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Mellin-Barnes (MB) integrals are well-known objects appearing in many branches of mathematics and
physics, ranging from hypergeometric functions theory to quantum field theory, solid-state physics,
asymptotic theory, etc. Although MB integrals have been studied for more than one century, until now there
has been no systematic computational technique of the multiple series representations of N-fold MB
integrals forN > 2. Relying on a simple geometrical analysis based on conic hulls, we show here a solution
to this important problem. Our method can be applied to resonant (i.e., logarithmic) and nonresonant cases
and, depending on the form of the MB integrand, it gives rise to convergent series representations or
diverging asymptotic ones. When convergent series are obtained, the method also allows, in general, the
determination of a single “master series” for each series representation, which considerably simplifies
convergence studies and/or numerical checks. We provide, along with this Letter, a Mathematica
implementation of our technique with examples of applications. Among them, we present the first
evaluation of the hexagon and double box conformal Feynman integrals with unit propagator powers.
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Introduction.—N-fold Mellin-Barnes (MB) integrals are
defined as

Iðx1;x2;…;xNÞ

¼
Z þi∞

−i∞

dz1
2πi

� � �
Z þi∞

−i∞

dzN
2πi

Q
k
i¼1Γai ½siðzÞþgi�Q
l
j¼1Γbj ½tjðzÞþhj�

xz11 …xzNN ;

ð1Þ

where ai; bj; k; l, and N are positive integers (with k ≥ N
after possible cancellations due to the denominator), z ¼
ðz1;…; zNÞ and where we have defined siðzÞ ≐ ei · z and
tjðzÞ ≐ fj · z for a later purpose. The vectors ei, fj and the
scalars gi, hj are reals, while x ¼ ðx1;…; xNÞ can be
complex, and the contours of integration, which avoid
the poles of the gamma functions that belong to the
numerator of the MB integrand, have to be specified. In

the present Letter, we focus on the common situation where
the set of poles of each of these gamma functions is not split
in different subsets by the contours.
The importance of MB integrals cannot be overstated, as

they appear in domains as diverse as hypergeometric
functions theory [1–3], electromagnetic wave propagation
in turbulence [4], asymptotics [5], quantum field theory
(QFT) [6], etc. In QFT, which is of particular interest for the
authors, an impressive array of publications of the last
decades may be mentioned (see [6] for a complementary
list). Early studies can be found in [7–9], followed by
classical works [10–23] highlighting the relevance of MB
integrals in QFT. These motivated the automatization
of some of the computational steps of the MB technique
[24–28]. Numerous applications were guided by the needs
of particle physics phenomenology, e.g., [29–40] but also
by more formal motivations [41–54]. Recently, MB inte-
grals and the Mellin transform entered the conformal
bootstrap, see e.g., [55,56] and references therein. Other
recent and diverse applications exist as, for instance, in
option pricing [57], detector physics [58] or Ruderman-
Kittel-Kasuya-Yosida interaction in condensed matter [59].
Even though MB integrals have been thoroughly studied

for several decades in theoretical physics, and in fact for
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more than one century in the mathematical literature—from
the pioneering works [60–62] to the most recent advances
(see e.g., [63] and references therein)–it has been recently
emphasized in [64,65] that there is still no systematic
computational technique for the extraction of their multiple
series representations in the N-fold case when N > 2 (for
the N ¼ 2 case with straight contours see [49,66,67]).
We present here the first solution to this important

problem, which, in addition to its own interest in the theory
of MB integrals, can potentially lead to many new results in
the fields mentioned above. AMathematica implementation
of our method is given in the Supplemental Material [68] to
this Letter, along with important specific examples of
application of our method. The code is used, among others,
to obtain the first evaluation of twohighly nontrivial resonant
cases in QFT: the hexagon and double box conformal
Feynman integrals with unit propagator powers (see [53]
for the nonresonant generic propagator powers cases).
The method.—The type of series representations that

can be derived from Eq. (1) strongly depends on the
N-dimensional vector Δ ¼ P

i aiei −
P

j bjfj. If Δ is null,
which is the case we focus on in the present Letter, this
corresponds to a degenerate situation [66,67] where there
exist several convergent series representations for the
MB integral, converging in different regions of the x
parameter space. These series are analytic continuations
of one another if the quantity α ≐ Minjjyjj¼1ð

P
i aijei · yj −P

j bjjfj · yjÞ is positive [66].
The question, now, is how to derive these series

representations. To ease the reading of the presentation
of our method, which rests on a simple geometric analysis,
we focus here on the nonresonant case where there is no
point in the z space at which more than N singular (hyper)
planes (associated with the gamma functions in the numer-
ator of the integrand of the N-fold MB integral) inter-
sect. The poles of the MB integrand are thus of order
one, thereby avoiding a discussion on the technical aspects
of multivariate residues computations [69,70] because
only nonlogarithmic series representations can appear.
Resonant, i.e., logarithmic cases, are discussed in the
Supplemental Material [68], as well as in [54].
To illustrate the different steps of the method, we

propose to consider the simple paradigmatical example
of the Appell F1 double hypergeometric function whose
MB representation reads [1]

F1ða; b1; b2; c; u1; u2Þ

¼ ΓðcÞ
ΓðaÞΓðb1ÞΓðb2Þ
×
Z þi∞

−i∞

dz1
2πi

Z þi∞

−i∞

dz2
2πi

ð−u1Þz1ð−u2Þz2Γð−z1ÞΓð−z2Þ

×
Γðaþ z1 þ z2ÞΓðb1 þ z1ÞΓðb2 þ z2Þ

Γðcþ z1 þ z2Þ
; ð2Þ

where the contours of integration are such that they separate
the sets of poles of Γð−z1Þ and Γð−z2Þ from those of the
other gamma functions in the numerator of the MB inte-
grand. To avoid resonant situations, we choose generic
values for the parameters a; b1; b2, and c. It can be seen from
Eq. (2) thatΔ ¼ ð0; 0Þ, whichmeans that this is a degenerate
case, and a simple analysis shows that α ¼ 2. Therefore, as
mentioned above, one can conclude that the different series
representations of the twofold MB integral that we will
derive are analytic continuations of one another, converging
in different regions of the ðu1; u2Þ space.
In the general MB case, each of the series representations

that we look for is a particular linear combination of some
multiple series. In the nonresonant case, such a linear
combination is obtained as a sum of terms suitably
extracted from a set S of what we call “building blocks”
in the following. The latter are thus nothing but the multiple
series dressed with their overall coefficient and sign.
The key point of our method (in the nonresonant case) is

that each of these building blocks is associated with one
N-combination of gamma functions in the numerator of the
MB integrand and with one conic hull, and that specific
intersections of these conic hulls are in one-to-one corre-
spondence with the sums of building blocks that form the
different series representations of the MB integral under
study (in the resonant case, the same intersections give birth
to series representations, which are, however, not made of
building blocks).
Let us look at this in more detail. For each possible

N-combination of gamma functions in the numerator of the
MB integrand, let us consider the pointed conic hull, built
from the vectors ei of the gamma functions that belong to
the N-combination. An N-combination whose associ-
ated conic hull is N-dimensional is retained, while the
N-combinations yielding lower-dimensional objects are
discarded. Finding all relevant N-combinations, one there-
fore obtains a set of corresponding conic hulls, which we
call S0, where cardðS0Þ ¼ cardðSÞ.
To see this in our F1 example, let us label each of the five

gamma functions of the integrand’s numerator of Eq. (2) by
i ¼ 1;…; 5 to keep track of them and display them in a
tabular form (see Table I) along with their corresponding
normal vector ei and what we call their singular factor
siðzÞ, defined in Eq. (1). Now, since the MB integral is
twofold, one has to consider all possible 2-combinations
ði1; i2Þ of these gamma functions and their associated conic
hulls Ci1;i2 , where i1 and i2 are the labels, given in the first
column of Table I, of the gamma functions that belong
to a given 2-combination. There are ð5

2
Þ ¼ 10 possible

2-combinations, out of which only eight are retained, as for
the two 2-combinations (1,4) and (2,5) the associated conic
hulls are of lower dimension than the fold of the MB
integral.
This way, the set of conic hulls associated with the

retained 2-combinations is

PHYSICAL REVIEW LETTERS 127, 151601 (2021)

151601-2



S0 ¼ fC1;2; C1;3; C1;5; C2;3; C2;4; C3;4; C3;5; C4;5g: ð3Þ

As an example, the conic hull C1;3 associated with (1,3),
whose edges are along the vectors e1 ¼ ð−1; 0Þ and
e3 ¼ ð1; 1Þ, is shown in Fig. 1 (top left). C3;5 (respectively,
C4;5) is shown in the top middle (respectively, top right).
As mentioned above, one can now associate with each

retained 2-combination ði1; i2Þ a building block, denoted by
Bi1;i2 . Consequently, S simply reads

S ¼ fB1;2; B1;3; B1;5; B2;3; B2;4; B3;4; B3;5; B4;5g: ð4Þ

We now have to compute explicitly the expressions of each
of these building blocks and find the series representations
that can be built from them. Note that it is, of course,
possible to perform these two steps in reverse order because
our method does not rest on the convergence properties of
the involved multiple series.
In the general case, to each retained N-combination,

there is a corresponding set of poles located at the
intersections of exactly N singular (hyper)planes (those

of the gamma functions in the N-combination), which, by a
straightforward residue calculation, gives the correspond-
ing building block in S. Following [49], one begins by
bringing the singularity to the origin using appropriate
changes of variables on the MB integrand and one applies
the generalized reflection formula Γðz − nÞ ¼ ½Γð1þ
zÞΓð1 − zÞð−1Þn�=½zΓðnþ 1 − zÞ� ðn ∈ ZÞ, on each of
the singular gamma functions so that their singular part
appears explicitly. It then remains, in order to get the
residue, to divide the obtained expression by j detAj, where
A ¼ ðArsÞ1≤r≤N;1≤s≤N with Ars ¼ ðeirÞs, to remove the N
singular factors in the denominator and to put the zi,
i ¼ ð1;…; NÞ to zero. Summing over all residues, one then
obtains the expression of the desired building block.
Let us show how this works by considering, for instance,

in Eq. (4), the case of B1;3, which is the sum of residues of
the poles associated with (1,3), located at ðn1;−a−n1−n2Þ
for ni ∈ N (i ¼ 1, 2).
One first brings the singularity to the origin using the

changes of variable z1 → z1 þ n1 and z2→z2−a−n1−n2.
Then, applying the reflection formula on the singular
gamma functions, the MB integrand becomes

ð−u1Þz1þn1ð−u2Þz2−a−n1−n2
Γð1 − z1ÞΓð1þ z1Þð−1Þn1

ð−z1ÞΓðn1 þ 1þ z1Þ

×
Γð−z2 þ aþ n1 þ n2ÞΓð1þ z1 þ z2ÞΓð1 − z1 − z2Þ

ðz1 þ z2ÞΓðn2 þ 1 − z1 − z2Þ

× ð−1Þn2 Γðb1 þ z1 þ n1ÞΓðb2 þ z2 − a − n1 − n2Þ
Γðcþ z1 þ n1 þ z2 − a − n1 − n2Þ

:

Now, since j detAj, where A ¼ ð−1
1

0
1
Þ, gives one, it remains

to remove the singular factors s1 ¼ −z1 and s3 ¼ z1 þ z2
from the denominator and to put z1 ¼ z2 ¼ 0. Multiplying
by the overall prefactor [ratio of gamma functions in
Eq. (2)] and summing over n1 and n2, one then obtains
the expression of the building block

B1;3 ¼
ΓðcÞ

ΓðaÞΓðb1ÞΓðb2Þ
ð−u2Þ−a

X∞
n1;n2¼0

�
−
u1
u2

�
n1
�
1

u2

�
n2

×
Γðaþ n1 þ n2ÞΓðb1 þ n1ÞΓð−aþ b2 − n1 − n2Þ

Γðn1 þ 1ÞΓðn2 þ 1ÞΓð−aþ c − n2Þ

¼ ΓðcÞΓðb2 − aÞ
Γðb2ÞΓðc − aÞ ð−u2Þ

−a

× F1

�
a; b1; a − cþ 1; a − b2 þ 1;

u1
u2

;
1

u2

�
: ð5Þ

A similar analysis yields

B1;5 ¼
ΓðcÞΓða − b2Þ
ΓðaÞΓðc − b2Þ

ð−u2Þ−b2

×G2

�
b1; b2; b2 − cþ 1; a − b2;−u1;−

1

u2

�
; ð6Þ

FIG. 1. Conic hulls C1;3 (top left), C3;5 (top middle), and C4;5
(top right) and their intersection (orange region, bottom left) with
edges along e3 and e5 which corresponds in fact to C3;5. Bottom
right: convergence regions, given in Eq. (7), of the five series
representations of the MB integral in Eq. (2). The well-known
Appell F1 double hypergeometric series converges inR1, its four
analytic continuations in the other regions.

TABLE I. List of gamma functions in the numerator of the
integrand in Eq. (2) and their associated normal vectors and
singular factors.

i Γ function ei siðzÞ
1 Γð−z1Þ ð−1; 0Þ −z1
2 Γð−z2Þ ð0;−1Þ −z2
3 Γðaþ z1 þ z2Þ (1,1) z1 þ z2
4 Γðb1 þ z1Þ (1,0) z1
5 Γðb2 þ z2Þ (0,1) z2
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where G2 is one of the Horn double hypergeometric series
[71]. It is thus straightforward, from similar calculations, to
derive the explicit form of each of the building blocks
of Eq. (4).
Let us now explain how to build the various series

representations of the N-fold MB integral without any
convergence analysis, which is among the significant
features of this Letter. We observe that there is a one-to-
one correspondence between these series representations
and the subsets of conic hulls of S0 whose intersection is
nonempty, with the important constraint that if a subset of
conic hulls satisfying the nonempty intersection condition
is included in a bigger subset that also satisfies it, then the
former does not correspond to a series representation. In
order to write down the expression of the series represen-
tation associated with a given subset, one simply has to add
the building blocks in S that correspond to each of the conic
hulls of the subset. Every subset of conic hulls in S0
satisfying the nonempty intersection condition will then
lead to one distinct series representation of the MB integral.
In the case of Eq. (2), a straightforward geometrical

analysis yields five subsets, which therefore leads to
five series representations that are analytic continuations
of one another. The subsets are fC1;2g; fC1;3; C1;5g;
fC1;3; C3;5; C4;5g; fC2;3; C2;4g, and fC2;3; C3;4; C4;5g. As
an example, we have shown the intersection corresponding
to the third subset in Fig. 1 (bottom left).
One therefore obtains

F1ða;b1; b2; c;u1; u2Þ

¼

8>>>>>>>><
>>>>>>>>:

B�
1;2 for ju1j < 1 ∩ ju2j < 1 ðR1Þ

B1;3 þ B�
1;5 for ju1j < 1 ∩ j 1

u2
j < 1 ðR2Þ

B1;3 þ B�
3;5 þ B4;5 for j 1

u1
j < 1 ∩ j u1u2 j < 1 ðR3Þ

B2;3 þ B�
2;4 for j 1

u1
j < 1 ∩ ju2j < 1 ðR4Þ

B2;3 þ B�
3;4 þ B4;5 for j u2u1 j < 1 ∩ j 1

u2
j < 1 ðR5Þ

ð7Þ

where the � on a building block is a notation which
indicates that it is the master series (see below) associated
with that series representation. The series representation
B1;3 þ B1;5 and B2;3 þ B2;4 coincide with Eq. (17) of [72],
while B1;3 þ B3;5 þ B4;5 and B2;3 þ B3;4 þ B4;5 match with
Eq. (22) of the same reference.
Obviously the last two series representations of Eq. (7)

could be deduced from the second and third ones by
using the permutation symmetry F1ða; b1; b2; c; u1; u2Þ ¼
F1ða; b2; b1; c; u2; u1Þ.
Master series.—Until here, we did not discuss conver-

gence issues, because our method does not need to solve for
the latter in order to extract the different series representa-
tions from the MB integral. However, once obtained, one
may need to know the convergence regions of the series.

We will see now that by introducing master series, this task
can be greatly simplified.
In the degenerate case, the convergence region of a

particular series representation of the MB integral is given
by the intersection of the convergence regions of each of the
series of which the series representation is built. Therefore,
one way to find the convergence region of a series
representation is to find the convergence region of each
of these terms. Beyond triple or even double series, these
convergence issues can be difficult open problems.
Moreover, the higher k and/or N in Eq. (1) are, the more
the linear combinations that constitute the series represen-
tations each have a large number of terms with different
convergence properties. This also increases the complexity
of the convergence analysis.
The alternative strategy that we propose is to find a set of

poles that can parametrize, up to a change of variables, all
the poles associated with the considered series representa-
tion. We call this set the “master set”. One can then
construct from the master set a single series, which we
name the master series, and we conjecture that its con-
vergence region will either coincide or be a subset of the
convergence region of the series representation under
consideration. In the former case, which happens when
there is no gamma function in the denominator of the MB
integrand (or when there is at most a finite number of
cancellations of poles by the gamma functions in the
denominator), this considerably simplifies the task to that
of finding the region of convergence of only this series (this
is the case for our F1 example); whereas in the latter case,
although not explicitly giving the convergence region of the
series representation, this is of precious help to facilitate the
numerical checks. Note that even when the convergence
region of the master series is too complicated to be derived,
it is of great utility because it is sufficient to find a single set
of numerical values that make it converge, to have the
whole series representation also converging for the same set
of values (this point is clearly illustrated in the study of the
resonant double box and hexagon Feynman integrals
performed in the Supplemental Material [68]).
In the case of higher-fold MB integrals, it is not

straightforward to find the master set algebraically. We
therefore propose a simpler technique, where we infer
the master series from the N-dimensional conic hull (the
“master conic hull”) formed by the intersection of the conic
hulls associated with the N-combinations from which the
series representation is built. First, one obtains the N basis
vectors ei ði ¼ 1;…; NÞ of the master conic hull. Then the
set of poles resulting from the meeting of the singular
(hyper)planes associated with the gamma functions
Γðei · ziÞ, ði ¼ 1;…; NÞ gives the master set. Although
the direction of the basis vectors ei is given, their
magnitude has to be fixed in such a way that the master
set parametrizes all the poles that correspond to the series
representation, up to a change of variable. Note that it can
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happen, in some cases, that the master series built from the
master set is in fact one of the building blocks. This is the
case for our F1 example above and it is illustrated in Fig. 1
(bottom left) for the third series of Eq. (7), where it is
indeed clear that the plotted intersection is a conic hull that
matches with C3;5. This means that B3;5 is the master series
associated with the third series representation of Eq. (7).
Therefore, the convergence region of B3;5 coincides with
the region R3 (this can be easily checked by explicitly
computing the intersection of the convergence regions of
B1;3, B3;5, and B4;5). In Fig. 1 (bottom right), we show the
convergence regions obtained from a study of the master
series, indicated by a star in Eq. (7), of each series
representation of Eq. (2).
We close this section by noting that, as far as the master

series is concerned, resonant and nonresonant situations are
treated in the same way.
Conclusions.—A new, and so far unique, simple and

powerful systematic method for deriving series represen-
tations of N-fold MB integrals has been presented. It has
the great advantage of selecting the different terms that
form these series representations without the need of a prior
study of the convergence regions of each of these terms. In
the degenerate case, for each of the so obtained series
representations, our method also allows one, in general, to
derive a single master series. We have shown how the latter
considerably simplifies the convergence analysis and/or the
numerical checks.
We have also shown that our method can be used to

deal with resonant (i.e., logarithmic) situations in the
Supplemental Material [68] as well as in our recent work
[54]. In the latter paper, in addition to showing an
interesting interplay between QFT and hypergeometric
functions theory, our method has been used to identify
spurious contributions of a recent Yangian bootstrap
approach used to compute Feynman integrals [73].
To show that investigations in cases with a high number

of variables are not an unrealistic goal using our frame-
work, we have applied it to ninefold MB integrals in [53],
obtaining recently for the first time some series represen-
tations of the hexagon and double box conformal Feynman
integrals, for generic powers of the propagators. Although
these objects are very complicated, earlier attempts to
compute them having failed (see, for instance, [52]), they
were easily computable with our approach because their
MB representations belong to the nonresonant class. This is
due to the fact that the propagator powers of these Feynman
integrals are generic. Note that it is generally advised to
compute Feynman integrals for generic powers of the
propagators with the MB technique (see [6]). The same
is true for multiple hypergeometric functions, which are, in
general, studied for generic values of their parameters. This
gives us one more reason to believe that the efficiency and
simplicity of our approach in the nonresonant case will give
birth to many new results.

All the examples mentioned until here belong to the so-
called degenerate class, where Δ ¼ 0, but our method can
also treat theΔ ≠ 0 case, where diverging asymptotic series
representations can be obtained, as it will be shown in a
subsequent publication.
We finish here by mentioning that we have provided, in

the Supplemental Material [68], the first version of a
Mathematica implementation of our method. It gave, in
less than two minutes of CPU time, a series representation
consisting of 26 terms for the hexagon [53]. In contrast the
MBsums Mathematica package of [28] gives a hardy usable
linear combination of 112 368 terms in over 12 h on the
same computer. We have also used our code to derive the
first series representations of the hexagon and double box
in the highly nontrivial resonant case of unit propagator
powers.
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assistance. S. G. thanks the Collaborative Research Center
CRC 110 Symmetries and the Emergence of Structure in
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