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ABSTRACT
The aim of this paper is to establish a few uncertainty principles for the Fourier and the short-time Fourier transforms. In addition, we discuss
an analog of the Donoho–Stark uncertainty principle and provide some estimates for the size of the essential support of the short-time Fourier
transform.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0047191

I. INTRODUCTION AND STATEMENT OF THE RESULTS
The uncertainty principle states that a non-zero function and its Fourier transform cannot be simultaneously sharply localized. We

consider the Fourier transform on Rd to be normalized as

f̂ (ξ) = ∫
Rd

f (x)e−2πix⋅ξ dx,

where x ⋅ ξ is the standard inner product on Rd. There are various forms of the uncertainty principle. The most remarkable result is due to
Beurling,1 which states the following theorem:

Theorem 1.1 (Beurling). Let f ∈ L2
(Rd
) be such that

∬
R2d
∣ f (x)f̂ (ξ)∣e2π∣x⋅ξ∣ dxdξ < ∞.

Then, f = 0 almost everywhere.

Its proof was published much later in 1991 by Hörmander.1 We can obtain the well-known uncertainty principles of Hardy,
Cowling–Price, and Gelfand–Shilov as corollaries to Theorem 1.1 (see Ref. 2). For the purpose of this paper, we state here Hardy’s and
Cowling–Price’s theorems. In 1933, Hardy3 proved the following uncertainty principle:

Theorem 1.2 (Ref. 3). Let f ∈ L2
(Rd
) and assume that

∣ f (x)∣ ≤ Ce−aπx2

and ∣f̂ (ξ)∣ ≤ Ce−bπξ2

for some constants a, b, C > 0. Then, the following three cases can occur.

(i) If ab = 1, then f (x) = Ce−aπx2
.

(ii) If ab > 1, then f ≡ 0.
(iii) If ab < 1, then any finite linear combination of Hermite functions satisfies these decay conditions.
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In 1983, Cowling and Price4 generalized this theorem by replacing point wise Gaussian bounds for f by Gaussian bounds in Lp sense and
in Lq sense for f̂ as well. More precisely, they proved the following theorem:

Theorem 1.3 (Ref. 4). Let f : Rd
→ C be a measurable function such that

(i) ∥eaπx2
f ∥p < ∞,

(ii) ∥ebπξ2
f̂ ∥q < ∞,

where a, b > 0 and 1 ≤ p, q ≤ ∞ such that min(p, q) is finite. If ab ≥ 1, then f = 0 almost everywhere. If ab < 1, then there exist infinitely many
linearly independent functions satisfying (i) and (ii).

Beurling’s theorem was further generalized in 2003 by Bonami, Demange, and Jaming5 as follows:

Theorem 1.4. Let f ∈ L2
(Rd
) be such that

∬
R2d

∣ f (x)f̂ (ξ)∣
(1 + ∣x∣ + ∣ξ∣)N e2π∣x⋅ξ∣ dxdξ < ∞ (1.1)

for some N ≥ 0. Then, f = 0 almost everywhere whenever N ≤ d. If N > d, then f (x) = P(x)e−aπx2
, where P is a polynomial of degree <N−d

2 and
a > 0.

Over the years, analog of Beurling’s theorem have been extended to different settings (see Ref. 2). For a more detailed study of uncertainty
principles, we refer to the book of Havin and Jöricke.6 In time-frequency analysis, another tool of investigation is the short-time Fourier
transform (STFT). We first write the definition of the STFT.

Let g ∈ S(Rd
) be a fixed window function. Then, the STFT of f ∈ S′(Rd

) with respect to g is defined to be the function on Rd
× R̂d

given by

Vg f (x, ξ) = ∫
Rd

f (t)g(t − x)e−2πiξ⋅tdt.

Gröchenig and Zimmermann7 showed that it is possible to derive new uncertainty principles for the STFT from uncertainty principles for the
pair ( f , f̂ ) using a fundamental identity for the STFT. They proved a version of Hardy’s theorem for the STFT.

Theorem 1.5. Let (g, f ) ∈ S × S′(Rd
), and assume that ∣Vg f (x, ξ)∣ ≤ Ce−π(x2

+ξ2
)/2 and that V g f does not vanish identically. Then,

Vg f (x, ξ) = C e2πi(ζ0 ⋅x−ξ⋅z0)e−π(x2
+ξ2
)/2e−πiξ⋅x for some (z0, ζ0) ∈ Rd

× R̂d, and f and g are multiples of e2πiζ0 ⋅t e−π(t−z0)
2
.

Considerable attention has been paid to prove an analog of Beurling’s theorem for the STFT (see Refs. 5 and 8–10). Bonami, Demange,
and Jaming5 proved the following version of Beurling’s theorem for the STFT. They used the L2-norm instead of the L1-norm of the STFT.

Theorem 1.6. Let f , g ∈ L2
(Rd
) be non-identically vanishing. If

∬
R2d

∣Vg f (x, ξ)∣2

(1 + ∣x∣ + ∣ξ∣)N eπ(x2
+ξ2
) dxdξ < ∞,

then there exists a,w ∈ Rd such that both f and g are of the form P(x)e2πiw⋅xe−π(x−a)2
, where P is a polynomial.

Demange8 improved the above theorem to the following sharper version of Beurling’s theorem for the STFT:

Theorem 1.7. Let f , g ∈ L2
(Rd
). If there exists an N ≥ 0 such that

∬
R2d

∣Vg f (x, ξ)∣
(1 + ∣x∣ + ∣ξ∣)N eπ∣x⋅ξ∣ dxdξ < ∞, (1.2)

then either f or g is identically zero or both can be written as

f (x) = P(x)e−ax2
−2πiw⋅x and g(x) = Q(x)e−ax2

−2πiw⋅x,

with P and Q polynomials whose degrees satisfy deg(P) + deg(Q) < N − d, w ∈ Cd and a > 0. The converse is also true. In particular, for N ≤ d,
f or g is identically vanishing.
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It has been conjectured that a result similar to Beurling’s theorem is also true for the STFT. Gröchenig10 posed the following conjecture
as a version of Beurling’s theorem for the STFT:

Conjecture 1.8. Assume that f , g ∈ L2
(Rd
). If

∬
R2d
∣Vg f (x, ξ)∣ eπ∣x⋅ξ∣ dxdξ < ∞,

then f ≡ 0 or g ≡ 0.

However, so far, up to our knowledge, this result has not been proved. However, Gröchenig10 proved a weaker version of this conjecture
as follows:

Theorem 1.9. Assume that f , g ∈ L2
(Rd
). If

∬
R2d
∣Vg f (x, ξ)∣ eπ(x2

+ξ2
)/2 dxdξ < ∞,

then f ≡ 0 or g ≡ 0.

Furthermore, Gröchenig obtained an estimate for the size of the essential support of V g f , analogous to the uncertainty principle of
Donoho and Stark11 for the pair ( f , f̂ ). Several interesting versions of uncertainty principle have been studied by various authors for the
STFT. We refer the reader to Refs. 12–14 and the references therein.

The aim of this paper is to prove Conjecture 1.8 and a few uncertainty principles for the Fourier and the STFT. We investigate the
following problems:

If ∥eπ(x2
+ξ2
)/2 Vg f ∥Lp(R2d) < ∞, ∥eπ∣x⋅ξ∣ Vg f ∥Lp(R2d) < ∞, or ∥e2π∣x⋅ξ∣ f f̂ ∥Lp(R2d) < ∞, then what we can say about the functions f and g.

More precisely, we establish the following problems:

Theorem 1.10. Let 1 ≤ p < ∞ and f , g ∈ L2
(Rd
) be non-identically vanishing. If

∬
R2d
∣Vg f (x, ξ)∣p eπp(x2

+ξ2
)/2 dxdξ < ∞, (1.3)

then f ≡ 0 or g ≡ 0.

Theorem 1.11. Let 1 ≤ p < ∞ and f , g ∈ L2
(Rd
) be non-identically vanishing. If

∬
R2d
∣Vg f (x, ξ)∣p eπp∣x⋅ξ∣ dxdξ < ∞, (1.4)

then f ≡ 0 or g ≡ 0.

Theorem 1.12. Let 1 ≤ p < ∞ and f ∈ L2
(Rd
) be such that

∬
R2d
∣ f (x)f̂ (ξ)∣p e2πp∣x⋅ξ∣ dxdξ < ∞. (1.5)

Then, f ≡ 0.

Finally, we extend the results of Gröchenig10 and prove the following versions of the uncertainty principle about an estimate on the size
of the essential support of the STFT:

Theorem 1.13. Let f and g ∈ L2
(Rd
). If U ⊆ R2d and ϵ ≥ 0 are such that

∬
U
∣Vg f (x, ξ)∣ dxdξ ≥ (1 − ϵ)∥ f ∥2∥g∥2,

then

∣U∣ ≥ (1 − ϵ)
p

p−1 (
p
2
)

d
p−1

for all p ≥ 2.
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Theorem 1.14. Suppose that f , g ∈ L2
(Rd
), U ⊆ R2d, and ϵ ≥ 0 are such that

∬
U
∣Vg f (x, ξ)∣pdxdξ ≥ (1 − ϵ)∥Vg f ∥p

1. (1.6)

Then,

∣U∣ ≥ 2
2pd
2−p (1 − ϵ)

2
2−p for all 1 ≤ p < 2.

This paper is organized as follows: In Sec. II, we recall some of the properties of the STFT. Then, in Sec. III, we prove the main results
and discuss some consequences.

II. THE SHORT-TIME FOURIER TRANSFORM
Translation and modulation are defined by Tx f (t) = f (t − x) and Mξ f (t) = e2πit⋅ξ f (t), where t, x, ξ ∈ Rd. Using this notation, the STFT

can be written as
Vg f (x, ξ) = ⟨ f , MξTxg⟩ = ̂( f ⋅ Txg)(ξ).

For a detailed discussion of STFT, see Ref. 9. To prove uncertainty principles for the STFT, we need to construct an expression derived from
V g f that is invariant under the 2d-dimensional Fourier transform. This kind of function was obtained by Jaming in Ref. 12, which played a
central role in obtaining certain uncertainty theorems for the STFT. We recall the following identities for the STFT from Ref. 10, which we
need for the Proof of Theorem 1.10.

Lemma 2.1. Assume that f1, f2, g1, g2 ∈ L2
(Rd
). Then,

̂
(Vg1 f1Vg2 f2)(x, ξ) = (V f2 f1Vg2 g1)(−ξ, x). (2.1)

Putting f1 = f2, g1 = g2, and x = ξ = 0 in (2.1), we obtain the isometry property of the STFT,

∥Vg f ∥2
L2(R2d) = ∥ f ∥2

2 ∥g∥
2
2. (2.2)

Lemma 2.2. (i) For f , g ∈ L2
(Rd
), the function

F(x, ξ) = e2πix⋅ξ Vg f (x, ξ) Vg f (−x,−ξ)

satisfies
F̂(x, ξ) = F(−ξ, x).

(ii) Consider the family of functions defined as

F(z,ζ)(x, ξ) = e2πix⋅ξ Vg(Mζ Tz f )(x, ξ) Vg(Mζ Tz f )(−x,−ξ).

Then,
F̂(z,ζ)(x, ξ) = F(z,ζ)(−ξ, x) for all (z, ζ) ∈ R2d.

The above lemmas contain a fundamental identity for the STFT. They have been derived and used to prove certain uncertainty principles
for the STFT (see Refs. 7, 10, and 12). The advantage of the identity is that the auxiliary function F(z,ζ) inherits many properties from V g f .
For instance, if V g f possesses a certain decay, then F(z,ζ) has a similar decay.

III. PROOFS OF MAIN RESULTS
A simple consequence of the Cowling–Price’s theorem is obtained in the following lemma:

Lemma 3.1. Let 1 ≤ p < ∞ and f ∈ L2
(Rd
) be such that

∬
R2d
∣ f (x)f̂ (ξ)∣p eπp(x2

+ξ2
) dxdξ < ∞. (3.1)
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Then, f ≡ 0.

Proof. Let eπ(x) = eπx2
for x ∈ Rd. If f ∈ L2

(Rd
) satisfies (3.1), then we have

∥eπ f ∥p
p ∥eπ f̂ ∥p

p =∬
R2d
∣ f (x)f̂ (ξ)∣p eπp(x2

+ξ2
) dxdξ < ∞.

Thus, assumption (3.1) implies that eπ f and eπ f̂ are both in Lp
(Rd
) for 1 ≤ p < ∞. Hence, the conditions of Cowling–Price’s theorem

(Theorem 1.3) are satisfied for f , and we conclude that f ≡ 0. ◻

Using a similar technique as in Theorem 2.7.2 (Ref. 10) and Lemma 3.1, we obtain the Proof of Theorem 1.10 as follows:

Proof of Theorem 1.10. Let X = (x, ξ) and Z = (z, ζ) ∈ R2d. Let UX = (−ξ, x) denote the rotation and X2
= x2
+ ξ2. We consider the family

of functions defined in Lemma 2.2 as

F(z,ζ)(x, ξ) = FZ(X) = e2πix⋅ξ Vg(Mζ Tz f )(x, ξ) Vg(Mζ Tz f )(−x,−ξ).

Using Lemma 2.2 (ii), we get F̂Z(Ω) = FZ(UΩ). To apply Lemma 3.1, we have to prove that

∫
R2d∫R2d

∣FZ(X)F̂Z(Ω)∣p eπp(X2
+Ω2
) dXdΩ < ∞. (3.2)

Thus, it is enough to prove that

∫
R2d∫R2d

∣FZ(X)∣
p
∣FZ(UΩ)∣p eπp(X2

+Ω2
) dXdΩ

= (∫
R2d
∣FZ(X)∣

p eπpX2

dX)
2
∶= B(Z)2

< ∞. (3.3)

Since ∣V g(Mζ Tz f )(x, ξ)∣ = ∣V g f (x − z, ξ − ζ)∣ = ∣V g f (X − Z)∣ and 1
2(X − Z)2

+ 1
2(−X − Z)2

= X2
+ Z2, we can write the expression for B(Z)

as

B(Z) = e−πpZ2

∫
R2d
∣Vg f (X − Z)∣peπp(X−Z)2

/2
∣Vg f (−X − Z)∣peπp(−X−Z)2

/2 dX.

Let Ψ(X) = ∣Vg f (X)∣peπpX2
/2, then assumption (1.3) implies that

∫
R2d

Ψ(X) dX = ∫
Rd∫Rd

∣Vg f (x, ξ)∣peπp(x2
+ξ2
)/2 dxdξ < ∞,

and therefore, Ψ ∈ L1
(R2d
). Moreover,

B(Z) = e−πpZ2

∫
R2d

Ψ(X − Z) Ψ(−X − Z) dX

= e−πpZ2

∫
R2d

Ψ(X) Ψ(−2Z − X) dX

= e−πpZ2

(Ψ ∗Ψ)(−2Z).

Since Ψ ∈ L1
(R2d
), we have Ψ ∗Ψ ∈ L1

(R2d
) and hence Ψ ∗Ψ(−2Z) < ∞. Thus, B(Z) < ∞ for almost all Z ∈ R2d. Thus, condition (3.1) of

Lemma 3.1 is satisfied for FZ(X), and we conclude that

∣FZ(X)∣ = ∣Vg f (X − Z) Vg f (−X − Z)∣ = 0 (3.4)

for almost all Z ∈ R2d. Since FZ(X) is jointly continuous in X and Z, (3.4) is true for all X, Z ∈ R2d. Therefore,

∣FZ(0)∣ = ∣Vg f (−Z)∣2 = 0 for all Z ∈ R2d.

This implies that either f ≡ 0 or g ≡ 0. ◻
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Proof of Theorem 1.11. Let 1 ≤ p, q < ∞ with 1/p + 1/q = 1. We choose N > 0 such that

∬
R2d

1
(1 + ∣x∣ + ∣ξ∣)Nq dxdξ < ∞. (3.5)

Then, using Hölder’s inequality, we get

∬
R2d

∣Vg f (x, ξ)∣
(1 + ∣x∣ + ∣ξ∣)N eπ∣x⋅ξ∣ dxdξ

≤ (∬
R2d
∣Vg f (x, ξ)∣p eπp∣x⋅ξ∣ dxdξ)

1
p
(∬

R2d

1
(1 + ∣x∣ + ∣ξ∣)Nq dxdξ)

1
q

. (3.6)

Thus, assumptions (1.4) and (3.5) imply that

∬
R2d

∣Vg f (x, ξ)∣
(1 + ∣x∣ + ∣ξ∣)N eπ∣x⋅ξ∣ dxdξ < ∞.

Hence, condition (1.2) of Theorem 1.7 is satisfied for V g f , and we conclude that either f or g is identically zero or both can be written as

f (x) = P(x)e−ax2
−2πiw⋅x and g(x) = Q(x)e−ax2

−2πiw⋅x, (3.7)

with P and Q polynomials whose degrees satisfy deg(P) + deg(Q) < N − d, w ∈ Cd and a > 0. Indeed, we show that if f and g are as in (3.7)
and V g f satisfies (1.4), then f ≡ 0 or g ≡ 0.

Let f and g are of the form given in (3.7), then

Vg f (x, ξ) = R(x, ξ)e−πix⋅ξe−(π/2)a
−1
(ξ+2iw2)

2

e−(π/2)ax2

e−2πix⋅w1 ,

where R is a polynomial of degree deg(P) + deg(Q) and w = w1 + iw2. Therefore,

∣Vg f (x, ξ)∣ = ∣R(x, ξ)∣e−(π/2)a
−1
(ξ2
−4w2

2)e−(π/2)ax2

.

Since V g f satisfies (1.4), we have

∬
R2d
∣Vg f (x, ξ)∣p eπp∣x⋅ξ∣ dxdξ

= e2πa−1pw2
2
∬

R2d
∣R(x, ξ)∣pe−(π/2)p(ax2

+a−1ξ2
−2∣x∣∣ξ∣) dxdξ < ∞.

It remains to show that this is only possible for R ≡ 0. We are linked to prove that

∬
R2d
∣R(u, v)∣p e−∣u−v∣

2

dudv = ∞

for any non-zero polynomial R. However, non-vanishing polynomials are bounded below, say, for ∣u∣ > A, ∣v∣ > A, then

∫
∣v∣>A
∫
∣u∣>A

e−∣u−v∣
2

dudv = ∞.

This completes the proof. ◻

Remark 3.2. Theorem 1.11 implies Theorem 1.10. To see this, assume that condition (1.3) of Theorem 1.10 is satisfied. Then,

∬
R2d
∣Vg f (x, ξ)∣p eπp∣x⋅ξ∣ dxdξ ≤∬

R2d
∣Vg f (x, ξ)∣p eπp(x2

+ξ2
)/2 dxdξ < ∞.

By Theorem 1.11, f ≡ 0 or g ≡ 0.
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Proof of Theorem 1.12. Let 1 ≤ p, q < ∞ with 1/p + 1/q = 1. We choose N > 0 such that

∬
R2d

1
(1 + ∣x∣ + ∣ξ∣)Nq dxdξ < ∞. (3.8)

Then, using Hölder’s inequality, we get

∬
R2d

∣ f (x)f̂ (ξ)∣
(1 + ∣x∣ + ∣ξ∣)N e2π∣x⋅ξ∣ dxdξ

≤ (∬
R2d
∣ f (x)f̂ (ξ)∣p e2πp∣x⋅ξ∣ dxdξ)

1
p
(∬

R2d

1
(1 + ∣x∣ + ∣ξ∣)Nq dxdξ)

1
q

. (3.9)

Thus, assumptions (1.5) and (3.8) imply that

∬
R2d

∣ f (x)f̂ (ξ)∣
(1 + ∣x∣ + ∣ξ∣)N e2π∣x⋅ξ∣ dxdξ < ∞.

Hence, condition (1.1) of Theorem 1.4 is satisfied for f , and we conclude that f = 0 almost everywhere whenever N ≤ d and if N > d, then
f (x) = P(x)e−aπx2

, where P is a polynomial of degree <N−d
2 and a > 0. Indeed, we show that if f is of this form, then f ≡ 0.

Let f (x) = P(x)e−aπx2
, then f̂ (ξ) = Q(ξ)e−πa−1ξ2

for some polynomial Q. Since f satisfies (1.5), we have

∬
R2d
∣ f (x)f̂ (ξ)∣p e2πp∣x⋅ξ∣ dxdξ =∬

R2d
∣P(x)∣p∣Q(ξ)∣p e−πp(ax2

+a−1ξ2
−2∣x∣∣ξ∣) dxdξ < ∞.

It remains to show that this is only possible for P ≡ 0. We are linked to prove that

∬
R2d
∣P(u)∣p ∣Q(v)∣p e−∣u−v∣

2

dudv = ∞

for any non-zero polynomials P and Q. However, non-vanishing polynomials are bounded below, say, for ∣u∣ > A, ∣v∣ > A, and then

∫
∣v∣>A
∫
∣u∣>A

e−∣u−v∣
2

dudv = ∞.

This completes the proof. ◻

Remark 3.3. (i) If we consider p = 1 in Theorems 1.10 and 1.11, then we obtain Theorem 1.9 and Conjecture 1.8, respectively.

(ii) If we consider p = 1 in Theorem 1.12, then we obtain Theorem 1.1.

Next, we discuss an analog of the Donoho–Stark uncertainty principle and provide some estimates for the size of the essential support of
V g f . We start with the following lemma:

Lemma 3.4. Let 1 ≤ p < ∞ and f , g ∈ L2
(Rd
). If U ⊆ R2d and ϵ ≥ 0 are such that

∬
U
∣Vg f (x, ξ)∣p dxdξ ≥ (1 − ϵ)∥ f ∥p

2∥g∥
p
2,

then ∣U∣ ≥ 1 − ϵ.

Proof. The Cauchy–Schwartz inequality implies that

∣Vg f (x, ξ)∣ = ∣⟨ f , MξTxg⟩∣ ≤ ∥ f ∥2∥g∥2 for all (x, ξ) ∈ R2d.

Therefore,
(1 − ϵ)∥ f ∥p

2∥g∥
p
2 ≤∬U

∣Vg f (x, ξ)∣pdxdξ ≤ ∥Vg f ∥p
∞∣U∣ ≤ ∣U∣∥ f ∥p

2∥g∥
p
2

and so ∣U∣ ≥ 1 − ϵ. ◻

Estimates obtained in Theorems 1.13 and 1.14 improve Lemma 3.4 and provide a stronger estimate on the size of the essential support
of V g f . To prove Theorems 1.13 and 1.14, we use Lieb’s13 uncertainty principle.
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Theorem 3.5 (Ref. 13). Assume that f , g ∈ L2
(Rd
). Then,

∬
R2d
∣Vg f (x, ξ)∣pdxdξ

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

≤ (
2
p
)

d

(∥ f ∥2 ∥g∥2)
p i f 2 ≤ p < ∞,

≥ (
2
p
)

d

(∥ f ∥2 ∥g∥2)
p i f 1 ≤ p ≤ 2.

(3.10)

Proof of Theorem 1.13. We first apply Hölder’s inequality with exponents q = p and q′ = p
p−1 , and then in the second step, we use Lieb’s

inequality for p ≥ 2, and we obtain

(1 − ϵ) ∥ f ∥2∥g∥2 ≤∬
U
∣Vg f (x, ξ)∣ dxdξ

≤ (∬
R2d
∣Vg f (x, ξ)∣p dxdξ)

1
p
(∬

R2d
χU(x, ξ)q′ dxdξ)

p−1
p

≤ (
2
p
)

d
p

∥ f ∥2 ∥g∥2 ∣U∣
p−1

p .

Thus,

∣U∣ ≥ (1 − ϵ)
p

p−1 (
p
2
)

d
p−1

for all p ≥ 2.

◻

Proof of Theorem 1.14. Using Lieb’s inequality for p = 1 and (2.2), we obtain that

(1 − ϵ)∥Vg f ∥p
1 ≥ (1 − ϵ)2pd

∥ f ∥p
2 ∥g∥

p
2 = (1 − ϵ)2pd

∥Vg f ∥p
2.

On the other hand, using Hölder’s inequality with exponents q = 2
p and q′ = 2

2−p , for 1 ≤ p < 2, we get

∬
U
∣Vg f (x, ξ)∣pdxdξ ≤ (∬

R2d
∣Vg f (x, ξ)∣2 dxdξ)

p
2
(∬

R2d
χU(x, ξ)q′ dxdξ)

2−p
2

= ∥Vg f ∥p
2 ∣U∣

2−p
2 .

Combining these inequalities with (1.6), we obtain

(1 − ϵ)2pd
∥Vg f ∥p

2 ≤ ∣U∣
2−p

2 ∥Vg f ∥p
2.

Thus,
∣U∣ ≥ 2

2pd
2−p (1 − ϵ)

2
2−p for all 1 ≤ p < 2.

◻

Remark 3.6. If we consider p = 1 in Theorem 1.14, then we get the estimate obtained by Gröchenig (Ref. 10, Prop. 2.5.2). Thus,
Theorem 1.14 generalizes the estimate of Gröchenig. In addition, if we compare Theorems 1.13 and 1.14, then we see that Theorem 1.14
gives a slightly sharper estimate.
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