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ABSTRACT 

In this paper, we analyze the finite-data perfor- 
mance of MVDR beamformer with spatial smoothing, 
using first order perturbation theory. In particular, we 
develop expressions for the mean values of the power 
gain in any direction of interest, the output power and 
the norm of the weight-error vector , as a function of 
the number of snapshots and the number of smoothing 
steps. We simplify these expressions for a single interfer- 
ence case without smoothing to show explicitly how the 
SNR, spacing of the interference from the desired signal 
and the correlation between them influence the beam- 
former performance. Simulations are used to  verify the 
usefulness of the theoretical expressions and the results 
show an excellent agreement with predicted results. 

1 Introduction 
In a MVDR (minimum variance distortionless re- 

sponse) beamformer, the array weights are chosen so 
as to pass the desired directional (look direction) signal 
without any distortion while maximally rejecting the in- 
terfering signals . The only assumption made is that the 
desired signal direction is known a priori. 

Since the pioneering work of Capon, there has been 
much activity in the development of optimum arrays 
for radar, sonar, communication etc. Sensitivity of the 
adaptive arrays to element errors and to those in the 
look direction has been extensively studied in the recent 
past. However, the performance of the optimum beam- 
former in finite data  has received little attention. The 
only papers (to our knowledge) which address this spe- 
cific problem are those of Reed et al. [l] and Boroson 
[2]. Their analysis , however , assumes that the weight 
vector computed from one set of data operates on an 
independent set of data. Also, the main thrust of their 
analysis is directed to the case where the weight vec- 
tor is estimated from the noise-alone matrix inverse, and 

$he interferences are uncorrelated with the look-direction 
signal. 

In this paper, we analyze the performance of the 
MVDR beamformer in finite data  with spatial smooth- 
ing. Our analysis uses first order perturbation theory, 

originally developed by Wilkinson [3] and first applied 
in array processing problems by Kaveh and Barabell [4]. 

2 Problem Statement 
Consider D narrrowband sources impinging on an 

uniform linear array consisting of M elements. We as- 
sume that the D signals and the additive noise are zero 
mean, stationary, and ergodic complex Gaussian random 
processes. In the finite data case, given L snapshots of 
data, the array covariance matrix is estimated as 

. L  

:=1 Y 

where r(t) is array snapshot vector. In spatial smooth- 
ing, the total array is divided into K overlapping subar- 
rays, each of size m and the smoothed covariance matrix 
is obtained by averaging over these. Thus the smoothed 
array covariance matrix is given by 

. K  

where, k, is a m by m sub-matrix of R with k(i,i) as 
its first element. Here, all the terms corresponding to 
the finite data are denoted by (:). We may point out 
here that when spatial smoothing is not used, L should 
atleast be equal to  m, since R would otherwise be rank 
deficient. On the other hand, with spatial smootgng, 
the minimum number of snapshots required (for R to 
attain full rank) can be traded with - the number of sub- 
arrays, K .  For example, for L = l ,  R would attain full 
rank if K 2 rn. 

The weight vector in MVDR beamformer with spa- 
tial smoothing is given by 

where a 1  denotes the desired signal direction vector. The 
power gain and the output power can then be expressed 

- 
(2.4) 

1 

a t R  a 1  

as 
Gj = g .  =.* 191 9 P a t =  :-I 
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where 3.1 Mean Power Gain 
Using (3.6) in (2.4) and the approximation 

(1+y)- '  = 1 - y + y 2 ,  (3.7) 
and neglecting the terms of order c3 and higher, we ob- 
tain the following expression for the power gain in a di- 
rection with steering vector aj : 

Gj  % Gj  + c(2Gj62 - 251) + ~'(1631~ 
-46251 + 3Gj6; - 2G,b4 + 252) (3 . 8) 

When we refer to  the asymptotic quantities we drop the 
symbol hat. Further, when we consider the unsmoothed 
case, i.e., K = l ,  we drop the symbol over-bar. 

To study the deviation of the weight vector from its 
asymptotic value, W, as a function of L, we define the 
weight-error vector norm as 

where 11.11 denotes the Euclidean norm. 
- The problem is to evaluate the mean values, E[Gj], 

E[POut] and E[llw - W112/11W112], as a function of the 
number of snapshots. 

- 

3 Derivation Of Expressions 

The estimated array covariance matrix, R, is 
Wishart distributed and can be decomposed as [4,3] 

R =  R + C B  (3.1) 

where R is the true or asymptotic covariance matrix, B 
is a zero mean random matrix and c j s  a perturbation 
constant. Since R, is a submatrix of R, we can write 

where Bi is the corresponding submatrix of B. It then 
follows that - 

R = R + + B  (3.3) 

where R and B are given by 

We can express 

When the number of snapshots is not small, 6 is a small 
quantity and hence , we can neglect terms of order c3 
and higher and obtain results accurate to  the first order 
in L. We thus approximate 

where 

Note that 62,63,64 and 65 are scalar random quantities 
while 61 is deterministic. 

For any deterministic vectors a1, a2,a3,  a4 of a p  
propriate dimension, we can show that (see [5],[6] for 
more details) 

E[a;CBaz] = 0 (3.10) 
and 

(3.11) 
where &Iu denotes the submatrix of size m by m of total 
array covariance matrix R begining a t  element R(u,v). 
Note that the subarray matrix R, is same as &. Using 
these identities we can evaluate the expectation of each 
term in (3.8) and obtain 

+3Gj411411* - 2Gj411T161 + 2 real(&*'$jiTi61)} 
(3.12) 

where 

4 z y  = d & u q y ,  Tl = tr(R-lRvu) (3 . 13) 

Since aj is arbitrary, (3.12) can be used to find the 
power gain in any direction and thus obtain the mean 
power beam pattern of the beamformer for finite data. 

3.2 Mean Output Power 

that (see [5],[6] for more details ) 
Following the approach used above , we can show 
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3.3 Mean Weight-Error Vector Norm 

We can also show that (see [5],[6]) 

Note that the RHS in (3.15) goes to zero as L tends to 
infinity, which is consistent with the fact that w tends 
to W asymptotically. 

4 Unsmoothed Case 

In this section, we reduce the above results to the 
unsmoothed case. I t  should, however, be noted that 
even though the above results were derived for the case 
of a uniform array, the following results are valid for an 
arbitrary array. 

For the unsmoothed case, i.e., K=l ,  (3.12),(3.14) 
and (3.15) reduce to  

E[Gj] M Gj 1 -  - + f ( 4 .  1) ( ;) "L 
m - 1  

E[pou*l = Pour (1 - T) (4 . 2) 

where 

(4-4) 

Note from (4.2) that the mean value of the output power 
is within 3 dB of the asymptotic value when the number 
of snapshots, L,  is approximately twice the array size. 

We now study the finite data performance of the 
beamformer in certain special, but pertinent, scenarios. 
We do this by considering a single interference . 

4.1 Single Interference Case 

For the case of a single interference, we can write 

where uI2, uz2 and an2 are the powers of the desired 
signal, interference (jammer) and noise, respectively, p 
is the coefficient of correlation between the signal and 

the jammer, and a2 is the jammer direction vector. A p  
plying the matrix inversion lemma repeatedly to (4.5), 
we can express (4.1) as 

where P = ata1 and 

In (4.6), we used the simplified result for the power gain 
from [7]. We will now simplify (4.6) for some special 
scenarios. 

4.1.1 Low Noise Case (on2 << u12, u2') 

Assuming that the interference is not too close to 
the desired direction, (4.6) can be simplified to 

Note from (4.8) that when the signals are uncorrelated 
( p  = 0), the gain varies as 1/L and thus, for a 20 dB sup- 
pression of jammer power below the signal power, we re- 
quire about 100 snapshots. When signals are correlated, 
(4.8) shows that the degradation in the interference re- 
jection performance due to finite data is overshadowed 
by that due to correlation. For example, for p=.5 , the 
reduction in the jammer power goes up by a mere 0.1 
dB when L is increased from 100 to infinity. 

We now consider the mean output power given by 
(4.2). Assuming once again that the interference is not 
too close to the desired direction, 

where we used the simplified result for Pout from [7]. 
Note from (4.9) that in addition to signal cacellation 
due to correlation, a reduction in output signal power 
also takes place because of the finite data. 

4.1.2 Jammer Close to Look Direction (IPI2 x 
m2 1 

When the jammer is close to  the look direction, 1/31 
approaches m and (4.6) simplifies to 

IPI2 E[Gj] x - 
m2 

(4.10) 

Thus, the power gain is independent of L and the MVDR 
beamformer reduces to  a conventional beamformer, as in 
the asymptotic case (see [7]). 
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5 Simulation Results 
We conducted simulations to test the usefulness of 

the expressions derived in the earliar sections. In our 
simulations, a uniform linear array with a half wave- 
length inter-element spacing was used, though the ex- 
pressions for the unsmoothed case are valid for an ar- 
bitrary array. In all the scenarios, the desired signal 
was assumed to arrive from the broadside direction ( 0 
degrees). The simulated result was obtained by averag- 
ing over 50 monte carlo runs. The scenario used in the 
simulation is described in the figures. 

First we considered the power gain with spatial 
smoothing. The results show a good agrrement between 
the theoretical and simulated results. Fig l (a)  shows 
the mean power gain performance as a function of the 
number of snapshots for various number of smoothing 
steps . Here, the improvement with increasing number 
of smoothing steps is mainly due to progressive reduc- 
tion in the effective correlation between the impinging 
signals. Note that for K=6, when sources are sufficiently 
decorrelated, we can observe a change in the gain with 
the number of snapshots. This is consistent with our 
earliar comments that when the correlation between the 
desired signal and the interference is high, the degrada- 
tion in the gain due to correlation is so high that the 
effect of L on gain performance is hardly noticed. 

Fig. l (b)  shows the effect of smoothing on the gain 
performance in the presence of uncorrelated interference. 
Recall that in the asymptotic case, progressive smooth- 
ing does not affect the gain when the sources are uncor- 
related. But for the finite data case, there is a significant 
improvement in the gain with increasing number of sub- 
arrays for any given data size. This improvement in the 
performance is because of the reduction in the finite data 
perturbations due to progressive smoothing. 

Fig. 2 shows the finite-data behaviour of the mean 
Dutput power and the mean weight-error vector norm for 
the case of a fully correlated interference, for two differ- 
ent smoothing steps, i.e., K = 2 and K = 6. With more 
smoothing, the effective correlation between the desired 
signal and the intereference comes down thereby result- 
ing in a reduced signal cancellation. Consequently, the 
mtput power goes up, as seen in Fig 2(b). Recall further 
that progressive smoothing results in progressive reduc- 
tion in the finite data perturbations, and as a result, 
the finite data weight vector is nearer to its asymptotic 
value when K is larger (see Fig. 2(a)). Because of this, 
;he output power is closer to the asymptotic value in 
;he case with K=6 compared to that with K=2 (see Fig. 

6 Conclusions 

Our analysis shows that for uncorrelated sources, 
the performance degradation from the asymptotic value 
is dependent on the data size, while in the correlated 
case, the degradation due to finite data is overshadowed 
by that due to correlation. The results for the spatially 
smoothed case indicate that in addition to  decorrelating 
the sources, the smoothing can also reduce the perturba- 
tion effects caused by finite data. Thus we can compen- 
sate for low number of snapshots by using more smooth- 
ing steps and hence a larger array. We may point out 
here that in a practical scenario, it may not be known 
a priori whether the interferences are correlated or not, 
and hence, a good thumb rule is to use smoothing. This 
will result in decorrelation of the sources mainly when 
correlated interferences are present while it will cause a 
reduction in the finite-data perturbations when the in- 
terferences are uncorrelated. 
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Fig.1 Finite data performance curves with different number of smoothing steps, 
K=1,3,4,6 

(m=4, D0A’s=O0,2O0, powers=O dB, 20 dB, an2=0 dB) 
(a) fully correlated interference p = 1 (b) uncorrelated interference p = 0 
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Fig.2 Finite data behaviour of mean weight-error vector norm and mean 
output power for different number of smoothing steps, K = 2 and 6. 

(m = 6, DOA’S = Oo,  loo, powers= 0 dB, 20 dB, un2=0 dB, p = 1 ) 
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