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1. Introduction

The main objective of the present article is to study smoothness in the space of 
bounded linear operators on a Banach space, induced by the numerical radius. The 
study of smoothness in the space of bounded linear operators on a Banach space, with 
respect to the usual operator norm, is a classical area of research in geometry of Banach 
spaces [1,6–8,12,15–18,24,25]. The space of bounded linear operators on a Banach space, 
endowed with the numerical radius norm, need not be isometrically isomorphic to the 
space of bounded linear operators on the same Banach space, endowed with the usual 
operator norm, in general. Therefore, it is expected to have differences in geometric 
structures in the space of bounded linear operators on a Banach space, equipped with 
these two different norms. The current work explores the said differences from the point 
of view of smoothness.

The symbol X signifies a Banach space over the field F , where F = R or C. Unless 
otherwise mentioned, we work with both real and complex Banach spaces. Given any 
λ ∈ C, let Re λ denote the real part of λ. For any subset D of F , let CO(D) denote the 
convex hull of D. It is immediate that if D is a compact subset of F then CO(D) is also 
a compact subset of F .

Let BX and SX denote the closed unit ball and the unit sphere of X, respectively. 
Let ext(BX) denote the collection of all extreme points of the closed unit ball BX. We 
denote the zero vector of any vector space by θ, other than the scalar field F . Let L(X)
(K(X)) denote the collection of all bounded (compact) linear operators on X endowed 
with the usual operator norm. We use the symbol MT to denote the norm attainment 
set of a bounded linear operator T ∈ L(X), i.e., MT := {x ∈ SX : ‖Tx‖ = ‖T‖}. Given 
any x, y ∈ X, we say that x is Birkhoff-James orthogonal [2] to y, written as x ⊥B y, 
if ‖x + λy‖ ≥ ‖x‖ for all scalars λ ∈ F . Let X∗ denote the topological dual of X. The 
collection of all support functionals at a non-zero x ∈ X is denoted by J(x) and is defined 
by:

J(x) := {x∗ ∈ SX∗ : x∗(x) = ‖x‖} .

By the Hahn-Banach Theorem, the collection J(x) is non-empty. It is well known [9,10]
that x ⊥B y if and only if there exists x∗ ∈ J(x) such that x∗(y) = 0. The element x is 
said to be a smooth point in X, if J(x) is singleton. Equivalently, x is a smooth point in 
X if and only if for any y1, y2 ∈ X with x ⊥B y1 and x ⊥B y2 imply that x ⊥B (y1 + y2), 
i.e., Birkhoff-James orthogonality is right additive at x. The space X is called smooth if 
every non-zero element of X is smooth.

Given any T ∈ L(X), the numerical range of T is defined by:

W(T ) := {x∗(Tx) : (x, x∗) ∈ J} , where J := {(x, x∗) ∈ X×X∗ : x ∈ SX, x
∗ ∈ J(x)} .

The numerical radius of the linear operator T is defined by:
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‖T‖w = sup{|λ| : λ ∈ W(T )}.

It is well known that whenever F = C, the numerical radius defines a norm on L(X). 
However, ‖ · ‖w need not be a norm on L(X), if F = R. Throughout the text, we will 
only consider those Banach spaces for which ‖ · ‖w defines a norm on L(X). The space 
of bounded linear operators on X endowed with the numerical radius norm is denoted 
by (L(X))w. For a detailed study on numerical range of operators and their possible 
applications, we refer the readers to [4,5,11,13,14].

Birkhoff-James orthogonality is an important tool in the study of smoothness of 
elements in a given Banach space. Indeed, using the Birkhoff-James orthogonality of 
operators [19], a complete characterization of smoothness in K(X) was provided in [15], 
for a real reflexive Banach space X. The geometry of L(X) is heavily dependent on the 
norm attainment sets of its members [3,20–22]. In particular, the norm attainment set 
of a linear operator T plays a pivotal role in determining the smoothness of T in L(X). 
A characterization of smoothness without any restriction on MT was provided in [24]. 
The above studies motivate us to explore the concept of numerical radius smoothness in 
(L(X))w.

Definition 1.1. Let X be a Banach space and let T, A ∈ (L(X))w. We say that T is 
numerical radius Birkhoff-James orthogonal to A, written as T ⊥w

B A if

‖T + λA‖w ≥ ‖T‖w ∀ λ ∈ F .

Definition 1.2. Let X be a Banach space and let T ∈ (L(X))w be non-zero. We say that 
T is nu-smooth (the abbreviated form of numerical radius smooth), if

T ⊥w
B A, T ⊥w

B B imply that T ⊥w
B (A + B) ∀ A,B ∈ (L(X))w.

The concept of extreme points is closely related to the numerical radius attainment 
problem, especially in the finite-dimensional case. In general, ext(BX) can be empty 
for a given Banach space X. As a result, (ext(BX) × ext(BX∗))

⋂
J can also be empty. 

Obviously, this is not true if X is finite-dimensional. In that case, given any T ∈ (L(X))w, 
we have the following useful formula:

‖T‖w = sup
{
|x∗(Tx)| : (x, x∗) ∈ (ext(BX) × ext(BX∗))

⋂
J
}
. (1.1)

The above formulation is particularly advantageous whenever X is a finite-dimensional 
real polyhedral Banach space, i.e., ext(BX) is finite. Note that a finite-dimensional real 
Banach space X is polyhedral if and only if X∗ is polyhedral, and a member x∗ of 
X∗ is an extreme point of BX∗ if and only if x∗ is the unique supporting functional 
corresponding to a facet of BX [23, Lemma 2.1]. In this context, it is worth mentioning 
that the numerical radius defines norm on L(X), whenever X is a finite-dimensional 
real polyhedral Banach space. Indeed, if X is a finite-dimensional real Banach space so 
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that the numerical radius is not a norm on L(X), then there exists a non-zero operator 
T ∈ L(X) with ‖T‖w = 0. Using Lemma 2.3 of [14] one gets that there are infinitely 
many onto isometries on X which is not compatible with X being a finite-dimensional 
real polyhedral Banach space.

For any non-zero element T ∈ (L(X))w, let MW(T ) denote the numerical radius at-
tainment set of T , i.e.,

MW(T ) := {(x, x∗) ∈ J : x∗(Tx) = σ, |σ| = ‖T‖w}.

Note that MW(T ) is non-empty, whenever X is finite-dimensional. The collection of sup-
port functionals at T is defined by:

JW(T ) := {f : (L(X))w → F : f is linear, ‖f‖ = 1, f(T ) = ‖T‖w}.

It follows from the James characterization ([10, Theorem 2.1]) that T ⊥w
B A, for some 

A ∈ (L(X))w if and only if there exists f ∈ JW(T ) such that A ∈ ker f . Also, for any 
non-zero T ∈ (L(X))w, T is nu-smooth if and only if JW(T ) is singleton.

In the next Section, we acquire a characterization of smoothness in (L(X))w, both in 
the finite-dimensional and the infinite-dimensional cases. In due course of our develop-
ment, we also obtain a necessary and sufficient condition for Birkhoff-James orthogonality 
in (L(X))w whenever X is finite-dimensional. Some examples have been discussed to show 
that smoothness in L(X) and smoothness in (L(X))w are not equivalent.

2. Smoothness induced by the numerical radius

We devote this section to study nu-smoothness of bounded linear operators, which is 
the integral theme of the present article. We start by characterizing nu-smoothness of a 
bounded linear operator on any Banach space X.

Theorem 2.1. Let X be a Banach space and let T ∈ (L(X))w be non-zero. Then the 
following conditions are equivalent:
(i) T is nu-smooth.
(ii) T ⊥w

B A for A ∈ (L(X))w implies that for any sequence ((xn, x
∗
n)) ⊆ J with the 

property that

lim x∗
n(Txn) → σ, |σ| = ‖T‖w, (2.1)

every sub-sequential limit of the sequence (x∗
n(Axn)) is zero.

Proof. (i) =⇒ (ii) : Suppose on the contrary that there exists a sequence ((xn, x
∗
n)) ⊆ J

satisfying (2.1) such that

lim x∗
n (Axnk

) = r 
= 0,

k
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for some sub-sequence 
(
x∗
nk

(Axnk
)
)

of (x∗
n(Axn)). Let B ∈ (L(X))w be defined by 

B = T − σ

r
A. Then we obtain

lim x∗
nk

(Bxnk
) = lim x∗

nk

((
T − σ

r
A
)
xnk

)
= lim x∗

nk
(Txnk

) − σ

r
lim x∗

nk
(Axnk

) = 0.

This leads us to conclude that

‖T + λB‖w ≥ lim
∣∣x∗

nk
(T + λB)(xnk

)
∣∣ = lim

∣∣x∗
nk

(Txnk
) + λx∗

nk
(Bxnk

)
∣∣ = ‖T‖w,

for all scalars λ. In other words, T ⊥w
B B. Since ⊥w

B is homogeneous and T is nu-smooth, 
we get that T ⊥w

B

(σ
r
A + B

)
= T , which is a contradiction.

(ii) =⇒ (i) : Suppose that T ⊥w
B A and T ⊥w

B B for some non-zero A, B ∈ (L(X))w. 
Consider any sequence ((xn, x

∗
n)) ⊆ J that satisfies the condition (2.1). It now follows 

from the hypothesis of the theorem that we can find monotonically increasing sequence 
of natural numbers, say (nk), such that

lim x∗
nk

(Axnk
) = lim x∗

nk
(Bxnk

) = 0.

Therefore, lim x∗
nk

((A + B)(xnk
)) = 0. Now, for every scalar λ, we have that

‖T + λ(A + B)‖w ≥ lim
∣∣x∗

nk
(T + λ(A + B)) (xnk

)
∣∣ = ‖T‖w.

In other words, T ⊥w
B (A + B). Thus, T is nu-smooth and the proof follows. �

An interesting query on this context is whether the above characterization takes any 
special form if X is finite-dimensional. An extra advantage in assuming X to be finite-
dimensional is that we now have MW(T ) 
= ∅ for any T ∈ (L(X))w. Therefore, we can 
expect MW(T ) to play an important role in determining the nu-smoothness of T . To 
explore the said connection, we first prove a lemma that is particularly helpful in our 
further developments.

Lemma 2.2. Let X be a finite-dimensional Banach space and let T, A ∈ (L(X))w be non-
zero. The set D defined by

D :=
{
x∗(Tx)x∗(Ax) : (x, x∗) ∈ MW(T )

}
, (2.2)

is a compact subset of F .

Proof. It is trivial to see that D is bounded. Therefore, to show that D is compact, it is 
sufficient to show that D is closed. Assume that (μn) is a sequence in D with μn → μ0. 
Obviously, for each n
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μn = x∗
n(Txn)x∗

n(Axn), where (xn, x
∗
n) ∈ MW(T ).

Passing through a suitable sub-sequence if necessary, we may assume that xn → x0 and 
x∗
n → x∗

0, as n → ∞, where x0 ∈ SX and x∗
0 ∈ SX∗ . Observe that

|x∗
n(Txn) − x∗

0(Tx0)| = |x∗
n(Txn) − x∗

n(Tx0) + x∗
n(Tx0) − x∗

0(Tx0)|

≤ |x∗
n(Txn − Tx0)| + |(x∗

n − x∗
0)(Tx0)|

≤ ‖Txn − Tx0‖ + ‖x∗
n − x∗

0‖‖Tx0‖.

Since T is continuous, Txn → Tx0, as n → ∞. Thus, x∗
n(Txn) → x∗

0(Tx0), as n → ∞. 
Evidently, x∗

0(Tx0) = σ for some σ ∈ F with |σ| = ‖T‖w. Similar argument shows that 
x∗
n(Axn) → x∗

0(Ax0) and x∗
n(xn) → x∗

0(x0) = 1. This proves that

(x0, x
∗
0) ∈ MW(T ) and lim x∗

n(Txn)x∗
n(Axn) = μ0 = x∗

0(Tx0)x∗
0(Ax0).

Consequently, μ0 ∈ D. Thus, D is closed and this completes the proof of the lemma. �
The following theorem completely characterizes Birkhoff-James orthogonality in 

(L(X))w for a finite-dimensional Banach space X.

Theorem 2.3. Let X be a finite-dimensional Banach space and let T, A ∈ (L(X))w be 
non-zero. Then the following conditions are equivalent:
(i) T ⊥w

B A.
(ii) 0 ∈ CO(D), where D is the subset of F defined by (2.2).

Proof. (i) =⇒ (ii) : Since numerical radius Birkhoff-James orthogonality is homoge-
neous, without loss of generality, we may assume that ‖A‖w = 1. Suppose on the contrary 
that 0 /∈ CO(D). Since CO(D) is a compact convex subset of F (Lemma 2.2), rotating 
CO(D) suitably if necessary, we may and do assume that Re d > 0 for all d ∈ CO(D). 
Moreover, due to the compactness of D, we can find r ∈ (0, 12 ) such that Re d > r for all 
d ∈ D. In other words,

Re x∗(Tx)x∗(Ax) > r ∀ (x, x∗) ∈ MW(T ). (2.3)

Next, we define

G :=
{

(x, x∗) ∈ J : Re x∗(Tx)x∗(Ax) ≤ r

2

}
.

We claim that

sup{|x∗(Tx)| : (x, x∗) ∈ G} < ‖T‖w − 2ε for some ε ∈ (0, 1
2).
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It follows from (2.3) and the definition of G that G ∩MW(T ) = ∅. Suppose that ((xn, x
∗
n)) ⊆

G with lim |x∗
n(Txn)| = ‖T‖w. Without loss of generality, we may assume that xn → x0

and x∗
n → x∗

0, as n → ∞, where x0 ∈ SX and x∗
0 ∈ SX∗ . Applying the similar techniques 

as in the proof of Lemma 2.2, it can be shown that

(1) x∗
n(Txn) → x∗

0(Tx0) (2) x∗
n(Axn) → x∗

0(Ax0) (3) x∗
0(x0) = 1.

Since |x∗
0(Tx0)| = ‖T‖w, we have that (x0, x∗

0) ∈ MW(T ). Therefore,

Re x∗
n(Txn)x∗

n(Axn) → Re x∗
0(Tx0)x∗

0(Ax0) > r (using (2.3)).

However, this is a contradiction, as ((xn, x
∗
n)) ⊆ G. Thus, sup{|x∗(Tx)| : (x, x∗) ∈ G} <

‖T‖w − 2ε for some ε ∈ (0, 12 ).
Choose 0 < λ < min {ε, r}. Now, for any (x, x∗) ∈ G

|x∗ (Tx− λAx)| ≤ |x∗(Tx)| + |λx∗(Ax)|
< ‖T‖w − 2ε + λ

< ‖T‖w − ε.

Also, for any (x, x∗) ∈ J \ G

|x∗ (Tx− λAx)|2 = x∗ (Tx− λAx)x∗ (Tx− λAx)

≤ ‖T‖2
w + λ2 − 2λRe x∗(Tx)x∗(Ax)

≤ ‖T‖2
w + λ2 − λr.

Since λ2 − λr < 0, we get

‖T − λA‖w = sup {|x∗ (Tx− λAx)| : (x, x∗) ∈ J} < ‖T‖w.

This is a contradiction to the fact that T ⊥w
B A. Therefore, 0 ∈ CO(D), as desired.

(ii) =⇒ (i) : Since 0 ∈ CO(D), applying Carathéodory Theorem we can find tj ∈ [0, 1]
and (xj , x∗

j ) ∈ MW(T ), j = 1, 2, 3; such that

3∑
j=1

tj = 1 and
3∑

j=1
tjx∗

j (Txj)x∗
j (Axj) = 0. (2.4)

Let ρ : (L(X))w → F be defined by

ρ(B) = 1
‖T‖w

3∑
j=1

tjx∗
j (Txj)x∗

j (Bxj) ∀ B ∈ (L(X))w .
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Clearly, ρ(A) = 0. Also, note that for any B ∈ (L(X))w,

|ρ(B)| =

∣∣∣∣∣∣
1

‖T‖w

3∑
j=1

tjx∗
j (Txj)x∗

j (Bxj)

∣∣∣∣∣∣
≤ 1

‖T‖w

3∑
j=1

tj |x∗
j (Txj)||x∗

j (Bxj)| ≤ ‖B‖w,

and

ρ(T ) = 1
‖T‖w

3∑
j=1

tjx∗
j (Txj)x∗

j (Txj) = 1
‖T‖w

3∑
j=1

tj‖T‖2
w = ‖T‖w.

This shows that ρ ∈ JW(T ). Therefore, T ⊥w
B A and the proof follows. �

Whenever MW(T ) = {(μx0, μx
∗
0) : |μ| = 1, (x0, x

∗
0) ∈ J}, for some fixed x0 ∈ SX and 

x∗
0 ∈ SX∗ , we have the following corollary:

Corollary 2.4. Let X be a finite-dimensional Banach space and let T, A ∈ (L(X))w be 
non-zero with MW(T ) = {(μx0, μx

∗
0) : |μ| = 1, (x0, x

∗
0) ∈ J}. Then T ⊥w

B A if and only if 
x∗

0(Ax0) = 0.

Proof. It follows from Theorem 2.3 that

T ⊥w
B A ⇔ 0 ∈ CO

({
μx∗

0(Tμx0)μx∗
0(Aμx0) : |μ| = 1, (x0, x

∗
0) ∈ J

})
.

Clearly,

μx∗
0(Tμx0)μx∗

0(Aμx0) = x∗
0(Tx0)x∗

0(Ax0).

As a result, T ⊥w
B A if and only if x∗

0(Ax0) = 0. This completes the proof. �
Finally, we characterize nu-smoothness in (L(X))w, for a finite-dimensional Banach 

space X.

Theorem 2.5. Let X be a finite-dimensional complex Banach space and let T ∈ (L(X))w
be non-zero. Then the following conditions are equivalent:
(i) T is nu-smooth.
(ii) MW(T ) = {(μx0, μx

∗
0) : |μ| = 1, (x0, x

∗
0) ∈ J}.

In case X is a finite-dimensional real Banach space, then for any non-zero T ∈
(L(X))w, the condition (i) is equivalent to:

(iii) MW(T ) = {(ax0, ax
∗
0) : a ∈ {−1, 1}, (x0, x

∗
0) ∈ J}.

Proof. We only prove (i) ⇐⇒ (ii) and note that the proof of (i) ⇐⇒ (iii) can be 
completed in a similar manner.
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(i) =⇒ (ii) : Suppose on the contrary that there exists (y0, y∗0) ∈ MW(T ) such that 
(y0, y∗0) 
= (μx0, μx∗

0) for any unimodular constant μ. We now consider the following two 
cases:

Case I: Let y0 = σ0x0 for some unimodular constant σ0. We claim that kerx∗
0 
= ker y∗0 . 

Indeed, if kerx∗
0 = ker y∗0 , then y∗0 = α0x

∗
0 for some unimodular scalar α0. Since 

y∗0(σ0x0) = 1, we get α0σ0 = 1, which is true if and only if α0 = σ0. However, this 
proves that y∗0 = σ0x

∗
0, which is a contradiction, since (y0, y∗0) 
= (μx0, μx∗

0) for any 
unimodular constant μ. Therefore, kerx∗

0 
= ker y∗0 , as we have claimed.
Next, we consider x1, x2 ∈ X such that x1 ∈ kerx∗

0 \ ker y∗0 and x2 ∈ ker y∗0 \ kerx∗
0. 

Observe that for any z ∈ X, there exist a unique scalar αz and a unique vector hz ∈ kerx∗
0

such that

z = αzx0 + hz.

Now, we define A1, A2 : X → X by

A1(z) = αzx1 and A2(z) = αzx2 ∀ z ∈ X.

Clearly, A1, A2 ∈ (L(X))w. Note that A1(x0) = x1 and A2(y0) = σ0A2(x0) = σ0x2. Since 
(x0, x∗

0), (y0, y∗0) ∈ MW(T ), we have that

x∗
0(Tx0) = σ1‖T‖w and y∗0(Ty0) = σ2‖T‖w,

for some unimodular scalars σ1, σ2. We define ρ, τ : (L(X))w → F by

ρ(B) = x∗
0(Bx0) and τ(B) = y∗0(By0) ∀ B ∈ (L(X))w .

Observe that ρ and τ are linear and the linear functional σ1ρ : (L(X))w → F satisfies 
the following:

(i) |σ1ρ(B)| = |ρ(B)| ≤ ‖B‖w ∀ B ∈ (L(X))w ,

(ii) σ1ρ(T ) = ‖T‖w,
(iii) σ1ρ(A1) = σ1x

∗
0(A1x0) = σ1x

∗
0(x1) = 0,

(iv) σ1ρ(A2) = σ1x
∗
0(A2x0) = σ1x

∗
0(x2) 
= 0.

Therefore, we get σ1ρ ∈ JW(T ), A1 ∈ kerσ1ρ and A2 /∈ kerσ1ρ. Similar arguments show 
that σ2τ ∈ JW(T ), A2 ∈ kerσ2τ and A1 /∈ kerσ2τ . Thus, σ1ρ, σ2τ are distinct members 
of JW(T ). As a result, T is not nu-smooth, which is a contradiction.

Case II: Let y0 
= σx0 for any unimodular scalar σ. Let z0 ∈ X be such that

z0 = x∗
0(y0)x0 − y0. (2.5)
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Evidently, z0 is non-zero, as otherwise, x∗
0(y0)x0 = y0 and |x∗

0(y0)| = 1. Observe that 
z0 ∈ kerx∗

0. Consider any z∗0 ∈ J(z0). Evidently, for any z ∈ X there exist unique scalars 
αz, βz and hz ∈ kerx∗

0 ∩ ker z∗0 such that

z = αzx0 + βzz0 + hz. (2.6)

Plugging the expression of z0 (see (2.5)) into (2.6), we get

z = (αz + βzx
∗
0(y0))x0 + (−βz)y0 + hz.

As a result, for every z ∈ X, there exist γz, ζz ∈ F and hz ∈ kerx∗
0 ∩ ker z∗0 such that

z = γzx0 + ζzy0 + hz.

Now, we define T1, T2 : X → X by

T1(z) = γzx0 and T2(z) = ζzy0 ∀ z ∈ X.

Clearly, T1, T2 ∈ (L(X))w. Note that T1(y0) = T2(x0) = θ. Moreover, since 
(x0, x∗

0), (y0, y∗0) are contained in MW(T ), we have that

x∗
0(Tx0) = σ1‖T‖w and y∗0(Ty0) = σ2‖T‖w,

for some unimodular scalars σ1, σ2. We define ψ, η : (L(X))w → F by

ψ(B) = x∗
0(Bx0) and η(B) = y∗0(By0) ∀ B ∈ (L(X))w .

Consider the linear functionals σ1ψ, σ2η : (L(X))w → F . Then using analogous tech-
niques as in Case I, we can show the following:

(i) σ1ψ, σ2η ∈ JW(T ),

(ii) T2 ∈ kerσ1ψ, T1 /∈ kerσ1ψ,

(iii) T1 ∈ kerσ2η, T2 /∈ kerσ2η.

Thus, σ1ψ, σ2η are distinct members of JW(T ). As a result, T is not nu-smooth, which 
is a contradiction.

(ii) =⇒ (i) : Suppose that T ⊥w
B U1 and T ⊥w

B U2, for some non-zero U1, U2 ∈ (L(X))w. 
Then it follows from Corollary 2.4 that x∗

0(U1x0) = 0 and x∗
0(U2x0) = 0. Therefore, we 

have that x∗
0((U1 + U2)x0) = 0. As a result, T ⊥w

B (U1 + U2). This proves that T is 
nu-smooth and thereby establishes the theorem completely. �
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Equipped with the above characterization, we are now in a position to explore the 
geometrical dissimilarities between L(X) and (L(X))w from the perspective of smooth-
ness. Applying Theorem 2.5, it is possible to construct linear operators between finite-
dimensional polyhedral Banach spaces which are (not) nu-smooth. This further illustrates 
that the concepts of classical smoothness and nu-smoothness are indeed different.

To serve our purpose, we state the following result, which characterizes smoothness in 
the space of compact linear operators on a real reflexive Banach space endowed with the 
usual operator norm. Given a Banach space X and a normed linear space Y , let K(X, Y )
denote the space of all compact linear operators from X to Y .

Theorem 2.6. [15, Theorem 4.1 and Theorem 4.2] Let X be a real reflexive Banach space 
and let Y be a real normed space. Then T ∈ K(X, Y ) is smooth if and only if T attains 
norm at a unique (upto scalar multiplication) vector x0 (say) of SX and Tx0 is a smooth 
point.

Let us end this article with the following two explicit illustrative examples:

Example 2.7. Let Z = X ⊕∞ R, where X is a two-dimensional real Banach space whose 
unit sphere is given by:

SX :=

⎧⎨
⎩(x, y) ∈ R2 :

√
3|y| + |x| +

∣∣∣ |y|√
3 − |x|

∣∣∣
2 = 1

⎫⎬
⎭ . (2.7)

It is not difficult to see that BX is a regular hexagon in R2 and BZ is a hexagonal 
prism in R3. Also, ext(BZ) = {±x1, ±x2, ±x3, ±x4, ±x5, ±x6}, where x1 = (1, 0, 1), 
x2 = (1

2 , 
√

3
2 , 1), x3 = (−1

2 , 
√

3
2 , 1), x4 = (−1, 0, 1), x5 = (−1

2 , −
√

3
2 , 1), x6 = (1

2 , −
√

3
2 , 1). 

A pictorial description of BZ can be seen in Fig. 1.
Let g : Z → R be defined by

g(x, y, z) = x +
√

3y − z

3 ∀ (x, y, z) ∈ Z.

A simple computation reveals that |g(xi)| < 1 for all i ∈ {1, 2, 3, 4, 6} and |g(x5)| = 1. 
Thus, ‖g‖ = 1 and Mg = {±x5}. Now, define T : Z → Z by

T (x, y, z) = g(x, y, z)u ∀ (x, y, z) ∈ Z,

where u = (−1, 0, 0). Our aim is to show that T is not smooth with respect to the usual 
operator norm but T is smooth with respect to the numerical radius norm.
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x1

x6
x5

x4

x3 x2

u

−x4

−x3−x2

−x1

−x6 −x5

Fig. 1. Closed unit ball of X⊕∞ R.

Given any (x, y, z) ∈ SZ \ {±x5},

‖T (x, y, z)‖ = ‖g(x, y, z)u‖

= |g(x, y, z)|‖u‖

= |g(x, y, z)|

< 1.

On the other hand, ‖T (x5)‖ = 1. Therefore, ‖T‖ = 1 and MT = {±x5}. Note that u is 
a non-smooth point and T (x5) = −u. Therefore, it follows from Theorem 2.6 that T is 
not smooth with respect to the usual operator norm.

Next, let

Λ := {±(x5, h) : h ∈ J(x5)}.

Observe that for any (v, f) ∈ J \ Λ,

|f(Tv)| = |f(g(v)u)| ≤ ‖f‖‖g(v)u‖ = |g(v)|‖u‖ < 1.
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u

x1

x2
x3

−x1

−x2 −x3

Fig. 2. Closed unit ball of X.

Let

f1(x, y, z) = z, f2(x, y, z) = − 2√
3
y, f3(x, y, z) = −x− 1√

3
y ∀ (x, y, z) ∈ Z.

Note that f1, f2 and f3 are support functionals of BZ at x5 and contained in ext(BZ∗). 
Consequently,

J(x5) = {λ1f1 + λ2f2 + λ3f3 : λ1, λ2, λ3 ≥ 0, λ1 + λ2 + λ3 = 1} .

Evidently, Tx5 ∈ ker f1 ∩ ker f2 and f3(Tx5) = 1. Therefore, for any (x5, h) ∈ Λ,

|h(Tx5)| ≤ 1,

and the equality holds for h = f3. This shows that ‖T‖w = 1, and MW(T ) =
{(x5, f3), (−x5, −f3)}. Consequently, T is nu-smooth by Theorem 2.5.

Example 2.8. Let X be a two-dimensional Banach space whose unit ball is the regular 
hexagon in R2, defined in Example 2.7. Clearly, ext(BX) = {±x1, ±x2, ±x3}, where 
x1 = (1, 0), x2 = (1

2 , 
√

3
2 ), x3 = (−1

2 , 
√

3
2 ). A pictorial description of BX can be seen from 

Fig. 2.
Evidently, ext(BX∗) = {±f1, ±f2, ±f3}, where

f1(x, y) = x− 1√
3
y, f2(x, y) = x + 1√

3
y, f3(x, y) = 2√

3
y ∀ (x, y) ∈ X.

Let g : X → R be defined by

g(x, y) = x ∀ (x, y) ∈ X.
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Define T : X → X by

T (x, y) = g(x, y)u ∀ (x, y) ∈ X,

where u = (0, 
√

3
2 ). Our aim is to show that T is not nu-smooth but T is smooth with 

respect to the usual operator norm.
Clearly, MT = Mg = {±(1, 0)} and T (1, 0) = u = (0, 

√
3

2 ) is a smooth point of 
SX. Therefore, it follows from Theorem 2.6 that T is smooth with respect to the usual 
operator norm. Observe that J(x1) ∩ ext(BX∗) = {f1, f2}, J(x2) ∩ ext(BX∗) = {f2, f3}
and J(x3) ∩ ext(BX∗) = {f3, −f1}. Now,

f1(Tx1) = f1(g(x1)u) = f1(u) = −1
2 ,

f2(Tx1) = f2(g(x1)u) = f2(u) = 1
2;

f2(Tx2) = f2(g(x2)u) = 1
2f2(u) = 1

4 ,

f3(Tx2) = f3(g(x2)u) = 1
2f3(u) = 1

2 ;

f3(Tx3) = f3(g(x3)u) = −1
2f3(u) = −1

2 ,

−f1(Tx3) = −f1(g(x3)u) = 1
2f1(u) = 1

4 .

Thus, it follows from (1.1) that ‖T‖w = 1
2 and {(x1, f1), (−x1, −f1), (x1, f2), (−x1, −f2)}

is a subset of MW(T ). Consequently, T is not nu-smooth by Theorem 2.5.
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