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Abstract 
Specification of real-time behavior of a system requires 
a significantly different approach compared to specifica- 
tion of the system's non-real-time behavior. Also, a 
specification formalism should be easy to use, concep- 
tually simple, and should lead to an intuitive under- 
standing about the specified behavior of the system. With 
these objectives, in this paper, we develop an event-based 
approach to specify the real-time behavior and relevant 
properties of distributed systems. In our approach, 
events are considered as the basic entities and a system 
is specified by constructing various relations among the 
events. Based on this formalism, a specification language 
is also presented. A specification in this language can be 
automatically transformed into equivalent specifications 
in many existing formalisms (e.g. temporal logic, first- 
order logic, etc.) for further analysis. Thus, an event- 
based specification can be used as a front-end tool for 
automatically generating specifications in many existing 
formalisms, which can save the trouble of writing compli- 
cated formulas in those formalisms. 

1 Introduction 
Distributed computer systems are finding increasing 

use in real-time process control applications. Most of 
these applications are safety-critical in nature, requiring 
use of highly reliable computer systems. Building such 
systems is a nontrivial problem, since the correct be- 
havior of these systems entails not only functional cor- 
rectness but also timeliness of the results. Thus, any 
inaccuracy in the specification of the real-time behavior 
of such systems can lead to costly system failures. Con- 
sequently, a suitable tool to formally specify the real-time 
behavior and the relevant properties of distributed real- 
time systems is vital to realizing the required perfor- 
mance and reliability levels. 

Specification of real-time behavior of systems requires 
a significantly different approach compared to specifica- 
tion of non-real-time behavior - as not only the eventual 
occurrence but also the exact timing of various events 
becomes important. Further, in case of distributed sys- 
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tems, in addition to precisely specifying the relative 
timing of various events, distributed concurrency aspects 
should also be represented. On the other hand, a 
specification formalism should be easy to use, concep- 
tually simple, and should also lead to an intuitive under- 
standing about the system's specified behavior. In this 
regard, we feel that post hoc introduction of "time" into 
an existing specification formalism does not lead to 
natural expression of the real-time behavior of systems. 
Another motivation for our work is the fact that most of 
the timing specification tools reported in the literature 
(e.g., [2,8]) require writing complicated mathematical 
expressios and/or knowledge of specialized mathemati- 
cal theories. Complex specifications often obscure intui- 
tive understanding of a system's specified behavior. In 
this context, we develop a formal specification method 
that considers evenfs as the basic entities. We feel that it 
is intuitively appealing to express the real-time behavior 
of systems in terms of event occurrences, as events are 
essentially markers on a space-time diagram. Real-time 
behavior of systems is expressed by defining various 
relations on the events. This method, while expressive 
enough to specify the rich behavior of distributed real- 
time systems, is also intuitively appealing and simple to 
use. 

An important characteristic feature of distributed sys- 
tems is that the events occur at the spatially separated 
nodes. Also, a node typically remains unaware of various 
events occurring at other nodes of the system, unless it 
specifically receives a message to that end. Our specifica- 
tion method is designed to represent this important be- 
havioral aspect of distributed systems. For this purpose, 
we consider events as markers in time and space; and use 
nodes as the basic unit of specification of distributed 
systems. Based on the developed language, a specifica- 
tion language is also presented. Also, specifications in 
this language can be automatically transformed into 
equivalent specifications in many existing formalisms 
(e.g., temporal logic [2,8], first-order logic [3], etc.) for 
further analysis. Such automatic transformation can save 
the tedium ofwriting complicated formulas while specify- 
ing a system in those formalisms. 
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The rest of this paper is organized as follows. Section 
2 develops the event-based specification formalism. 
Based on the developed formalism, section 3 formulates 
a specification language called TSDS (Timing Specifier 
of Distributed Systems). Section 4 illustrates the use of 
the specification language with an example. Section 5 
presents a comparison of our approach with the related 
work. Section 6 concludes this paper. 

2 Event-Based Specification 
2.1 Preliminaries 

We consider events as the basic entities in terms of 
which the real-time behavior and the relevant properties 
of distributed systems are specified. Although it is pos- 
sible to develop the specification formalism solely in 
terms of occurrence of events, it is more convenient to 
define and useactions as derived entities. Predicates will 
be used to ascribe meaning to events by relating their 
occurrences to the aspects of behavior of the physical 
system. However, we will mainly be interested in the 
events which change the truth value of predicates. Real- 
time behavior of distributed systems is expressed by first 
enumerating the significant events associated with each 
node of the system, and then by constructing certain 
relationships among the events. This ordering among 
events is in the tradition of Winskel's event structures 

Definition 2.1: Each occurrence of an event marks a 
point in time and space that is of importance in 
describing a system's real-time behavior. The set of 
events (E) associated with a distributed system can be 
partitioned into the following six classes: 
i.) External events (EE): An external event occurs due 
to the action(s) of the environment on an embedded 
system. 
ii.) Start events (EB): A start event marks the initiation 
of an action (see def. 2.3). 
ii.) Stop events (Es): A stop event marks the completion 
of an action (see def. 2.3). 
iv.) Transition events (ET): A transition event marks the 
instant at which a change to the truth values of certain 
formula(s) describing the system behavior occurs. An 
event marking the transition of a formula X to true is 
represented by ( 0 X) and the event marking the time 
point at which the formula becomes false is represented 

v.)Not@erevents (EN): A notifier event at a node marks 
a point on time at which the node transmits a message to 
another node. 
vi.) Notification events (EA): A notification event at a 
node marks a point in time, at which it receives a 
message from another node. 
Thus,E=EE U EB U ES U ET U EN U EA, and 

[41. 

by PX). 

Ei nEj=(D, Ei+Ej, Ei,Ej€{EE,EB,ES,ET,EN,EA}. 
An event e can have more than one instance (occur- 

rence). Each time an event occurs (i.e., an instance), it 
acquires a label from the set of natural numbers N, so 
that the ith instance of an event e can be uniquely 
represented by (e,i), i€N. We will use e itself to repre- 
sent all occurrences of that event. To emphasize the fact 
that events occur at the spatially separated nodes, event 
names will be prefmed by the names of the nodes at which 
they occur. It should be noted that the definition of 
events in our model is significantly different from those 
in [7,4]. 
Definition 2 2  : A node is the basic unit of specifica- 
tion of distributed systems. A node consists of a collec- 
tion of events (and actions) associated with a common 
time base, a definition of various relationships among 
these events (and actions) as well as the relationships of 
these events (and actions) with those of the other nodes 
of the system. 
Definition 23: Actions are the schedulable entities in 
distributed computations. Occurrence of each actions 
represents finite progress made in a computation. In- 
stances of actions can be defined in terms of the cor- 
responding start and stop events. 
The names of actions are unique and are usually 
prefmed by the names of the nodes at which they occur. 
Like events, an action can occur a number of times. The 
functions begin and end will be used to project out the 
start and stop events of an instance of an action. Thus for 
an action instance (ai,i) the start event is given by 
begin(a1,i) and the stop event can be represented by 
end(ai,i). 
Definition 2 .4  Predicates relate event occurrences to 
the behavior of the physical system. The value of a predi- 
cate can change with time due to the occurrence of 
transition events. 
In the specification of a system, we are particularly 

interested in the times at which a predicate (describing 
aspects of system behavior) becomes true and at which it 
becomes false (i.e. the transition events). 

Definition 25:  A temporal precedence relation (Lt) 
among the events in a distributed system is defined as 
follows. The relation (e1,i) Lt ((e2j),ti,t2), implies that 
the jth instance of the event e2 occurs between t i  and t2 
time units after the ith instance of ei occurs. 
Definition 2.6 A causal relation (Lc) on events is 
defined as follow: (el,;) Lc (ezj), if the occurrence of 
the event (e1,i) somehow causes the event (ezj) to occur 
eventually. Thus, the causal relation (ei,i) Lc (ezj) k, 
in effect, a short form for the relation (ei,i) 
Lt((e~j),O,w). Two events (e1,i) and (ezj) are called 
unrelated (concurrent), if (ei,i)b ( e j )  and (e2j)k (ei,i). 

2.2 Relation Among Events 
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start (ai,i) stop start (a1,i) 

( a 2 - \  

stop 
- 

start (a273 stop start 

start h i )  start (a1,i) 

ai,i) ! (a2j) ( ai,i);(azj) /top 

(a2l.i) stop start (a2j) stop 
Fig. 1 Relation Among Actions 

Definition 2.7: Two events (e1,i) and (e2j) are said to 
be causally equal (denoted by (e1,i) = c (e2j), iff there 
existsanevent (e3,k) suchthat (e3,k) LC (ei,i) , (e3 ,k)Lc 
(ezj), (el ,i) & (ezj), and (e2j) & (el,+ Causal equality 
among actions can be defined in a similar way: two ac- 
tions (ai,i) and (a2j) are called causally equal (ai,i) =c  

(a2j), iff begin (ai,i) = begin (a2j). 
Definition 2.8 Two events (e1,i)and (e2j) are said to be 
temporally equal (ei,i) = t (ezj), if they are causally 
equal, and occur at precisely the same time instant. Tem- 
poral equality is especially useful in describing 
synchronous events. 
Definition 2.9: Two events el and e2 are said to be in 
conflict with each other (represented by el # e2), if the 
occurrence of one event forbids the occurrence of the 
other. The conflict relation provides a way to describe 
choices available to a system. Obviously, if el Lc e2, e2 
Lc e3, and el#-, then e3#e4. 
2.3 Relation among Actions 

The causal dependency among actions can be repre- 
sented by using the following constructs (also shown in 
fig. 1): (ai,i);(azj) is used to denote that the action 
(azj) can start only after (a1,i) completes; (ai,i)//(az,j) 
denotes that the action (a2 j )  must finish only after (ai,i) 
starts; (ai,i)\\(a2j)denotes that the action (azj) can start 
only after (a1,i) starts; and (ai,i)!(azj) means that ac- 
tion (ai,i) must complete before (aaj) completes. 

Two actions are called sequential if any pair of time 
points in the execution of the two actions can be com- 
pared. Two actions are called primitively concurrent, if 
there is at least a pair of time points between the intervals 
representing the two actions not comparable. Thus, the 
actions (ai,i) and (a2,j) in (a1,i); (azj) are sequentially 
dependent, whereas those in (ai,i)\\(a&j), (ai,i)//(az,j) 
and (ai,i)!(azj) are primitively concurrent. Two actions 
(ai,i) and (a2j) are called totally concurrent (denoted 
by (a1,i) 1 I (a2j)), if no time point in their execution can 
be compared. 
Definition 2.10 : A computation (C) represents a single 
run of the specified system. A computation can be rep- 

resented by a single action C, which can be decomposed 
into more primitive actions. The start event of the action 
C, es =begin(C) signals the start of a computation and 
the stop event of the action C, ee = end(C) signals the end 
of a computation. Of course, for cyclic and nonterminat- 
ing executions, the stop event may never occur. 

3 Specification Language TSDS 
In order to facilitate specification of real-time be- 

havior of distributed systems in the event-based model 
discussed in the previous section, we have developed a 
language called TSDS (Timing Specifier for Distributed 
Systems) providinga set of language constructs for this 
purpose. After enumerating the nodes of the system 
along with their associated events and actions, the lan- 
guage constructs of TSDS can be used to express the 
relations among the events. Each construct of the lan- 
guage actually represents a set of relations among the 
events of the system. 
The following are the language constructs of TSDS and 
the relations they represent: 

If (ei,i) and (ezj) are event instances, then 
Construct Interpretation 
(el$ precedes (e2j) by (ti,t2) 
(ei,i) succeeds (e2,j) by (ti,t2) 
(e1,i) causes (e2j) 
el conflicts with e2 
Actions 
If (ai,i) and (azj) are action instances, then 
Construct Interpretation 
(ai,i);(azj) end(a1,i) Lc begin(a2j) 
(a1,i)\\(a2i) begin(ai,i) Lc begin(a2j) 
(ai,i)//hj) begin(a1,i) Lc end(a2j) 
(ai,i>! (azj) end(ai,i)Lc end(a2j) 
when (ei,i), a2 with period t i  

Events 

(ei,i) Lt ((ezj),ti&) 
(e2,j) Lt ((ei,i),ti,t2) 
(ei,i) LC (e2j) 
el # e2 

(el,;) L t (begin(a2,l),ti,ti) 
begin(azj)Lt (begin(a2j + l),ti,ti) 
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(ai,i) fork ((a2Jy(a3,k)) end(ai,i)Lc begin(az,j) 
end(ai,i)& begin(a3,k) 
begin(a2j) = t begin(a3,k) 

(ai,i) join ((a2j),(,,k)) (aiYi)!(a2,j>, (ai,i)!(a3,k) 
(ai,i) lasts ti begin(ai,i) Lt (end(ai,i),ti,ti) 
Predicates 
If PI and P2 are predicates describing aspects of be- 
havior of the physical system, then 
Construct Interpretation 
Always Pi 
Pi since P2 @Pi = t  OPZ,  "Pi = t  ee 
Pi until P2 
when (ei,i), 

.Pi = t  es,"Pi = t  ee 

oP1 = t  Q,.P2Lc "Pi 

henceforthP (e1,i) = t  oP, "P = t  ee 

4 Example 
We now give an example of the event-based specifica- 

tion of an autonomous robot system abstracted 
from an automatic manufacturing plant problem. 
4.1 Informal Problem Specification 

An object (partially complete product) enters the 
work-space of an autonomous robot (Fig. 2). The sen- 
sors of the robot on sensing an incoming object, signals 
the perception node. The perception node analyzes the 
signals to identify the incoming object, and passes on 
this information to the planner node. Theplanner node 
decides about the work to be performed, records 

arrival of the object and the work performed, and also 
informs the actuator node for initiating the work. The 
timing requirement is that the system must initiate and 
complete the necessary actions within 500 time units 
(tus) and lo00 tus respectively from the arrival of any 
jbject. ................... .,̂  .................................................. .̂.... ....................................................................................... , ........................ ..... 

r 
Object 1 

........................................................................................................................ 
Fig. 2 Configuration of an Autonomous Robot 

1.2 Event-Based Specification 
Perceptor node (np) 
external event: np.arrival Arrival of an object. 

action: np.ident Object identification . 
notifier event: np.nctrlr 
(np.arrival,i) causes begin(np.ident,i) 
end(np.ident,i) causes (np.nctrlr,i) 
Planner node (nl) 
notification event: nl.objarr Arrival notification. 
action: nl.dwork Decide on work to 

be performed. 
dupdate Record object and 

work performed. 
notifier event: nl.notact Notify actuator node. 
(np.nctrlr,i) causes (nl.objarr,i) 
(nl.objarr,i) causes begin(nl.dwork,i) 
end(nl.dwork,i) causes begin(nl.update,i) 
end(nl.dwork,i) causes (nl.notact,i) 
Actuator node (na) 
notification event: na.ntact 
action: na.actuate Drive actuators. 
(nl.notact,i) causes (na.ntact,i) 
((np.ident,i);(nl.dwork,i)) fork 

(np.arrival,i) precedes begin(na.actuate,i) 

Notify Planner node. 

Notification of work 

((nl.update,i), (na.actuate,i)) 

by (500,1000). 

5 Related Work 
The presented specification formalism has evolved 

from a study of the formalisms [1,2,3,4,5,T7]. The major 
difference between our work and those reported in [2,3] 
is that we specifically consider distributed real-time sys- 
tems, and consider events as the basic entities of 
specifications. We consider nodes as the basic i d s  of 
specification and explicitly consider message-passing 
aspects. We express the real-time behavior of dis- 
tributed systems by constructing various ordering rela- 
tions among the events. Our event-based specification 
model is in some respects similar to the event-action 
model of [1,3,5]. However, the major difference is that 
unlike those in [1,3,5], we use events as the basic entities 
of specification, and the real-time behavior is repre- 
sented as relations among the events. Also, our model 
tries to represent distributed concurrency aspects in 
the tradition of Winskel's event stnrctures. Further, our 
approach allows easier and more intuitive expression of 
the rich behavior of distributed real-time systems. For 
example, expressing the join constmct in TRIO [2] re- 
quires writing a number of formulas which obscure the 
intuitive understanding of the involved behavior. 

6 Conclusions and Discussions 
In this paper, we have presented a method for 

specification of real-time behavior of distributed sys- 
tems using an event-based approach. Our specification 
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method is an attempt towards the development of a 
formalism for specification of the real-time behavior of 
distributed systems ab initio, rather than post hoc im- 
position of the timing aspects on an existing specification 
method. Also, we feel that an event-based approach 
leads to a natural specification of real-time behavior of 
distributed systems since events inherently represent 
points on a space-time diagram. Further, automatic 
translation of an event-based specification into 
equivalent specifications in a number of existing 
specification formalisms can save the tedium of writing 
complicated expressions in those formalisms. Our cur- 
rent work is directed towards automatically generating 
specifications in a modal logic called distributed logic [8] 
(which we have developed specifically for specification 
and verification of real-time behavior of distributed sys- 
tems), from event-based specifications. We are also 
working towards realizing an executable specification 
tool based on the distributed logic specifications. 
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