
A New Approach to Specify Real-Time Behavior of Distributed Systems

R. Mall
Dept. of Computer Science and Automation

Indian Institute of Science
Bangalore, INDIA.

e-mail: mal@vigyan.erne t .in

Abstract
Specification of real-time behavior of a system requires
a significantly different approach compared to specifica-
tion of the system's non-real-time behavior. Also, a
specification formalism should be easy to use, concep-
tually simple, and should lead to an intuitive under-
standing about the specified behavior of the system. With
these objectives, in this paper, we develop an event-based
approach to specify the real-time behavior and relevant
properties of distributed systems. In our approach,
events are considered as the basic entities and a system
is specified by constructing various relations among the
events. Based on this formalism, a specification language
is also presented. A specification in this language can be
automatically transformed into equivalent specifications
in many existing formalisms (e.g. temporal logic, first-
order logic, etc.) for further analysis. Thus, an event-
based specification can be used as a front-end tool for
automatically generating specifications in many existing
formalisms, which can save the trouble of writing compli-
cated formulas in those formalisms.

1 Introduction
Distributed computer systems are finding increasing

use in real-time process control applications. Most of
these applications are safety-critical in nature, requiring
use of highly reliable computer systems. Building such
systems is a nontrivial problem, since the correct be-
havior of these systems entails not only functional cor-
rectness but also timeliness of the results. Thus, any
inaccuracy in the specification of the real-time behavior
of such systems can lead to costly system failures. Con-
sequently, a suitable tool to formally specify the real-time
behavior and the relevant properties of distributed real-
time systems is vital to realizing the required perfor-
mance and reliability levels.

Specification of real-time behavior of systems requires
a significantly different approach compared to specifica-
tion of non-real-time behavior - as not only the eventual
occurrence but also the exact timing of various events
becomes important. Further, in case of distributed sys-

L.M. Patnaik
Microprocessor Applications Laboratory,

Supercomputer Education and Res. Centre, and
Dept. of Computer Science and Automation

Bangalore, INDIA.
lalit @vigyan.ernet.in

Indian Institute of Science

tems, in addition to precisely specifying the relative
timing of various events, distributed concurrency aspects
should also be represented. On the other hand, a
specification formalism should be easy to use, concep-
tually simple, and should also lead to an intuitive under-
standing about the system's specified behavior. In this
regard, we feel that post hoc introduction of "time" into
an existing specification formalism does not lead to
natural expression of the real-time behavior of systems.
Another motivation for our work is the fact that most of
the timing specification tools reported in the literature
(e.g., [2,8]) require writing complicated mathematical
expressios and/or knowledge of specialized mathemati-
cal theories. Complex specifications often obscure intui-
tive understanding of a system's specified behavior. In
this context, we develop a formal specification method
that considers evenfs as the basic entities. We feel that it
is intuitively appealing to express the real-time behavior
of systems in terms of event occurrences, as events are
essentially markers on a space-time diagram. Real-time
behavior of systems is expressed by defining various
relations on the events. This method, while expressive
enough to specify the rich behavior of distributed real-
time systems, is also intuitively appealing and simple to
use.

An important characteristic feature of distributed sys-
tems is that the events occur at the spatially separated
nodes. Also, a node typically remains unaware of various
events occurring at other nodes of the system, unless it
specifically receives a message to that end. Our specifica-
tion method is designed to represent this important be-
havioral aspect of distributed systems. For this purpose,
we consider events as markers in time and space; and use
nodes as the basic unit of specification of distributed
systems. Based on the developed language, a specifica-
tion language is also presented. Also, specifications in
this language can be automatically transformed into
equivalent specifications in many existing formalisms
(e.g., temporal logic [2,8], first-order logic [3], etc.) for
further analysis. Such automatic transformation can save
the tedium ofwriting complicated formulas while specify-
ing a system in those formalisms.

THM84-8/91/0000/0194$01.OO Q 1991 IEEE
194

The rest of this paper is organized as follows. Section
2 develops the event-based specification formalism.
Based on the developed formalism, section 3 formulates
a specification language called TSDS (Timing Specifier
of Distributed Systems). Section 4 illustrates the use of
the specification language with an example. Section 5
presents a comparison of our approach with the related
work. Section 6 concludes this paper.

2 Event-Based Specification
2.1 Preliminaries

We consider events as the basic entities in terms of
which the real-time behavior and the relevant properties
of distributed systems are specified. Although it is pos-
sible to develop the specification formalism solely in
terms of occurrence of events, it is more convenient to
define and useactions as derived entities. Predicates will
be used to ascribe meaning to events by relating their
occurrences to the aspects of behavior of the physical
system. However, we will mainly be interested in the
events which change the truth value of predicates. Real-
time behavior of distributed systems is expressed by first
enumerating the significant events associated with each
node of the system, and then by constructing certain
relationships among the events. This ordering among
events is in the tradition of Winskel's event structures

Definition 2.1: Each occurrence of an event marks a
point in time and space that is of importance in
describing a system's real-time behavior. The set of
events (E) associated with a distributed system can be
partitioned into the following six classes:
i.) External events (EE): An external event occurs due
to the action(s) of the environment on an embedded
system.
ii.) Start events (EB): A start event marks the initiation
of an action (see def. 2.3).
ii.) Stop events (Es): A stop event marks the completion
of an action (see def. 2.3).
iv.) Transition events (ET): A transition event marks the
instant at which a change to the truth values of certain
formula(s) describing the system behavior occurs. An
event marking the transition of a formula X to true is
represented by (0 X) and the event marking the time
point at which the formula becomes false is represented

v.)Not@erevents (EN): A notifier event at a node marks
a point on time at which the node transmits a message to
another node.
vi.) Notification events (EA): A notification event at a
node marks a point in time, at which it receives a
message from another node.
Thus,E=EE U EB U ES U ET U EN U EA, and

[41.

by PX).

Ei nEj=(D, Ei+Ej, Ei,Ej€{EE,EB,ES,ET,EN,EA}.
An event e can have more than one instance (occur-

rence). Each time an event occurs (i.e., an instance), it
acquires a label from the set of natural numbers N, so
that the ith instance of an event e can be uniquely
represented by (e,i), i€N. We will use e itself to repre-
sent all occurrences of that event. To emphasize the fact
that events occur at the spatially separated nodes, event
names will be prefmed by the names of the nodes at which
they occur. It should be noted that the definition of
events in our model is significantly different from those
in [7,4].
Definition 2 2 : A node is the basic unit of specifica-
tion of distributed systems. A node consists of a collec-
tion of events (and actions) associated with a common
time base, a definition of various relationships among
these events (and actions) as well as the relationships of
these events (and actions) with those of the other nodes
of the system.
Definition 23: Actions are the schedulable entities in
distributed computations. Occurrence of each actions
represents finite progress made in a computation. In-
stances of actions can be defined in terms of the cor-
responding start and stop events.
The names of actions are unique and are usually
prefmed by the names of the nodes at which they occur.
Like events, an action can occur a number of times. The
functions begin and end will be used to project out the
start and stop events of an instance of an action. Thus for
an action instance (ai,i) the start event is given by
begin(a1,i) and the stop event can be represented by
end(ai,i).
Definition 2 .4 Predicates relate event occurrences to
the behavior of the physical system. The value of a predi-
cate can change with time due to the occurrence of
transition events.
In the specification of a system, we are particularly

interested in the times at which a predicate (describing
aspects of system behavior) becomes true and at which it
becomes false (i.e. the transition events).

Definition 25: A temporal precedence relation (Lt)
among the events in a distributed system is defined as
follows. The relation (e1,i) Lt ((e2j),ti,t2), implies that
the jth instance of the event e2 occurs between t i and t2
time units after the ith instance of ei occurs.
Definition 2.6 A causal relation (Lc) on events is
defined as follow: (el,;) Lc (ezj), if the occurrence of
the event (e1,i) somehow causes the event (ezj) to occur
eventually. Thus, the causal relation (ei,i) Lc (ezj) k,
in effect, a short form for the relation (ei,i)
Lt((e~j),O,w). Two events (e1,i) and (ezj) are called
unrelated (concurrent), if (ei,i)b (e j) and (e2j)k (ei,i).

2.2 Relation Among Events

I95

start (ai,i) stop start (a1,i)

(a 2 - \

stop
-

start (a273 stop start

start h i) start (a1,i)

ai,i) ! (a2j) (ai,i);(azj) /top

(a2l.i) stop start (a2j) stop
Fig. 1 Relation Among Actions

Definition 2.7: Two events (e1,i) and (e2j) are said to
be causally equal (denoted by (e1,i) = c (e2j), iff there
existsanevent (e3,k) suchthat (e3,k) LC (ei,i) , (e3 ,k)Lc
(ezj), (el ,i) & (ezj), and (e2j) & (el,+ Causal equality
among actions can be defined in a similar way: two ac-
tions (ai,i) and (a2j) are called causally equal (ai,i) =c

(a2j), iff begin (ai,i) = begin (a2j).
Definition 2.8 Two events (e1,i)and (e2j) are said to be
temporally equal (ei,i) = t (ezj), if they are causally
equal, and occur at precisely the same time instant. Tem-
poral equality is especially useful in describing
synchronous events.
Definition 2.9: Two events el and e2 are said to be in
conflict with each other (represented by el # e2), if the
occurrence of one event forbids the occurrence of the
other. The conflict relation provides a way to describe
choices available to a system. Obviously, if el Lc e2, e2
Lc e3, and el#-, then e3#e4.
2.3 Relation among Actions

The causal dependency among actions can be repre-
sented by using the following constructs (also shown in
fig. 1): (ai,i);(azj) is used to denote that the action
(azj) can start only after (a1,i) completes; (ai,i)//(az,j)
denotes that the action (a2 j) must finish only after (ai,i)
starts; (ai,i)\\(a2j)denotes that the action (azj) can start
only after (a1,i) starts; and (ai,i)!(azj) means that ac-
tion (ai,i) must complete before (aaj) completes.

Two actions are called sequential if any pair of time
points in the execution of the two actions can be com-
pared. Two actions are called primitively concurrent, if
there is at least a pair of time points between the intervals
representing the two actions not comparable. Thus, the
actions (ai,i) and (a2,j) in (a1,i); (azj) are sequentially
dependent, whereas those in (ai,i)\\(a&j), (ai,i)//(az,j)
and (ai,i)!(azj) are primitively concurrent. Two actions
(ai,i) and (a2j) are called totally concurrent (denoted
by (a1,i) 1 I (a2j)), if no time point in their execution can
be compared.
Definition 2.10 : A computation (C) represents a single
run of the specified system. A computation can be rep-

resented by a single action C, which can be decomposed
into more primitive actions. The start event of the action
C, es =begin(C) signals the start of a computation and
the stop event of the action C, ee = end(C) signals the end
of a computation. Of course, for cyclic and nonterminat-
ing executions, the stop event may never occur.

3 Specification Language TSDS
In order to facilitate specification of real-time be-

havior of distributed systems in the event-based model
discussed in the previous section, we have developed a
language called TSDS (Timing Specifier for Distributed
Systems) providinga set of language constructs for this
purpose. After enumerating the nodes of the system
along with their associated events and actions, the lan-
guage constructs of TSDS can be used to express the
relations among the events. Each construct of the lan-
guage actually represents a set of relations among the
events of the system.
The following are the language constructs of TSDS and
the relations they represent:

If (ei,i) and (ezj) are event instances, then
Construct Interpretation
(el$ precedes (e2j) by (ti,t2)
(ei,i) succeeds (e2,j) by (ti,t2)
(e1,i) causes (e2j)
el conflicts with e2
Actions
If (ai,i) and (azj) are action instances, then
Construct Interpretation
(ai,i);(azj) end(a1,i) Lc begin(a2j)
(a1,i)\\(a2i) begin(ai,i) Lc begin(a2j)
(ai,i)//hj) begin(a1,i) Lc end(a2j)
(ai,i>! (azj) end(ai,i)Lc end(a2j)
when (ei,i), a2 with period t i

Events

(ei,i) Lt ((ezj),ti&)
(e2,j) Lt ((ei,i),ti,t2)
(ei,i) LC (e2j)
el # e2

(el,;) L t (begin(a2,l),ti,ti)
begin(azj)Lt (begin(a2j + l),ti,ti)

196

(ai,i) fork ((a2Jy(a3,k)) end(ai,i)Lc begin(az,j)
end(ai,i)& begin(a3,k)
begin(a2j) = t begin(a3,k)

(ai,i) join ((a2j),(,,k)) (aiYi)!(a2,j>, (ai,i)!(a3,k)
(ai,i) lasts ti begin(ai,i) Lt (end(ai,i),ti,ti)
Predicates
If PI and P2 are predicates describing aspects of be-
havior of the physical system, then
Construct Interpretation
Always Pi
Pi since P2 @Pi = t OPZ, "Pi = t ee
Pi until P2
when (ei,i),

.Pi = t es,"Pi = t ee

oP1 = t Q,.P2Lc "Pi

henceforthP (e1,i) = t oP, "P = t ee

4 Example
We now give an example of the event-based specifica-

tion of an autonomous robot system abstracted
from an automatic manufacturing plant problem.
4.1 Informal Problem Specification

An object (partially complete product) enters the
work-space of an autonomous robot (Fig. 2). The sen-
sors of the robot on sensing an incoming object, signals
the perception node. The perception node analyzes the
signals to identify the incoming object, and passes on
this information to the planner node. Theplanner node
decides about the work to be performed, records

arrival of the object and the work performed, and also
informs the actuator node for initiating the work. The
timing requirement is that the system must initiate and
complete the necessary actions within 500 time units
(tus) and lo00 tus respectively from the arrival of any
jbject.,̂ .. .̂.... ... ,

r
Object 1

..
Fig. 2 Configuration of an Autonomous Robot

1.2 Event-Based Specification
Perceptor node (np)
external event: np.arrival Arrival of an object.

action: np.ident Object identification .
notifier event: np.nctrlr
(np.arrival,i) causes begin(np.ident,i)
end(np.ident,i) causes (np.nctrlr,i)
Planner node (nl)
notification event: nl.objarr Arrival notification.
action: nl.dwork Decide on work to

be performed.
dupdate Record object and

work performed.
notifier event: nl.notact Notify actuator node.
(np.nctrlr,i) causes (nl.objarr,i)
(nl.objarr,i) causes begin(nl.dwork,i)
end(nl.dwork,i) causes begin(nl.update,i)
end(nl.dwork,i) causes (nl.notact,i)
Actuator node (na)
notification event: na.ntact
action: na.actuate Drive actuators.
(nl.notact,i) causes (na.ntact,i)
((np.ident,i);(nl.dwork,i)) fork

(np.arrival,i) precedes begin(na.actuate,i)

Notify Planner node.

Notification of work

((nl.update,i), (na.actuate,i))

by (500,1000).

5 Related Work
The presented specification formalism has evolved

from a study of the formalisms [1,2,3,4,5,T7]. The major
difference between our work and those reported in [2,3]
is that we specifically consider distributed real-time sys-
tems, and consider events as the basic entities of
specifications. We consider nodes as the basic i d s of
specification and explicitly consider message-passing
aspects. We express the real-time behavior of dis-
tributed systems by constructing various ordering rela-
tions among the events. Our event-based specification
model is in some respects similar to the event-action
model of [1,3,5]. However, the major difference is that
unlike those in [1,3,5], we use events as the basic entities
of specification, and the real-time behavior is repre-
sented as relations among the events. Also, our model
tries to represent distributed concurrency aspects in
the tradition of Winskel's event stnrctures. Further, our
approach allows easier and more intuitive expression of
the rich behavior of distributed real-time systems. For
example, expressing the join constmct in TRIO [2] re-
quires writing a number of formulas which obscure the
intuitive understanding of the involved behavior.

6 Conclusions and Discussions
In this paper, we have presented a method for

specification of real-time behavior of distributed sys-
tems using an event-based approach. Our specification

197

method is an attempt towards the development of a
formalism for specification of the real-time behavior of
distributed systems ab initio, rather than post hoc im-
position of the timing aspects on an existing specification
method. Also, we feel that an event-based approach
leads to a natural specification of real-time behavior of
distributed systems since events inherently represent
points on a space-time diagram. Further, automatic
translation of an event-based specification into
equivalent specifications in a number of existing
specification formalisms can save the tedium of writing
complicated expressions in those formalisms. Our cur-
rent work is directed towards automatically generating
specifications in a modal logic called distributed logic [8]
(which we have developed specifically for specification
and verification of real-time behavior of distributed sys-
tems), from event-based specifications. We are also
working towards realizing an executable specification
tool based on the distributed logic specifications.

References
[l] G.H. MacEwen and T.A. Montgomery, "Expressing

Requirements for Distributed Real-Time Systems, It
IEEE Computer Society Workshop on Real-Time
Operating Systems, Cambridge, Massachussetts,

[2] C. Ghezzi, D. Mandrioli, and A. Morzenti, "TRIO: A
Logic for Executable Specification of Real-Time
Systems," Journal of Systems and Software, Vol. 12,

[3] F. Jahanian and A. Mok, "Safety Analysis of Timing
Properties of Real-Time Systems," IEEE Transac-
tions on Software Engineering, Vol. SE-12, Septem-
ber 1986, pp. 890-904.

[4] G. Winskel, "An Introduction to Event Structures,"
in J. de Bakker, E. de Roever, and G. Rozenberg
eds., Linear Time, Branching nine and Partial Order
in Logics and Models of Concurrency, Springer-Ver-
lag, Lecture Notes in Computer Science, Vol. 354,
1989.

[5] R. Mall and L.M. Patnaik, "Specification and
Verification of Timing Properties of Distributed
Real-time Systems," in Proc. of IEEE TENCON,
Hong Kong, September 1990.

[6] L.M. Patnaik and R. Mall, "Critical Issues in Real-
Time Software Development," in Proc. of National
Workshop on Computers in Real-Time Applica-
tions, Indore, India, February, 1991.

[7l D. Murphy, "Approaching a Real-time Concurrency
Theory," in Proc. International BCS-FACS
Workshop on Computing Theory, Leicester, July
1990.

[8] R. Mall and L.M. Patnaik, "A Temporal Logic over

1987, pp. 125-128.

1990, pp. 107-123.

Partial Orders for Verification of Real-time Proper-
ties of Distributed Programs," to be presented at
IEEE TENCON, Sept. 1991, New Delhi, India.

198

