli numbers are inversion trans-

forms of each other (3.8) and by Theorem 6.
However, it is easy to prove the formula directly using the bijection with Callan per-

mutations.
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By Theorem 29, (p, p)-toppleable permutations are in one-to-one correspondence with
(p, n + 1 − p)-Callan permutations starting with the greatest underlined element r = p.
(Ignoring the first element, we obtain a Callan permutation starting with an overlined
element, since subsequences of underlined elements are increasing.) By Theorem 24(4), we
obtain the result.

If r = p + 1, the corresponding Callan permutations start with the smallest overlined
element. So, ignoring this first element, we obtain a Callan permutation that start with an
underlined element, since subsequences of overlined elements are ordered decreasingly. By
symmetry between underlined and overlined elements in Callan permutations, the number
of Callan permutations starting with an underlined element are also enumerated by the
same poly-Bernoulli number.

We have another formula for |T (r,p)
n | using the poly-Bernoulli numbers of type C.

Corollary 33. Let n, p 6 n be integers. We have

|T (r,p)
n | =



n−p+1−r∑
i=0

(
n− p+ 1− r

i

)
Cp,n−p−i r 6 n− p+ 1,

r−n+p−2∑
i=0

(
r − n+ p− 2

i

)
Cn−p+1,p−i−1 r > n− p+ 1.

Proof. Let r 6 n − p + 1. By Theorem 29, |T (r,p)
n | is the number of (n − p + 1, p)-Callan

permutations starting with an underlined element r. Hence, the first block is underlined.
Denoting by i the number of underlined elements in this first block besides r, we can con-
struct this block in

(
n−p+1−r

i

)
ways, since the underlined elements are arranged increasingly.

Ignoring this first block, we have a Callan permutation with n − p + i underlined and p
overlined elements starting with an overlined element. This is known to be enumerated by
Cp,n−p−i by Theorem 24(4).

Similarly, if r > n−p+1 the starting block contains overlined elements and in this case
we have

(
r−(n−p+1)−1

i

)
possibilities to choose the elements into this block. The remaining,

n− p+ 1 underlined and p− 1− i overlined elements construct a Callan permutation that
starts with an overlined element, which is known to be enumerated by Cn−p+1,p−i−1. Note
that we used in this argument the symmetry property of Cn,k.

Another consequence of our bijection is the following relation that can be seen from
the data in Table 7.

Corollary 34. Let n, p, and r be integers, such that p 6 n and r 6 n− p+ 1. Then

n−p+1∑
r=1

|T (r,p)
n | = Cn−p+1,p.

Similarly, if r > n− p+ 1, then
n∑

r=n−p+2

|T (r,p)
n | = Cp,n−p+1.
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Proof.
∑n−p+1

r=1 |T (r,p)
n | counts all (r, p)−toppleable permutations where r 6 n− p+ 1. Ac-

cording to the bijection this is the same as the number of (n−p+1, p)− Callan permutations
starting with an underlined element, which is given by Cn−p+1,p. The second statement is
proven analogously.

Proof of Theorem 8. By Theorem 29, any toppleable configuration C ∈ S(n, p) satisfies

p+ t− n− 1 6 C−1t 6 p+ t− 1, 1 6 t 6 n.

Suppose π ∈ T (r,p)
n for all 1 6 r 6 n+ 1. Then the configuration Cr obtained by adding r

at site p to π and shifting values larger than r by 1 must satisfy these inequalities for each
r. Now, every value t ∈ [n] appears both as t and as t+ 1 as r varies. Therefore, π has to
satisfy both

p+ t− n− 1 6 C−1t 6 p+ t− 1 and p+ t− n 6 C−1t 6 p+ t,

for each t, proving the first statement. The second then follows from Theorem 24(2).

5 Resultant permutations

We now classify p-resultant permutations in Sn.

Proof of Theorem 10. By Theorem 2, it suffices to take p 6 bn/2c. We want to show that
every p-resultant permutation in Sn can be written as a concatenation of a permutation of
the elements 1, 2, . . . , n− p followed by a permutation of n− p+ 1, . . . , n. (Note that the
initial configuration has n−1 sites, so C ∈ S(n−1, p).) Let π be a p-resultant permutation.
We recall some facts from Section 4. The first and last sites are frozen after the first pass;
hence, the first entry, π1 is the smallest element of the set S0. Similarly, the last entry,
πn is the greatest element of the set T0. S1 is the set of chips in the left part and on the
site p after the first pass. It is possible that one chip from the p’th site, say a, topples
out of the set S0 and another chip, say b, topples into it from the right. In this case we
have S1 = S0 \ {π1, a} ∪ {b}. Alternatively, the chip that topples in the first topple to the
right from the p’th site may topple back to the left in the next topple. In this case we
have S1 = S0 \ {π1}. (Note that the fixed entry π1 is not contained in the active part of a
configuration, and so is not included in S1.) In both cases we have |S1| = |S0| − 1.

In general, Si is defined as the set of chips in the left part and on the site p after the i’th
pass. Note that after the i’th pass the chip min(Si) is fixed at the i’th site and, arguing as
above, after each pass the size of the left part is reduced by one, |Si| = |Si−1| − 1. Since
the size of S0 is p+ 1, it contains at least one element from the set V = {1, 2, . . . , n− p}.
Hence, the minimum of S0 (which is π1) is from the set V = {1, 2, . . . , n− p}. The size of
S1 is p, but since the greatest element of T0 is fixed as πn after the first pass, at least one
element from the set V \{π1} is contained in S1. Hence, the minimum of S1, π2 is from the
set V \ {π1}. In general, Si has to contain at least one element from V \ {π1, π2, . . . , πi−1}.
Hence, πi+1 = min(Si) is from the set V \ {π1, π2, . . . , πi−1}.
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We know that there are p passes in a toppling process (we assumed p 6 bn/2c). By
symmetry this implies that πn+1−p, πn+2−p, . . . , πn are elements from the set {n + 1 −
p, . . . , n}, and completes the proof.

We now prove Theorem 11. Let π be the p-resultant permutation that is the concate-
nation of the permutation πleft of Sn−p and πright of Sp.

Proof of Theorem 11. It suffices to show that in a configuration that topples to π, the
relative order of elements that are not left-to-right maxima in πleft is the same as in πleft

itself. We will show that these elements have a position in the initial configuration to
the right of position p. Similarly, the relative order of elements that are not right-to-left
minima in πright is the same as in πright itself. These elements have a position in the initial
configuration to the left of position p. By symmetry it is enough to show the first part of
the statement.

We will continue to use the notation from the proof of Theorem 10 above.
We know that π1 = minS0, π2 = minS1 and so on. If π2 < π1 (so that π2 is not a

left-to-right maximum), then π2 ∈ S1 \ S0. Note also that since S1 \ S0 contains only at
most one element, we have actually {π2} = S1\S0. Moreover, π2 has to be at the (p+1)’th
before the first pass. The same argument can be used to show that if both π2, π3 < π1,
then {π3} = S2 \ S1 and that π3 was at the position (p + 1) before the second pass and
position (p+ 2) before the first pass.

In general, let k be the minimal index such that πk > π1 but πi < π1 for all 1 < i < k.
Then {πi+1} = Si \ Si−1 and πi+1 is in the (p+ 1)’th site before the i’th pass.

Hence, the elements π2, . . . , πk−1 had to be in the initial configuration on the sites
p + 1, . . . , p + k − 3 in this order. Note that πk could be contained either in S0 or only in
Sk−1. For the elements between πk and the next greater element, we argue the same way
starting from Sk and the k’th pass. Continuing this way completes the proof.

We can now enumerate the number of configurations toppling to a given resultant
permutation.

Proof of Theorem 12. Let π ∈ Sn+1 be a p-resultant permutation with i left-to-right max-
ima in πleft and j right-to-left minima in πright. We will write π = πleft ⊕ πright. By
Theorem 11, the relative order of elements which are not left-to-right maxima/right-to-left
minima is fixed, and they do not influence the number of possible initial configurations
that topple to π.

Let π1 = π`1 < π`2 < · · · < π`i be the left-to-right maxima in πleft and πr1 < πr2 < · · · <
πrj = πn+1 the right-to-left minima in πright. We now define a bijection, φ, between the set
of configurations Cπ that topple to π with left-to-right maxima π1 = π`1 < π`2 < · · · < π`i
left of p and right-to-left minima πr1 < πr2 < · · · < πrj = πn+1 right of p and the set of
j-toppleable configurations C ∈ S(i+ j − 1, j) as follows.

Given a configuration Cπ ∈ S(n, p) that topple to the permutation π = πleft ⊕ πright

construct a configuration on i+ j having two chips on the site j as follows:
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1. Delete all the chips (and their sites) that are neither left-to-right maxima of πleft nor
right-to left minima of πright.

2. Relabel naturally the left-to-right maxima φ(π`k) = k and the right-to-left minima
φ(πrj) = i+ j.

Notice that φ acting on the resultant configuration gives the identity permutation in Si+j.
We prove that φ is a bijection by explicitly constructing its inverse as follows. Given a j-

toppleable configuration C ∈ S(i+j−1, j) and a permutation π = πleft⊕πright such that πleft

is a permutation of [n− p+ 1] with i left-to-right maxima, π1 = π`1 < π`2 < · · · < π`i , and
πright with j right-to-left minima, πr1 < πr2 < · · · < πrj = πn+1, construct a configuration
Cπ as follows:

1. Relabel the chips k with 1 6 k 6 i by π`k and the chips k with i < k 6 i+ j by πrk−i
.

2. For 1 6 k 6 i− 1, insert between the k’th and (k + 1)’th sites in C the chips π`k+1,
π`k+2, . . ., π`k+1−1 in the same relative order. Extend the same way the original
configurations by the non-right-to-left minimas of πright on the left hand side of the
j’th site. Similarly, for 2 6 k 6 j, insert between the (k − 1)’th and k′th sites the
chips πrk−1−1, πrk−1−2, . . ., πrk+1 in the same relative order.

From the proof of Theorem 11 it follows that φ is a bijection. Now, the number of j-
toppleable configurations in S(i+ j − 1, j) is Bi,j/2 by Theorem 4.

Proof of Theorem 13. We will prove the first part of the claim. The second then follows
by the symmetry in Theorem 2. So, suppose r 6 n− p. From Theorem 10, we know that
r ∈ πleft. It remains to prove that r is a left-to-right maximum therein.

Since r is on the p’th site, r ∈ S0. If r = minS0 = π1, we are done, since π1 is by
definition a left-to-right maximum. If r 6= π1 there is an index 1 < i 6 n − p such that
r = πi. We need to show that all the entries π1, π2, . . . , πi−1 are smaller than r.

Let j∗ be the least index such that r ∈ S0, S1, . . . , Sj∗−1 but r /∈ Sj∗ , i.e., r topples in
the j∗’th pass out of the left part. Then, π1 = minS0, . . . , πj∗ = minSj∗−1 are all smaller
than r. Before the j∗’th pass, r is at the p’th site with a smaller chip and on the (p+ 1)’th
site there is also a smaller chip than r, say d. So we have Sj∗ = Sj∗−1 \ {πj∗ , r}∪ {d}, with
d < r. This implies πj∗+1 = minSj∗ 6 d < r.

Now let i∗ be the first index such that Sj∗ , Sj∗−1, . . ., Si∗−1 do not contain the chip
r, but r ∈ Si∗ , i.e., the chip r topples back to the left part in the i∗’th pass. Note that
each chip in Sj \ Sj−1 with j∗ < j < i∗ joins at least once the site with r and, hence there
are necessarily smaller than r (otherwise r would topple to the left by the toppling rule).
This again implies that minSj∗ = πj∗+1, minSj∗+1 = πj∗+2, . . ., minSi∗−1 = πi∗ are all
smaller than r. If minSi∗ = r, we are done. If not we can repeat the above argument with
analogous definitions of j∗∗ (as the first pass after i∗’th when r topples out of the left part)
and i∗∗ (as the first pass when r topples back to the left part). Continuing this way, we
argue that r has to be a left-to-right maximum in πleft, completing the proof.
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