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ABSTRACT We present a transfer learning-based approach for decoding imagined speech from elec-
troencephalogram (EEG). Features are extracted simultaneously from multiple EEG channels, rather than
separately from individual channels. This helps in capturing the interrelationships between the cortical
regions. To alleviate the problem of lack of enough data for training deep networks, sliding window-based
data augmentation is performed. Mean phase coherence and magnitude-squared coherence, two popular
measures used in EEG connectivity analysis, are used as features. These features are compactly arranged,
exploiting their symmetry, to obtain a three dimensional ‘‘image-like’’ representation. The three dimensions
of this matrix correspond to the alpha, beta and gamma EEG frequency bands. A deep network with
ResNet50 as the base model is used for classifying the imagined prompts. The proposed method is tested
on the publicly available ASU dataset of imagined speech EEG, comprising four different types of prompts.
The accuracy of decoding the imagined prompt varies from a minimum of 79.7% for vowels to a maximum
of 95.5% for short-long words across the various subjects. The accuracies obtained are better than the state-
of-the-art methods, and the technique is good in decoding prompts of different complexities.

INDEX TERMS Brain–computer interface, transfer learning, electroencephalogram, speech imagery,
imagined speech.

I. INTRODUCTION
Speech in both overt and covert forms are very natural
to human beings since we learn to speak even without
any formal education. During covert speech, we imagine
speaking without any intentional movement of any of our
articulators [1]. Decoding imagined speech from electroen-
cephalogram (EEG) involves the discrimination between a
fixed set of imagined words from the EEG captured during
imagination. A system for decoding imagined speech has
several applications including speech imagery BCI systems.
In such BCI systems, speech imagery is used to generate
distinct and repeatable neural activity. These systems can
help patients whose muscles are paralyzed, as in the case of
patients suffering from locked-in syndrome, to communicate
with others and to operate devices such as computers [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Alessandra Bertoldo.

Though it is almost a decade since the publication of
the first research article on decoding imagined speech from
EEG, the field has witnessed only slow progress compared
to many other fields such as speech recognition [1]. This is
primarily due to the lack of enough training data. Surplus
training data is one of the primary reasons for the success of
modern machine learning algorithms. This paper presents a
novel deep learning architecture that addresses the scarcity
of data in two ways: 1) by creating more data from the
existing data using data augmentation and 2) by using transfer
learning (TL) technique for training a deep network.

In most of the works in the literature such as
[3]–[6], [8]–[18], [20]–[22], individual EEG channels are
considered separately for extracting features. In these works
except [22], [26], wavelet domain features, mel-frequency
cepstral coefficients (MFCCs) and/or temporal domain fea-
tures are extracted from each channel and are concatenated to
obtain the feature vector for each trial. In [22], [26], the fea-
tures extracted from individual channels are considered as
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TABLE 1. Features and classifiers used in other works in the literature on decoding imagined speech from EEG. DNN: deep neural network, CNN:
convolutional neural network, RNN: recurrent neural network, DAE: deep autoencoder, LSTM: long short-term memory, DWT: discrete wavelet transform,
MFCC: mel frequency cepstral coefficients.

distinct data vector and the decisions of the classifier for
each channel are combined to obtain the final classification
result. The feature extraction and classification techniques
adopted in these works are comprehensively discussed in
the review article [1]. Unlike these works where features
are extracted from individual EEG channels, in this work,
we extract the features simultaneously from multi-channel
EEG. This approach is advantageous because studies have
shown that complex cognitive tasks like speech production
involve information transfer between multiple cortical areas.
Extracting features separately from individual channels may
not capture this interaction; however, when features are
extracted simultaneously from multiple channels [27]–[30],
this can be better captured.

A few works in the literature [7], [23], [24] have already
employed simultaneous feature extraction from EEG for
decoding imagined speech. These studies have used channel
cross-covariance matrix for extracting the features. Features
and classifiers used in popular works on decoding imagined
speech from EEG are tabulated in Table 1.

Since it is difficult to have enough EEG data to train deep
networks, a few researchers have recently taken recourse to
transfer learning for decoding imagined speech from EEG.
Transfer learning improves the performance of a classifier
in the target domain by incorporating the knowledge gained
from a different domain [9], [31], [32]. In the work by
García-Salinas et al. [9], intra-subject transfer learning was
applied to classify an imagined word using a classifier trained
on a set of four words which does not include the target
word. Cooney et al. [33] employed two different approaches
for inter-subject transfer learning. A deep CNN architecture,
similar to [34] is initially trained on a set of subjects called the
source subjects and transfer learning is employed to improve
the performance of the classifier on a new (target) subject.

In our work, EEG data is first augmented using sliding
window method. From the augmented data, mean phase
coherence (MPC) and magnitude-squared coherence (MSC)
are extracted as features. A ResNet-50 [35] based trans-
fer learning model is used as the classifier. We report the
results of this approach on a publicly available dataset [7].
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The dataset contains EEG recorded when the subjects were
imagining four different types of prompts, namely vowels,
short words, long words and short-long words. The proposed
method achieves accuracies comparable to the state-of-the-art
results on the same dataset.

The major contributions of this work are listed below:

1) Although there are works in the literature where
features are simultaneously extracted from multiple
EEG channels, this is the first work to extract mean
phase coherence and magnitude-squared coherence as
features from EEG. Simultaneous extraction of fea-
tures from multiple EEG channels helps in captur-
ing the inter-electrode relationships related to speech
imagery.

2) This is first work to make use of a deep network
pre-trained for classifying images as the base classifier
for classifying imagined speech EEG.

3) We exploit the symmetry in MPC and MSC for
compactly packing them into an ‘‘image-like’’
3-dimensional representation. The three dimensions
correspond to three different EEG frequency bands.

The rest of the paper is organized as follows: Sec. II
describes the dataset used in this work. Sec. III explains data
augmentation using overlapping window. Sec. IV deals with
the feature extraction method used in this work. The results
we have obtained and the comparison with other works in the
literature on the dataset we have used are given in Sec. V.
Sec. VI enumerates the major limitations of this work.

II. DATASET USED FOR THE STUDY
The dataset used in this work was recorded by Human-
Oriented Robotics and Controls (HORC) lab, Arizona State
University and is publicly available for download [7]. The
dataset consists of 64-channel EEG data acquired using
BrainProducts ActiCHamp amplifier system. The four types
of prompts used in the protocol are:

1) Long words: ‘‘independent’’ and ‘‘cooperate’’
2) Short words: ‘‘in,’’ ‘‘out’’ and ‘‘up’’
3) Vowels: ‘‘/a/,’’ ‘‘/i/’’ and ‘‘/u/’’
4) Short-long words: ‘‘in’’ and ‘‘cooperate’’

During the recording, the participants had to repeatedly
imagine uttering the prompts without moving their articula-
tors. The rate at which the prompt had to be imagined was
cued using audio beeps. Although 15 subjects (S1 - S15,
males = 11. females = 4) participated in the study, only the
data of a subset of these participants is available for each
protocol, details of which are listed in Table 2.

The data was recorded at a sampling rate of 1000 Hz but
was later downsampled to 256 Hz. Also, a 5th order Butter-
worth bandpass filter with the pass band from 8 - 70 Hz was
applied to remove any low frequency trends in the acquired
signal and electromyogram (EMG) artifacts. A notch filter
was used to remove the 60-Hz line noise. Ocular artifacts
were removed using adaptive filtering [36]. More details
about the dataset can be found in [7].

FIGURE 1. Data augmentation using overlapping windows. The initial EEG
data has 1280 samples each from 64 channels (5 seconds of EEG at
256 Hz sampling rate). The window size is 256 samples or 1 s. The stride
is 64 samples or 0.25 s which means an overlap of 75%. A total
of 17 windows are obtained using this choice of window parameters.

III. METHOD USED TO AUGMENT DATA
Data augmentation approaches such as overlapping or slid-
ing window [37]–[40] and generative adversarial networks
(GAN) [41]–[43] generate more training data from the exist-
ing data [44]. GAN is not the ideal approach for the current
problem since the amount of available data is very limited.
However, overlapping window can be used since the data
consists of repeated imaginations in each trial. Accordingly,
we have used overlapping windows as illustrated in Fig. 1.
The length of the window is empirically chosen as 1 s
(256 samples) and stride as 0.25 s (64 samples). This leads
to an overlap of 0.75 s (192 samples). Using this approach,
we can augment the data by a factor of 17.

We had attempted to use autocorrelation function to iden-
tify the repetitions in the EEG data andwindow the data based
on the indices of repetition. However, it was difficult to detect
the peaks in the autocorrelation function due to the low signal
to noise ratio of the EEG signal.

IV. PARTICULARS OF FEATURE EXTRACTION
Unlike most works in the literature, we extract features simul-
taneously from all the EEG channels. Two measures are
extracted as features:

1) Mean phase coherence
2) Magnitude-squared coherence

A. MEAN PHASE COHERENCE
Mean phase coherence (MPC) is a measure of phase syn-
chronisation between two EEG channels [45]. MPC is closely
related to phase locking value (PLV) defined for the condition
where the phase difference between the studied channels is
attributed to evoked activity [46]. PLV measures the phase
synchronisation between two channels across different trials
assuming that every trial is time-locked to a specific stimulus.
This assumption does not hold good for EEG acquired during
speech imagery since the imagination is not time-locked
across trials albeit the presence of cues for the participant.

MPC across the ith and k th EEG channels is defined as,

MPCi,k =
1
N

∣∣∣∣∣
N−1∑
n=0

e−j(φi(n)−φk (n))
∣∣∣∣∣ (1)
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TABLE 2. Number of participants, whose data is available in each of the four protocols in the ASU imagined speech EEG dataset. Although 15 subjects
participated in the study, only the data of a subset of them is available in the public dataset.

where N is the number of samples, φi(n) and φk (n) are the
instantaneous phases of channels i and k at the nth time sam-
ple. The instantaneous phases of channels are obtained using
Hilbert transform. The value of MPC lies between [0, 1];
a value close to zero indicates that the phase differences
between the signals are randomwhereas a value of one means
that the two signals are phase synchronized duringmost of the
time interval considered [47]. MPC is used in epilepsy [48],
[49] and sleep studies [50].

B. MAGNITUDE-SQUARED COHERENCE (MSC)
Coherence captures the linear relationship in the spectral
domain [51]–[54] between a pair of signals. Let Si,i(ω) and
Sk,k (ω) denote the power spectral densities and Si,k (ω) denote
the cross power spectral density of Xi∗ and Xk∗. The MSC
between Xi∗ and Xk∗ is given by:

MSCi,k (ω) =

∣∣Si,k (ω)∣∣2
Si,i(ω)Sk,k (ω)

(2)

The spectral densities are all estimated using Welch’s
overlapped averaged periodogram method [55]. Hamming
window is used and the number of segments is eight. The
values of MPC and MSC lie in the interval [0, 1].

C. CONSTRUCTION OF INPUT AS 3D ARRAYS
Both MPC and MSC are frequency dependent measures.
The input to the classifier are three-dimensional arrays with
each dimension corresponding to one of the frequency bands,
alpha (8 to 13 Hz), beta (13 to 30 Hz) and gamma (30 to
70 Hz). The EEG data is bandpass filtered to obtain the MPC
of each EEG band. The MSC matrices for all the frequencies
in a given band are averaged. The bands below 8Hz and above
70 Hz are not used since the publicly available dataset is band
pass filtered between 8 and 70 Hz.

There are sixmatrices corresponding to the three frequency
bands and two measures (MPC and MSC). Since the input
to the classifier needs to be similar to the images in the
ImageNet [56] database which our classifier is pretrained
on, we have compactly arranged the 6 matrices into a three-
dimensional array. In the case of a regular RGB image (such
as the images in ImageNet), each parallel plane corresponds
to one of the three colours: red, green and blue. In our
case, each parallel plane in the input three-dimensional arrays

corresponds to one of the three frequency bands: alpha, beta
and gamma. The compact arrangement is possible because
of the symmetry of the matrices. Since both MPC and MSC
matrices are symmetric, no information is lost if the upper
or lower triangular elements of the matrices are removed.
Therefore, a new matrix is created, consisting of the upper
triangular elements of MPC and lower triangular elements of
MSC of each band. Each of these newly constructed matrices
corresponds to one of the three frequency bands. The diagonal
elements of all the matrices are made zero and these matrices
are combined to form the three-dimensional input array. Thus
we have the information from both MPC and MSC across the
three bands compactly placed in a three-dimensional array.
If I is one of these three-dimensional arrays, then I (i, j, 1),
I (i, j, 2) and I (i, j, 3) respectively denote the alpha, beta, and
gamma band information. Further, I (i, j, 1) for i > j denotes
the MSC values in the alpha band whereas I (i, j, 1) for i < j
denotes the MPC values in the alpha band. I (i, j, :) for i = j is
zero for all the three bands. Figure 2 shows the various steps
in generating the input to the classifier.

D. DETAILS OF THE CLASSIFIER
The architecture of the network used in this work is shown
in Fig. 3. A ResNet50 [35] based deep neural network
model, pre-trained on ImageNet [56], is used as the base
model for the classifier. Since this network is trained to
classify 1000 object categories, the output layer is a fully
connected (FC) layer with 1000 neurons and softmax activa-
tion function. We replaced this layer with two FC layers with
ReLU activation function and one output layer with softmax
activation function. The first and second FC layers (FC1,
FC2) have 128 and 64 neurons, respectively. The number
of neurons in the output layer is the same as the number of
classes in the imagined prompt category. For long and long-
short words, the number of classes is two whereas for short
words and vowels, it is three.

During the training on imagined speech data, the ResNet
model layers are frozen and only the appended FC layers
are trained. Thus the ResNet layers act as feature extraction
layers. Adam optimizer [57] is used with cross-entropy loss
function and a learning rate of 1e−4. 10-fold cross-validation
is performed on the data of each subject. The data is divided
into 10 folds and during each cross-validation iteration, 9 out
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FIGURE 2. Illustration of various steps in the creation of the input to the classifier. In the case of training data, we start with
64× 256 EEG data whereas with test data, we start with 64× 1280. This difference is because of the fact that data augmentation is
performed only for the training data and not for the test data. BPF denotes bandpass filter. Outline boxes of red, green and blue
colours denote the data in the alpha, beta and gamma bands, respectively.

∑
ω∈α

,
∑
ω∈β

and
∑
ω∈γ

respectively denote the summation of

all the MSC matrices corresponding to alpha, beta and gamma bands. The dimension of the arrays that are input to the classifier is
64× 64× 3.

of the 10 folds are used for training and the remaining fold,
for testing. This is repeated 10 times so that all the folds are
tested once. Only the training data is augmented. This does

not affect the dimensionality of the input data during testing
since the latter is determined by the number of channels and
does not vary with the length of the EEG signal.
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FIGURE 3. Architecture of the proposed deep network for decoding imagined speech. FC denotes a fully connected layer. The
dimension of the input data arrays is 64× 64× 3. FC1 and FC2 have 128 and 64 neurons, respectively. The number of neurons in
the output layer is the same as the number of classes in each category of imagined prompts. Layers with 30% dropout after each
FC layer are not shown. ResNet [1 : end − 1] denotes the ResNet model pre-trained on ImageNet with the last FC layer removed.
The parameters in the ResNet model are frozen and only the FC layers after the ResNet model are trained using the imagined
speech EEG.

TABLE 3. Comparison of our accuracies with similar studies on classifying long words, viz. ‘‘independent’’ and ‘‘cooperate.’’ The accuracies in percentage
are shown in the format mean ± std. dev. Standard deviation values are not reported in [23].

TABLE 4. Comparison of our accuracies with similar studies on classifying short words, viz. ‘‘in,’’ ‘‘out’’ and ‘‘up.’’ The accuracies in percentage are shown
in the format mean ± std. dev. Standard deviation values are not reported in [23].

TABLE 5. Comparison of our accuracies with similar studies on classifying the vowels ‘‘/a/,’’ ‘‘/i/’’ and ‘‘/u/.’’ The accuracies in percentage are shown in
the format mean ± std. dev. Standard deviation values are not reported in [23].

During each cross-validation step, 85% of the training data
is used for training the classifier and the remaining 15%,
for validation. The maximum number of epochs for train-
ing is 100. To avoid overfitting, we have also implemented

early stopping based on validation accuracy with the patience
parameter set to 30 epochs.We ran the code on Google Colab.
The GPU configuration in the session was NVIDIA Tesla
T4with GDDR6RAM. The approximate time for training the
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TABLE 6. Comparison of our accuracies with similar studies on classifying short-long words, viz. ‘‘in’’ and ‘‘cooperate.’’ The accuracies in percentage are
shown in the format mean± std. dev.

FIGURE 4. Performance comparison of the proposed (ResNet50+TL) technique with similar studies in
the literature in terms of the mean accuracy of classification of each type of prompts: long words,
short-long words, vowels and short words. The chance level accuracy for each type of prompts is shown
by the dashed line.

network excluding feature extraction, file reading and other
overheads was around 4 minutes.

V. RESULTS OF OUR STUDY
We tested the proposed methods on all the types of speech
imagery available in the dataset. The accuracies obtained by
the classifier for different classes of imagined prompts are
listed in Tables 3, 4, 5 and 6, and compared with the state-of-
the-art results in the literature. Clearly, the accuracy for every
subject is better than the best in the literature for every type
of prompt. The accuracy of decoding the imagined prompt
varies from a minimum of 79.7% for vowels for the subject
S13 to a maximum of 95.5% for short-long words for the
subject S1. Figure 4 compares the mean accuracy across the
subjects for each class of imagined prompts with the best two
techniques reported in the literature.

To understand the effectiveness of data augmentation,
we trained the classifier separately using the actual and the
augmented data. Figure 5 compares the performance of our
technique with and without data augmentation for the task
of classifying short-long words. With data augmentation,
the accuracy for all the subjects is above 90%, with the
maximum of 95.5% for S1. Clearly, the accuracy of the
system drops to mere chance level performance when the data
augmentation stage is removed. This is expected due to the
reduction in the number of training data.

Figure 6 gives the overall confusion matrices for each
of the four classes of prompts. The precision and recall of
various prompts of all the four classes of prompts are listed
in Table 7. These values are consistently high, ranging from
about 84% for short words to about 92.5% for short-long
words. The precision and recall of all the prompts within each
class of prompts are comparable indicating that the classifiers
are not favouring any particular prompt within any class.
The proposed method has performance comparable to the
method developed by Saha and Fels [23] where a combi-
nation of CNN and recurrent neural networks (RNN) were
used. Although RNNs are capable of capturing time-series
information, they failed to give performance superior to our
results in our experiments with the same feature extraction
techniques. This might be because of the sliding window
data augmentation applied in this work, which disturbs the
time-series information in the data.

Since the number of classes in different types of imag-
ined prompts are different, we have also computed Cohen’s
kappa (κ) value for the different classifiers. Kappa is defined
as:

κ :=
pcl − pch
100− pch

(3)

where pcl is the accuracy of the classifier and pch is the chance
level accuracy, both in percentage. The value of κ lies in the
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FIGURE 5. Comparison of the performance of the proposed (ResNet50+TL) technique with and without
data augmentation, in terms of the mean accuracy of classifying the short-long words ‘‘in’’ and
‘‘cooperate.’’ The data augmentation increases the accuracy by about 40% in all the cases. The chance
level accuracy is shown by the dashed line.

TABLE 7. Table showing the precision and recall of all the prompts of
various classes of prompts considered independently. TP: number of true
positives, FP: number of false positives, TN: number of true negatives and
FN: number of false negatives.

range [−1, 1]. Values closer to 0 indicate that the classifier
is only as good as random guess whereas values less than
0 indicate that the performance is inferior to random guess.
κ values of various classifications are compared with those
of the best techniques in the literature in Figs. 7, 8, 9, and 10
for long-words, short-words, vowels, and short-long words,
respectively. The mean values of κ for long words, short

words, vowels, and short-long words for the proposedmethod
are 0.78 ± 0.01, 0.75 ± 0.05, 0.78 ± 0.06 and 0.87 ± 0.02,
respectively. Clearly, short-long words have the highest mean
and the lowest standard deviation among all the types of
prompts. This may be because of the difference between the
complexity of the two words, ‘‘in’’ and ‘‘cooperate’’ (‘‘in’’ is
monosyllabic containing a nasal consonant whereas ‘‘coop-
erate’’ is quadrisyllabic with no nasals). This result is in-line
with the observation of Nguyen et al. [7].
Further, to study the effectiveness of the individual EEG

frequency bands in decoding speech imagery, we subdivided
each of them into three subbands. The subbands within each
frequency band are chosen such that they have approxi-
mately equal bandwidths in the logarithmic frequency scale.
Table 8 lists the subbands chosen within the alpha, beta and
gamma bands. Decoding experiments were separately con-
ducted using only the features extracted from the subbands of
each of the main bands. The results of using these subbands
for classifying short-long words are shown in Fig. 11, along
with the results obtained using all the three undivided EEG
bands together. Clearly, the alpha and gamma bands have
the lowest and the highest accuracies, respectively. This is
in-line with the observation of Koizumi et al. [17]. Gamma
band gives a performance which is nearly 20% higher than
that of alpha band. For subjects S8 and S10, the accuracies
of beta band and gamma band are comparable. This trend
was observed in one of our previous works on classifying
imagined phonemes [58] where a different dataset was used.
The accuracy obtained by combining all the three bands is
higher than the accuracy with gamma band by a minimum
of 5% and a maximum of 14% for different subjects, clearly
indicating the need for using all the three EEG frequency
bands to obtain the best performance.

VI. LIMITATIONS OF THE WORK
The following are the limitations of the current
work:
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FIGURE 6. Confusion matrices for each type of prompts across all the participants. The number of trials per prompt for long words, short-long words,
vowels and short words are 600, 560, 1200, and 1600 respectively. TPR: True positive rate, TNR: True negative rate.

• As with many works employing deep learning, we can-
not pinpoint to a particular part of the feature vector that
leads to the good performance of the system. It would
have been better if we are able to pinpoint a subset
of EEG channels that have good discriminatory power
for the imagined prompts. In our previous work [26],
we have used common spatial patterns to identify the
EEG channels of interest. We have also shown how the

accuracy varies with the number of channels used for
feature extraction. A similar analysis is difficult here due
to the huge computational cost and complexity of the
architecture. However, this high computational cost is
associated only with the training and not with testing.

• A similar analysis in terms of the prompts would also
be interesting. As we have shown in Sec. V, length of
the prompts do have good discriminatory powers. In one
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FIGURE 7. Comparison of κ values with similar studies on classifying long words, viz. ‘‘independent’’
and ‘‘cooperate.’’

FIGURE 8. Comparison of κ values with similar studies on classifying short words, viz. ‘‘in,’’ ‘‘out’’ and
‘‘up.’’

FIGURE 9. Comparison of κ values with similar studies on classifying the vowels ‘‘/a/,’’ ‘‘/i/’’ and ‘‘/u/.’’

of our other works, we have shown that MPC values
can be used for discriminating imagined prompts at the
phonological level [58]. A deeper analysis into what
the features are actually capturing can help in designing
better prompts for speech imagery based BCI systems.

• We have used two frequency dependent measures popu-
lar in connectivity analysis. Further analysis is required
to ascertain the differences in the information captured
by the two measures. The two measures are not exactly
the same, since if they were, all the input matrices
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FIGURE 10. Comparison of κ values with similar studies on classifying short-long words, viz. ‘‘in’’ and
‘‘cooperate.’’

FIGURE 11. Performance comparison of the proposed (ResNet50+TL) approach when subbands within
each EEG frequency band, alpha, beta and gamma are used to train the classifier for classifying
short-long words, namely ‘‘in’’ and ‘‘cooperate.’’ Each frequency band is further divided into three
subbands which are equally spaced in the logarithmic scale. Gamma band consistently outperforms the
other bands and the accuracy significantly improves when all the bands are combined. The chance level
accuracy is shown by the dashed line.

TABLE 8. Subbands of EEG frequency bands used in this study. The
subbands are chosen such that bandwidths within each band are
approximately equal in the logarithmic frequency scale.

would have been perfectly symmetric. However, some
similarities are observed between the lower and upper
triangular entries of the input matrices in the beta band.
The reason for this similarity in some regions and lack of
it in other regions is an interesting topic for investigation,

considering the difference between the mathematical
formulations of the two measures.

• It would be interesting to quantify the effect of the length
of window and the stride used for data augmentation on
the classification accuracy.

VII. CONCLUSION
This work proposes a novel transfer learning based archi-
tecture for decoding imagined speech. The training data is
augmented using overlapping analysis windows to alleviate
the problem of having limited training data. A deep network
with ResNet50 network pre-trained on ImageNet as the base
classifier is used for classifying the imagined prompts. The
results obtained are superior to the state-of-the-art results
for every type of prompt and on every subject for the ASU
dataset used. This is the first work to use a network trained
for classifying real-world images for classifying imagined
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prompts. Unlike most works in the literature on classify-
ing imagined prompts, we extract features simultaneously
from multiple EEG channels. This helps us to capture the
inter-channel interactions involved in speech imagery. Two
popular measures used in EEG connectivity analysis, namely
mean phase coherence and magnitude-squared coherence are
used as features. These measures are compactly packed into
a three dimensional array, resembling the images in Ima-
geNet used for pre-training ResNet50. The compact packing
reduces the dimensions of the input to the classifier.
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