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A map X on a surface is called vertex-transitive if the automorphism group of X acts 
transitively on the set of vertices of X . A map is called semi-equivelar if the cyclic 
arrangement of faces around each vertex is same. In general, semi-equivelar maps on a 
surface form a bigger class than vertex-transitive maps. There are semi-equivelar maps on 
the torus, the Klein bottle and other surfaces which are not vertex-transitive.
It is known that the boundaries of Platonic solids, Archimedean solids, regular prisms and 
anti-prisms are vertex-transitive maps on S2. Here we show that there is exactly one 
semi-equivelar map on S2 which is not vertex-transitive. As a consequence, we show that 
all the semi-equivelar maps on RP 2 are vertex-transitive. Moreover, every semi-equivelar 
map on S2 can be geometrized, i.e., every semi-equivelar map on S2 is isomorphic to 
a semi-regular tiling of S2. In the course of the proof of our main result, we present a 
combinatorial characterisation in terms of an inequality of all the types of semi-equivelar 
maps on S2. Here we present combinatorial proofs of all the results.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

By a map we mean a polyhedral map on a surface. So, a face of a map is an n-gon for some n ≥ 3 and two intersecting 
faces intersect either on a vertex or on an edge. A map on a surface is also called a topological tiling of the surface. If all 
the faces of a map are triangles then the map is called simplicial. Maps on the sphere and the torus are called spherical and 
toroidal maps respectively. A map X is said to be vertex-transitive if the automorphism group Aut(X) of X acts transitively 
on the set V (X) of vertices of X . In [14], Lutz found all the (77 in numbers) vertex-transitive simplicial maps with at most 
15 vertices.

For a vertex u in a map X , the faces containing u form a cycle (called the face-cycle at u) Cu in the dual graph of X . So, 
Cu is of the form (F1,1- · · · -F1,n1 )- · · · -(Fk,1- · · · -Fk,nk )-F1,1, where Fi, j is a pi -gon for 1 ≤ j ≤ ni and pi �= pi+1 for 1 ≤ i ≤ k
(addition in the suffix is modulo k). A map X is called semi-equivelar if the cyclic arrangement of faces around each vertex is 
same. More precisely, there exist integers p1, . . . , pk ≥ 3 and n1, . . . , nk ≥ 1, pi �= pi+1, such that Cu is of the form as above 
for all u ∈ V (X). In such a case, X is called a semi-equivelar map of vertex-type [pn1

1 , . . . , pnk
k ] (or, a map of type [pn1

1 , . . . , pnk
k ]). 

(We identify a cyclic tuple [pn1
1 , pn2

2 , . . . , pnk
k ] with [pnk

k , . . . , pn2
2 , pn1

1 ] and with [pn2
2 , . . . , pnk

k , pn1
1 ].) Clearly, vertex-transitive 

maps are semi-equivelar.
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Fig. 1. Platonic Solids (from [23]).

A semi-regular tiling of a surface S of constant curvature (e.g., the round sphere, the Euclidean plane or the hyperbolic 
plane) is a semi-equivelar map on S in which each face is a regular polygon and each edge is a geodesic. An Archimedean 
tiling of the plane R2 is a semi-regular tiling of the Euclidean plane. There are eleven types of semi-equivelar toroidal 
maps and all these are quotients of Archimedean tilings of the plane ([6], [7]). Among these 11 types, 4 types of maps are 
always vertex-transitive and there are infinitely many such examples in each type ([1], [6]). For each of the other seven 
types, there exists a semi-equivelar toroidal map which is not vertex-transitive ([6]). Although, there are vertex-transitive 
maps of each of these seven types also ([1], [16], [19]). Similar results are known for the Klein bottle ([1], [6], [17]). If the 
Euler characteristic χ(M) of a surface M is negative then the number of semi-equivelar maps on M is finite and at most 
−84χ(M) ([1]). Nine examples of non-vertex-transitive semi-equivelar maps on the surface of Euler characteristic −1 are 
known ([20]). There are exactly three non vertex-transitive semi-equivelar simplicial maps on the double torus ([9]).

It follows from the results in [5] that there exist semi-regular tilings of the hyperbolic plane of infinitely many different 
vertex-types. It is also shown that there exists a unique semi-regular tiling of the hyperbolic plane of vertex-type [pq] for 
each pair (p, q) of positive integers satisfying 1/p + 1/q < 1/2. Moreover, these tilings are vertex-transitive. It follows from 
the results in [11] and [15] that there exists a semi-equivelar map on the plane of vertex-type [31, p3] for each p ≥ 5 odd 
and there does not exist any vertex-transitive map on the plane of vertex-type [31, q3], for each q ≡ ±1 (mod 6).

All vertex-transitive spherical maps are known. These are the boundaries of Platonic solids, Archimedean solids and 
two infinite families ([1], [12]). Other than these, there exists a semi-equivelar spherical map, namely, the boundary of the 
pseudorhombicuboctahedron ([10], [24]). It is known that quotients of ten centrally symmetric vertex-transitive spherical 
maps (namely, the boundaries of icosahedron, dodecahedron and eight Archimedean solids) are all the vertex-transitive 
maps on the real projective plane RP 2 ([1]). Here we show that these are also all the semi-equivelar maps on RP 2. We 
prove

Theorem 1.1. Let X be a semi-equivelar spherical map. Then, up to isomorphism, X is the boundary of a Platonic solid, an Archimedean 
solid, a regular prism, an antiprism or the pseudorhombicuboctahedron.

Theorem 1.2. If Y is a semi-equivelar map on RP2 then the vertex-type of Y is [53], [35], [41, 62], [31, 51, 31, 51], [31, 43], 
[41, 61, 81], [31, 41, 51, 41], [41, 61, 101], [31, 102] or [51, 62]. Moreover, in each case, there exists a unique semi-equivelar map on 
RP 2 .

Corollary 1.3. The boundary of the pseudorhombicuboctahedron is not vertex-transitive and all the other semi-equivelar spherical 
maps are vertex-transitive.

As consequences we get

Corollary 1.4. (a) Each semi-equivelar spherical map is isomorphic to a semi-regular tiling of S2. (b) Each semi-equivelar map on 
RP 2 is isomorphic to a semi-regular tiling of RP2 .

Corollary 1.5. All the semi-equivelar maps on RP2 are vertex-transitive.

2. Examples of twenty two face-regular polyhedra

Here we present twenty two classically known 3-polytopes (Figs. 1, 2 and 3).
If P is one of the first nineteen of above twenty two polytopes then (i) all the vertices of P are points on a sphere whose 

centre is same as the centre of P , (ii) each 2-face of P is a regular polygon, and (iii) the cyclic arrangement of faces around 
each vertex is same (equivalently, the boundary complex ∂ P of P is a semi-equivelar map). Without loss of generality, 
we assume that (iv) the vertices of P are points on the unit 2-sphere S2 with centre (0, 0, 0). We say a 3-polytope is 
face-regular if it satisfies (ii).

For n ≥ 3, let Pn be the polytope whose vertex-set is{
(1 + sin2 π

n
)−

1
2

(
cos

2mπ

n
, sin

2mπ

n
,± sin

π

n

)
: 0 ≤ m ≤ n − 1

}
.

2
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Fig. 2. Archimedean Solids (from [23]).

Fig. 3. Pseudorhombicuboctahedron, Prisms P3 & P8, Antiprism Q 8 (from [10], [22]).

The polytope P4 is a cube and, for n �= 4, the boundary of Pn consists of n squares and two regular n-gons. This polytope 
Pn is called a 2n-vertex regular prism or drum or ladder. We have chosen the vertices of Pn on the unit sphere S2 and 
coordinates are such that Pn satisfies (i), . . . , (iv) above.

For n ≥ 3, let Q n be the polytope whose vertex-set is

{
(sin2 π

n
+ cos2 π

2n
)−

1
2

(
cos

(2m + 1)π

n
, sin

(2m + 1)π

n
, (sin2 π

n
− sin2 π

2n
)

1
2

)
,

(sin2 π

n
+ cos2 π

2n
)−

1
2

(
cos

2mπ

n
, sin

2mπ

n
,−(sin2 π

n
− sin2 π

2n
)

1
2

)
: 0 ≤ m ≤ n − 1

}
.

The polytope Q 3 is an octahedron and, for n ≥ 4, the boundary of Q n consists of 2n equilateral triangles and two regular 
n-gons. This polytope Q n is called a 2n-vertex antiprism. Moreover, with the chosen coordinates of vertices, Q n satisfies (i), 
. . . , (iv) above.

A truncation is an operation that cuts polytope vertices, creating a new face in place of each vertex. A rectification
or complete-truncation is the process of truncating a polytope by marking the midpoints of all its edges, and cutting off 
its vertices at those points. Thus, a rectification truncates edges to points. For more on truncation see [3, Chapter 8]. In 
Section 4, we present some combinatorial versions of truncation and rectification of polytopes. Proposition 2.1 gives some 
relations among the five Platonic solids and the thirteen Archimedean solids in terms of truncation and rectification.

Proposition 2.1 (Coxeter). The truncation of tetrahedron (respectively, cube, octahedron, dodecahedron, icosahedron, cuboc-
tahedron and icosidodecahedron) gives the truncated tetrahedron (respectively, truncated cube, truncated octahedron, 
truncated dodecahedron, truncated icosahedron, great rhombicuboctahedron and great rhombicosidodecahedron). The recti-
fication of cube (respectively, dodecahedron, icosidodecahedron and cuboctahedron) gives the cuboctahedron (respectively, 
icosidodecahedron, small rhombicosidodecahedron and small rhombicuboctahedron).

Remark 2.2. We all know that a 3-polytope is called regular if its automorphism group acts transitively on the set of flags. 
But, there are confusions about the names ‘semi-regular polyhedra’, ‘uniform polyhedra’ and ‘Archimedean polyhedra’ ([10]). 
Agreeing with most of the authors in the literature, we write the following. A 3-polytope is semi-regular (or uniform) if its 
automorphism group acts transitively on the set of vertices. A 3-polytope is an Archimedean polyhedron if it satisfies (ii) and 
(iii) above ([10,13]). So, a semi-regular polyhedron is an Archimedean polyhedron and the pseudorhombicuboctahedron is 
an Archimedean polyhedron which is not a semi-regular polyhedron. Observe that all the twenty two polyhedra presented 
above are Archimedean polyhedra.
3
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3. Classification of vertex-types of semi-equivelar maps on S2

In this section, we present a combinatorial characterisation of all the types of semi-equivelar maps on S2 in terms of an 
inequality. We need this in Section 4 to prove Theorem 1.1.

Let F1- · · · -Fm-F1 be the face-cycle of a vertex u in a map. Then Fi ∩ F j is either u or an edge through u. Thus, the face 
Fi must be of the form ui+1-u-ui-Pi-ui+1, where Pi = ∅ or a path and Pi ∩ P j = ∅ for i �= j. Here addition in the suffix is 
modulo m. So, u1-P1-u2- · · · -um-Pm-u1 is a cycle and said to be the link-cycle of u. For a simplicial complex, Pi = ∅ for all 
i, and the link-cycle of a vertex is the link of that vertex.

A face in a map of the form u1-u2- · · · -un-u1 is also denoted by u1u2 · · · un . The faces with 3, 4, . . . , 10 vertices are called 
triangle, square, . . . , decagon respectively.

If X is the boundary of a Platonic solid, an Archimedean solid, the pseudorhombicuboctahedron, a regular prism or an 
antiprism then the vertex-type of X is one of the cycle tuples of the following set.

A :=
{
[33], [34], [43], [35], [53], [34,51], [34,41], [31,51,31,51], [31,41,31,41],

[31,41,51,41], [31,43], [51,62], [41,61,81], [41,61,101], [41,62],
[31,62], [31,82], [31,102], [31,42]} ∪ {[42, r1], [33, s1], r ≥ 5, s ≥ 4

}
. (1)

If [pn1
1 , . . . , pn�

� ] ∈A then one readily checks that 
�∑

i=1

ni(pi−2)
pi

< 2. Here we prove the following converse.

Theorem 3.1. Let X be a semi-equivelar map of vertex-type [pn1
1 , . . . , pn�

� ] on a 2-manifold. If 
�∑

i=1

ni(pi−2)
pi

< 2 then [pn1
1 , . . . , pn�

� ] ∈A.

We need the following technical lemma of [8] to prove Theorem 3.1.

Lemma 3.2 (Datta & Maity). If [pn1
1 , . . . , pnk

k ] satisfies any of the following three properties then [pn1
1 , . . . , pnk

k ] cannot be the vertex-
type of any semi-equivelar map on a surface.

1. There exists i such that ni = 2, pi is odd and p j �= pi for all j �= i.
2. There exists i such that ni = 1, pi is odd, p j �= pi for all j �= i and pi−1 �= pi+1 . (Here, addition in the subscripts are modulo k.)
3. [pn1

1 , . . . , pnk
k ] is of the form [p1, qm, p1, rn], where p, q, r are distinct and p is odd.

Proof of Theorem 3.1. Let d be the degree of each vertex in X . Consider the k-tuple (qm1
1 , . . . , qmk

k ), where 3 ≤ q1 < · · · < qk

and, for each i = 1, . . . , k, qi = p j for some j, mi = ∑
p j=qi

n j . So, 
∑k

i=1 mi = ∑�
j=1 n j = d and 

∑k
i=1

mi
qi

= ∑�
j=1

n j
p j

. Thus,

2 >

�∑
j=1

n j(p j − 2)

p j
=

�∑
j=1

n j − 2
�∑

j=1

n j

p j
=

k∑
i=1

mi − 2
k∑

i=1

mi

qi
= d − 2

k∑
i=1

mi

qi
. (2)

So, d − 2 < 2 
∑k

i=1
mi
qi

≤ 2 
∑k

i=1
mi
3 ≤ 2d

3 . This implies that 3d − 6 < 2d and hence d < 6. Therefore, d = 3, 4 or 5.

Case 1: First assume d = 5. If q1 ≥ 4 then m1
q1

+ · · · + mk
qk

≤ d
q1

≤ 5
4 . Therefore, by (2), 2 > d − 2 

∑k
i=1

mi
qi

≥ 5 − 10
4 = 10

4 , a 
contradiction. So, q1 = 3. If m1 ≤ 3 then 3 = d − 2 < 2(m1

q1
+ · · · + mk

qk
) ≤ 2(m1

q1
+ d−m1

q2
) ≤ 2(m1

3 + 5−m1
4 ) = 15+m1

6 ≤ 15+3
6 = 3, 

a contradiction. So, m1 ≥ 4. Since m1 ≤ d = 5, it follows that m1 = 4 or 5.

1.1: Let m1 = 5. Then, d = m1 and k = 1. So, (qm1
1 , qm2

2 , . . . , qmk
k ) = (35) and hence [pn1

1 , . . . , pn�

� ] = [35].
1.2: Let m1 = 4. Then m2 = 1. Therefore, 3 = d − 2 < 2 

∑k
i=1

mi
qi

= 2(m1
q1

+ m2
q2

) = 2( 4
3 + 1

q2
). This implies that 1/q2 > 3/2 −

4/3 = 1/6 and hence q2 < 6. Since q2 > q1 = 3, q2 = 4 or 5.

If q2 = 5, then (qm1
1 , . . . , qmk

k ) = (34, 51) and hence [pn1
1 , . . . , pn�

� ] = [34, 51]. Similarly, if q2 = 4 then [pn1
1 , . . . , pn�

� ] =
[34, 41].
Case 2: Now, assume d = 4. Then, 1 = d

2 − 1 <
∑k

i=1
mi
qi

≤ d
q1

= 4
q1

. So, q1 < 4 and hence q1 = 3.

2.1: If m1 = d = 4, then [pn1
1 , . . . , pn�

� ] = [34].
2.2: If m1 = 3, then m2 = 1. So, (qm1

1 , . . . , qmk
k ) = (33, q1

2). This implies that [pn1
1 , . . . , pn�

� ] = [33, s1] for some s ≥ 4.

2.3: If m1 = 2, then 1 = d − 1 <
∑k

i=1
mi = 2 + m2 + m3 ≤ 2 + 2 . So, 2 > 1 and hence q2 < 6. Thus, q2 = 5 or 4.
2 qi 3 q2 q3 3 q2 q2 3

4
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2.3.1: If q2 = 5, then 1 = d
2 − 1 < 2

3 + m2
5 + m3

q3
and hence m2

5 + m3
q3

> 1
3 , where m2 + m3 = d − m1 = 2 and m2 ≥ 1. These 

imply that q3 ≤ 7. If q3 = 7 then (qm1
1 , . . . , qmk

k ) = (32, 51, 71). This implies that [pn1
1 , . . . , pn�

� ] = [32, 51, 71] or [31, 51, 31, 71]. 
But [pn1

1 , . . . , pn�

� ] = [32, 51, 71] is not possible by Lemma 3.2 (i) and [pn1
1 , . . . , pn�

� ] = [31, 51, 31, 71] is not possible by 
Lemma 3.2 (iii). So, q3 �= 7. If q3 = 6, then (qm1

1 , . . . , qmk
k ) = (32, 51, 61). Again, by Lemma 3.2 (i) and (iii), [32, 51, 61] and 

[31, 51, 31, 61] are not vertex-types of any maps. So, q3 �= 6. Since q3 > q2 = 5, it follows that m2 = 2 (and q2 = 5). Then 
(qm1

1 , . . . , qmk
k ) = (32, 52). By Lemma 3.2 (i), [pn1

1 , . . . , pn�

� ] �= [32, 52]. Therefore, [pn1
1 , . . . , pn�

� ] = [31, 51, 31, 51].
2.3.2: If q2 = 4, then 1 = d

2 −1 < 2
3 + m2

4 + m3
q3

and hence m2
4 + m3

q3
> 1

3 . If m2 = 1 then m3 = 1. So, 1
4 + 1

q3
> 1

q3
and hence 4 <

q3 < 12. Therefore, (qm1
1 , . . . , qmk

k ) = (32, 41, q1
3) and hence [pn1

1 , . . . , pn�

� ] = [32, 41, q1
3], where q3 > 4. But this is not possible 

by Lemma 3.2 (i). So, m2 �= 1 and hence m2 = 2. Then (qm1
1 , . . . , qmk

k ) = (32, 42). By Lemma 3.2 (i), [pn1
1 , . . . , pn�

� ] �= [32, 42]. 
Therefore, [pn1

1 , . . . , pn�

� ] = [31, 41, 31, 41].
2.4: Let m1 = 1. Then, 1 = d

2 − 1 < 1
3 + m2

q2
+ m3

q3
+ m4

q4
, where m2 + m3 + m4 = 3 and 4 ≤ q2 < q3 < q4. These imply that 

q2 = 4. If m2 = 1 then 1 < 1
3 + 1

4 + m3
q3

+ m4
q4

≤ 7
12 + 2

q3
. So, 2

q3
> 5

12 and hence q3 ≤ 4 = q2, a contradiction. Thus, m2 ≥ 2 and 
hence m2 = 2 or 3.

If m2 = 2, then m3 = 1. So, 1 = d
2 − 1 < 1

3 + 2
4 + 1

q3
and hence 1

q3
> 1 − 1

3 − 1
2 = 1

6 . Therefore, q3 < 6 and hence 
q3 = 5. Then, (qm1

1 , qm2
2 , . . . , qmk

k ) = (31, 42, 51). By Lemma 3.2 (ii), [pn1
1 , . . . , pn�

� ] �= [31, 42, 51]. Therefore, [pn1
1 , . . . , pn�

� ] =
[31, 41, 51, 41].

If m2 = 3, then (qm1
1 , qm2

2 , . . . , qmk
k ) = (31, 43) and hence [pn1

1 , . . . , pn�

� ] = [31, 43].
Case 3: Finally, assume d = 3. Then, 1

2 = d
2 − 1 < m1

q1
+ m2

q2
+ m3

q3
, where m1 + m2 + m3 = 3 and 3 ≤ q2 < q3 < q4. This implies 

that q1 < 6 and hence q1 = 3, 4 or 5.

3.1: Let q1 = 5. Now, m1 = 1, 2 or 3. If m1 = 2 then [pn1
1 , . . . , pn�

� ] = [52, q1
2], where q2 > 5. This is not possible by Lemma 3.2

(i). So, m1 = 1 or 3.

3.1.1: If m1 = 1, then 1
2 < 1

5 + m2
q2

+ m3
q3

. So, m2
q2

+ m3
q3

> 1
2 − 1

5 = 3
10 , where m2 +m3 = 2 and 5 = q1 < q2 < q3. These imply that 

q2 = 6. If m2 = 1 then m3 = 3 − m1 − m2 = 1 and hence [pn1
1 , . . . , pn�

� ] = [51, 61, q1
3], where q3 ≥ 7. But, this is not possible 

by Lemma 3.2 (ii). Thus, m2 = 2. Then [pn1
1 , . . . , pn�

� ] = [51, 62].
3.1.2: If m1 = 3, then [pn1

1 , . . . , pn�

� ] = [53].
3.2: Let q1 = 4. Since d = 3, (m1, . . . , mk) = (1, 1, 1), (1, 2), (2, 1) or (3).

3.2.1: If (m1, . . . , mk) = (1, 1, 1), then 1
2 < 1

4 + 1
q2

+ 1
q3

. So, 1
q2

+ 1
q3

> 1
4 . Since q2 < q3, it follows that q2 < 8. If q2 = 5 then 

[pn1
1 , . . . , pn�

� ] = [41, 51, q1
3], q3 > 5. This is not possible by Lemma 3.2 (ii). So, q2 �= 5. Similarly, q2 �= 7. Thus, q2 = 6. Then 

1
q3

> 1
4 − 1

6 = 1
12 and hence q3 < 12. Then, by the same argument, q3 �= 9, 11. So, q3 = 8 or 10. Therefore, [pn1

1 , . . . , pn�

� ] =
[41, 61, 81] or [41, 61, 101].
3.2.2: If (m1, . . . , mk) = (1, 2), then 1

2 < 1
4 + 2

q2
and hence 4 = q1 < q2 < 8. Thus, [pn1

1 , . . . , pn�

� ] = [41, q2
2], 5 ≤ q2 ≤ 7. By 

Lemma 3.2 (i), q2 �= 5 or 7. So, [pn1
1 , . . . , pn�

� ] = [41, 62].
3.2.3: If (m1, . . . , mk) = (2, 1), then [pn1

1 , . . . , pn�

� ] = [42, q1
2] for some q2 ≥ 5.

3.2.4: If (m1, . . . , mk) = (3), then [pn1
1 , . . . , pn�

� ] = [43].
3.3: Let q1 = 3. By Lemma 3.2, (m1, . . . , mk) = (3) or (1, 2).

3.3.1: If (m1, . . . , mk) = (3), then [pn1
1 , . . . , pn�

� ] = [q3
1] = [33].

3.3.2: If (m1, . . . , mk) = (1, 2), then 1
2 < 1

3 + 2
q2

. So, q2 < 12. Again, by Lemma 3.2 (i), q2 is not odd. So, q2 = 4, 6, 8 or 10. 
Therefore, [pn1

1 , . . . , pn�

� ] = [31, 42], [31, 62], [31, 82] or [31, 102]. This completes the proof. �
As a consequence we prove

Corollary 3.3. Suppose there exists an n-vertex semi-equivelar spherical map of vertex-type [pn1
1 , . . . , pn�

� ]. Then (n, [pn1
1 , . . . , pn�

� ]) =
(4, [33]), (6, [34]), (8, [43]), (12, [35]), (20, [53]), (60, [34, 51]), (24, [34, 41]), (30, [31, 51, 31, 51]), (12, [31, 41, 31, 41]),
(60, [31, 41, 51, 41]), (24, [31 , 43]), (60, [51 , 62]), (48, [41, 61, 81]), (120, [41 , 61, 101]), (24, [41, 62]), (12, [31, 62]), (24, [31 , 82]), 
(60, [31, 102]), (6, [31, 42]), (2r, [42, r1]) for some r ≥ 5 or (2s, [33, s1]) for some s ≥ 4.

Proof. Let X be an n-vertex semi-equivelar map on S2 of vertex-type [pn1
1 , . . . , pn�

� ]. Let f1, f2 be the number of edges 
and faces of X respectively. Let d be the degree of each vertex. So, f1 = (nd)/2. Consider the k-tuple (qm1

1 , . . . , qmk
k ), where 

3 ≤ q1 < · · · < qk and, for each i = 1, . . . , k, qi = p j for some j, mi = ∑
p j=qi

n j . So, 
∑

i mi = ∑
j n j = d and 

∑
i

mi
qi

= ∑
j

n j
p j

. 
A two-way counting the number of ordered pairs (F , v), where F is a qi -gons in X and v is a vertex of F , we get: (the 
5
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number of qi -gons) ×qi = n × mi . This implies that f2 = n × ∑k
i=1

mi
qi

= n × ∑�
j=1

n j
p j

. Since the Euler characteristic of S2 is 
2, we get

2 = n − f1 + f2 = n × (1 − 1

2

�∑
j=1

n j +
�∑

j=1

n j

p j
) = n

2
× (2 −

�∑
j=1

n j(p j − 2)

p j
). (3)

Thus,

n = 4

⎛
⎝2 −

�∑
j=1

n j(p j − 2)

p j

⎞
⎠−1

. (4)

From (3), we get 
∑�

j=1
n j(p j−2)

p j
= 2 − 4

n < 2. Therefore, by Theorem 3.1, [pn1
1 , . . . , pn�

� ] ∈ A. The result now follows from 

(4) and the set A given in (1). (For example, if [pn1
1 , . . . , pn�

� ] = [34, 51] then n = 4(2 − (
4(3−2)

3 + 1(5−2)
5 ))−1 = 60. So, 

(n, [pn1
1 , . . . , pn�

� ]) = (60, [34, 51]).) �
4. Proofs of main results

In this section, we present proofs of Theorems 1.1, 1.2 and Corollaries 1.3, 1.4, 1.5

Lemma 4.1. Let K be a semi-equivelar spherical map. If the number of vertices and the vertex-type of K are same as those of the 
boundary ∂ P of a Platonic solid P then K ∼= ∂ P .

Proof. If P is the tetrahedron, then K is a 4-vertex triangulation of S2 and it is trivial to see that K is unique up to 
isomorphism.

If P is the octahedron, then K is a 6-vertex triangulation of S2 and degree of each vertex is 4. It is easy to see that K is 
unique up to an isomorphism (cf. [4]). This also implies that the dual map of K which has 8 vertices and is of vertex-type 
[43] is unique up to an isomorphism. Hence an 8-vertex map of vertex-type [43] on S2 is isomorphic to the boundary of 
the cube.

If P is the icosahedron, then K is a 12-vertex triangulation of S2 and degree of each vertex is 5. We know that it is 
unique up to an isomorphism (cf. [18, Table 8], [21, Lemma 1]). This also implies that the dual map of K which has 20
vertices and is of vertex-type [53] is unique up to an isomorphism. Hence a 20-vertex map of vertex-type [53] on S2 is 
isomorphic to the boundary of the dodecahedron. �

We need Lemmas 4.2, 4.4 and 4.6 to prove Lemma 4.8.

Lemma 4.2. Let X be a semi-equivelar spherical map of vertex-type [p1, q2], where q ≥ 6. If α, β are two p-gonal faces of X then 
there exists at most one edge from α to β .

Proof. Since the degree of each vertex is 3, for each p-gonal face α of X and u ∈ α, there exists a unique edge of the form 
uv where v �∈ α and v is in another p-gon. Consider the graph G whose nodes are p-gonal faces of X . Two such nodes α, β
form a link in G if there exists an edge uv in X , where u ∈ α and v ∈ β . It is sufficient to show that G is simple.

Suppose X has n vertices. Then, by Corollary 3.3, (n, [p1, q2]) = (12, [31, 62]), (24, [31, 82]), (60, [31, 102]), (24, [41, 62])
or (60, [51, 62]). Since X is a polyhedral map, G has no loop. Suppose there is a pair of links between two nodes α and β
of G . Then there exist u, v ∈ α and x, y ∈ β such that e = ux, f = v y are edges in X . Suppose uv is an edge (of X). Let γ
be the q-gonal face containing uv . Since the degree of each vertex is 3, it follows that ux & v y are edges of γ and hence 
xy is a diagonal of γ . This is not possible since x, y ∈ β . So, uv is not an edge. Similarly, xy is a non-edge. Hence p > 3.

Let p = 5. Then n = 60 and q = 6. Since two p-gons in X are disjoint, it follows that G has 12 nodes. By above uv, xy
are non-edges, and there is no more edges between α & β . Then α, β and the edges e, f subdivide S2 into two disks C, D
(and interiors of α & β).

Claim. Number of pentagons inside D is at least 6.

Let P be the set of pentagons inside D . The boundary of D contains u, v, x, y and m (say) vertices, where 2 ≤ m ≤ 4. 
For each of the m vertices, w , there exists an edge wz and a pentagon γ containing z. Then γ is inside D . So, P �= ∅. Let 
the number of pentagons in P be �. Then, the number of links between � nodes is (5� − m)/2. Since the number of links 
between any two nodes is at most 2, 5�−m

2 ≤ 2
(
�
2

)
. Thus, 2�(� − 1) ≥ 5� − m ≥ 5� − 4 and hence 2�2 − 7� + 4 ≥ 0. This 

implies that � ≥ 3. First consider the case where the induced subgraph G[P] is simple. Then, 5�−m
2 ≤ (

�
2

)
. Thus, �(� − 1) ≥

5� − m ≥ 5� − 4 and hence �2 − 6� + 4 ≥ 0. This implies that � ≥ 6 and we are done.
6
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Now, assume that G[P] is not simple. Suppose there is a pair of links between two nodes α1 and β1 of G[P]. Then, as 
before, there exist edges e1 = u1x1, f1 = v1 y1, where u1, v1 ∈ α1, x1, y1 ∈ β1, such that α1, β1, e1 and f1 subdivide S2 into 
two disks C1, D1 (and interiors of α1 & β1). Then α, β are inside one of C1, D1. Assume, without loss of generality, that 
α, β are inside C1. Then D1 is inside D . Let P1 be the set of pentagons inside D1 and �1 = #(P1). Again, if G[P1] is simple 
then, by the same arguments as above, �1 ≥ 6. This implies that the number of pentagons inside D is at least 8 and we are 
done. So, assume that G[P1] is not simple. Then, repeating the same arguments, we get a pair of links between two nodes 
α2 & β2 in G[P1] and a disk D2 bounded by α2, β2 and two edges of the form e2 = u2x2, f2 = v2 y2, where u2, v2 ∈ α2, 
x2, y2 ∈ β2, inside D1. Let �2 be the number of pentagons inside D2. Then, as before, �2 ≥ 3 and hence the number of 
pentagons inside D is at least #({α1, β1, α2, β2}) + 3 = 7. This proves the claim.

Similarly, the number of pentagons inside C is at least 6. Therefore, the number of pentagons in X is ≥ 6 + 6 + 2 = 14, a 
contradiction. Thus, p �= 5. By similar arguments p �= 4. This is a contradiction. So, G is a simple graph. This completes the 
proof. �

We now present some combinatorial versions of truncation and rectification of polytopes.

Definition 4.3. Let P be a 3-polytope and T P be the truncation of P . Let X ∼= ∂ P and V (X) = {u1, . . . , un}. Without loss of 
generality, we identify X with ∂ P . Consider a new set (of nodes) V := {vij : uiu j is an edge of X}. So, if vij ∈ V then i �= j
and v ji is also in V . Let E := {vij v ji : vij ∈ V } � {vij vik : u j, uk are in a face containing ui, 1 ≤ i ≤ n}. Then (V , E) is a graph 
on X . Clearly, from the construction, (V , E) ∼= the edge graph of T P . Thus, (V , E) gives a map T (X) on S2. This map T (X)

is said to be the truncation of X .

From Definition 4.3 & the (geometric) construction of truncation of polytopes we get

Lemma 4.4. Let X, T (X) and T P be as in Definition 4.3. Then, T (X) is isomorphic to the boundary of T P . Moreover, if X is 
semi-equivelar of vertex-type [qp] (resp., [p1, q1, p1, q1]), then T (X) is also semi-equivelar and of vertex-type [p1, (2q)2] (resp., 
[41, (2p)1, (2q)1]).

Proof. Let P , V (X), V , E be as in Definition 4.3. Then, from the definition of truncated polytope and the construction in 
Definition 4.3, T (X) ∼= ∂(T P ).

Let X be semi-equivelar of [qp]. From the construction in Definition 4.3, the set of faces of T (X) is {α̃ =
vi1 i2 -vi2 i1 -vi2 i3 -vi3 i2 -vi3 i4 - · · · -viq i1 -vi1 iq -vi1 i2 : α = ui1 -ui2 - · · · -uiq -ui1 is a face of X} � {ũi = vij1 -vij2 - · · · -vijq -vij1 : u j1 -P1-
u j2 -P2-u j3 - · · · -Pq-u j1 is the link-cycle of ui ∈ V (X)}. Thus, the faces incident to the vertex vij are the p-gonal face ũi and 
the two 2q-gonal faces α̃ & β̃ where α & β are faces in X containing the edge uiu j . Observe that the face-cycle of vij is 
ũi-α̃-β̃-ũi . Thus, T (X) is semi-equivelar and the vertex-type is [p1, (2q)2].

Let the vertex-type of X be [p1, q1, p1, q1]. From Definition 4.3, the set of faces of T (X) is {α̃ := vi1 i2 -vi2 i1 -vi2 i3 -
vi3 i2 -vi3 i4 - · · · -vir i1 -vi1 ir -vi1 i2 : α = ui1 - · · · -uir -ui1 is a r-gonal face of X, r = p, q} � {ũi := vit1 -vit2 -vit3 -vit4 -vit1 : ut1 -P1-ut2 -
P2-ut3 -P3-ut4 -P4-ut1 is the link-cycle of ui ∈ V (X)}. Thus, the faces incident to the vertex vij are the square ũi , the 2p-
gonal face α̃ and the 2q-gonal face β̃ where α is a p-gonal face and β is a q-gonal face in X containing the edge ui u j . 
Observe that the face-cycle of vij is ũi-α̃-β̃-ũi . Thus, T (X) is semi-equivelar and the vertex-type is [41, (2p)1, (2q)1]. �
Definition 4.5. Let P be a polytope and R P be the rectification of P . Let X ∼= ∂ P and V (X) = {u1, . . . , un}. Without loss of 
generality, we identify X with ∂ P . Consider the graph (V , E), where V is the edge set E(X) of X and E := {ef : e, f are two 
adjacent edges in a face of X}. Then (V , E) is a graph on X . From the definition of rectification, it follows that (V , E) ∼= the 
edge graph of R P . Thus, (V , E) gives a map say R(X) on S2, which is said to be the rectification of X .

From Definition 4.5 & the (geometric) construction of rectification of polytopes we get

Lemma 4.6. Let X, R(X) and R P be as in Definition 4.5. Then, R(X) is isomorphic to the boundary of R P . Moreover, if X is semi-
equivelar of vertex-type [qp] (respectively, [p1, q1, p1, q1]), then R(X) is also semi-equivelar and of vertex-type [p1, q1, p1, q1]
(respectively, [41, p1, 41, q1]).

Proof. Let P , V (X), V , E be as in Definition 4.5. Then, from the definition of rectified polytope and the construction in 
Definition 4.5, R(X) ∼= ∂(R P ).

Let X be semi-equivelar of vertex-type [qp]. From the construction in Definition 4.5, the set of faces of R(X) is {α̃ :=
e1-e2- · · · -eq-e1 : α = (e1 ∩ e2)- · · · -(eq−1 ∩ eq)-(eq ∩ e1)-(e1 ∩ e2) is a face of X} �{ũi := ε1- · · · -εp-ε1 : u j1 -P1-u j2 -P2-u j3 - · · · -
P p-u j1 is the link-cycle of ui ∈ V (X) and ε� = uiu j� , 1 ≤ � ≤ p}. The faces incident to the vertex e = uiu j are the two squares 
ũi , ũ j and the two q-gonal faces α̃ , β̃ where α, β are faces in X containing the edge uiu j . Observe that the face-cycle of e
(= uiu j = α ∩ β) is ũi-α̃-ũ j-β̃-ũi . Thus, R(X) is semi-equivelar and the vertex-type is [p1, q1, p1, q1].
7
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Fig. 4. Part of the map X when (s2, s3, s4) = (6,12,0).
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Fig. 5. A is a part of X with 13 squares. B and C are complements of A in X .

Let X be semi-equivelar of vertex-type [p1, q1, p1, q1]. From Definition 4.5, the set of faces of R(X) is {α̃ :=
e1- · · · -er-e1 : α = (e1 ∩ e2)-- · · · -(er−1 ∩ er)-(er ∩ e1)-(e1 ∩ e2) is a r-gonal face of X, r = p, q} � {ũi = e1-e2-e3-e4-e1 : u j1 -P1-
u j2 -P2-u j3 -P3-u j4 -P4-u j1 is the link-cycle of ui ∈ V (X) and e� = uiu j� , 1 ≤ � ≤ 4}. The faces incident to the vertex e = uiu j

are the two squares ũi & ũ j , the p-gonal face α̃ and the q-gonal face β̃ , where α is a p-gonal face and β is a q-gonal 
face in X containing the edge uiu j . Observe that the face-cycle of e is ũi-α̃-ũ j-β̃-ũi . Thus, R(X) is semi-equivelar and the 
vertex-type is [41, p1, 41, q1]. �
Lemma 4.7. (a) If X is a 24-vertex semi-equivelar spherical map of vertex-type [31, 43] then X is isomorphic to either the boundary 
of small rhombicuboctahedron or the boundary of the pseudorhombicuboctahedron. (b) The boundaries of the small rhombicubocta-
hedron and the pseudorhombicuboctahedron are non-isomorphic.

Proof. Since X is a 24-vertex map of vertex-type [31, 43], it follows that X has 8 triangles and 18 squares. Since each vertex 
of X is in one triangle, no two triangles intersect. Thus, a square meets at most two triangles on edges and hence meets at 
least two other squares on edges. For 2 ≤ i ≤ 4, a square α in X is said to be of type i if α intersects i other squares on 
edges. Let si be the number of squares in X of type i. Consider the set A := {(β, t) : β a square of X , t a triangle of X , β ∩ t
is an edge}. Two way counting the cardinality of A gives 2 × s2 + 1 × s3 + 0 × s4 = 8 × 3. So, 2s2 + s3 = 24. Since X has 18
squares, s2 + s3 + s4 = 18. These give (s2, s3, s4) = (6, 12, 0), (7, 10, 1), (8, 8, 2), (9, 6, 3), (10, 4, 4), (11, 2, 5) or (12, 0, 6).

Claim. There exists a square in X of type 4.
If the claim is not true, then (s2, s3, s4) = (6, 12, 0). Thus, there are 12 squares of type 3. Each of these 12 type 3

squares meets one triangle on an edge. Since there are 8 triangles, it follows that there is a triangle abc which meets two 
type 3 squares on edges. Assume, with out loss of generality, that α := abu1u2 and β := acv1 v2 are type 3 squares (see 
Fig. 4). Since abu1u2 is type 3, u1u2 is in 2 squares, say in α & α1. Similarly au2 is in two squares. Clearly, they are α &
α2 := au2 w v2 for some vertex w . Then α, α1, α2 are three squares incident to u2 and hence the 4th face incident to u2 is a 
triangle, say t1, containing u2 w . Similarly, there exists a triangle t2 containing v2 w . Since α2 = au2 w v2 is a face, it follows 
that u2 �= v2 and u2 v2 is a non-edge. These imply that t1 �= t2 are two triangles containing w , a contradiction to the fact 
that each vertex is in one triangle. This proves the claim.

Let α = u1u2u3u4 be a type 4 square. Let the four squares which intersect α on edges be u1u2u6u5, u2u3u8u7, u3u4u10u9
&u1u4u11u12 (see Fig. 5). Then u2u6u7, u3u8u9, u4u10u11 and u1u5u12 must be triangles. If ui = u j for 5 ≤ i �= j ≤ 12 then ui
is in two triangles, a contradiction. Thus, u1, . . . , u12 are distinct vertices. For 5 ≤ i ≤ 12, ui is in two more squares. This gives 
us 8 squares of the form F1 = u5u6u14u13, F2 = u6u7u15u14, F3 = u7u8u16u15, F4 = u8u9u17u16, F5 = u9u10u18u17, F6 =
u10u11u19u18, F7 = u11u12u20u19, F8 = u12u5u13u20. Suppose Fi = F j for some i �= j. Assume, without loss of generality, 
that F1 = F j for some j �= 1. Clearly, j �= 2, 3, 7, 8. If F1 = F4 then, since u5, . . . , u12 are distinct, u5 = u16 or u17. In either 
case, the number of edges containing u5 would be more than 4, a contradiction. Thus, j �= 4. By similar arguments, j �= 5, 6. 
Thus, F1, . . . , F8 are distinct.
8
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If uk = u� for 13 ≤ k �= � ≤ 20, then uk would be in 4 squares, a contradiction. This implies that u1, . . . , u20 are distinct 
vertices and we have a disk D1 with these 20 vertices, 13 squares and 4 triangles. Then the remaining 5 squares and 4
triangles give a disk D2 such that ∂ D1 = ∂ D2. Since each vertex on ∂ D1 is in 2 squares of D1, it follows that each vertex on 
∂ D2 is in one triangle and one square of D2. Therefore, the 4 remaining vertices of X are inside D2 and form a square, say 
β := u21u22u23u24. Then 4 remaining squares in D2 have one edge common with ∂ D2 and one each with β . Since ∂ D1 =
∂ D2 and each internal vertex is in 3 squares, it follows that, up to isomorphism, D2 is B or C . If D2 = B then X is isomorphic 
to small rhombicuboctahedron and if D2 = C then X is isomorphic to the boundary of the pseudorhombicuboctahedron. This 
proves part (a).

Observe that (s2, s3, s4) = (12, 0, 6) for the small rhombicuboctahedron and (s2, s3, s4) = (8, 8, 2) for the pseudorhom-
bicuboctahedron. Thus, their boundaries are non-isomorphic. This proves part (b). �
Lemma 4.8. Let K be a semi-equivelar spherical map. Suppose the vertex-type of K is not [31, 43], [34, 41] or [34, 51]. If the number 
of vertices and vertex-type of K are same as those of the boundary ∂ P of an Archimedean solid P then K ∼= ∂ P .

Proof. Let K be an n-vertex map of vertex-type [pn1
1 , . . . , pn�

� ]. Then, (n, [pn1
1 , . . . , pn�

� ]) = (12, [31, 62]), (12, [31, 41, 31, 41]), 
(24, [31, 82]), (30, [31, 51, 31, 51]), (60, [31, 41, 51, 41]), (60, [51, 62]), (48, [41, 61, 81]), (120, [41, 61, 101]), (24, [41, 62]) or 
(60, [31, 102]).

If (n, [pn1
1 , . . . , pn�

� ]) = (60, [51, 62]), then K has twelve pentagons which partition the vertex set. Consider the graph G
whose nodes are the pentagons of K . Two nodes are joined by a link in G if the corresponding faces are joined by an 
edge of K . (Observe that this G is same as in the proof of Lemma 4.2.) By the proof of Lemma 4.2, G is a simple 5-regular 
graph and can be drawn on S2. This gives a map [K ] whose faces are triangles. (Each hexagon of K gives a 3-cycle.) Since 
[K ] has 12 vertices, by Lemma 4.1, [K ] is the boundary of the icosahedron. By Lemma 4.4, T ([K ]) is the boundary of the 
truncated icosahedron. Clearly, the operations X 
→ [X] and Y 
→ T (Y ) are inverse operations. Thus, K is isomorphic to 
T ([K ]). Therefore, K is isomorphic to the boundary of the truncated icosahedron. Similarly, by Lemmas 4.1, 4.2 & 4.4, the 
maps of vertex-types [31, 62], [31, 82], [31, 102] and [41, 62] are isomorphic to the boundaries of the truncated tetrahedron, 
the truncated cube, the truncated dodecahedron and the truncated octahedron respectively.

If (n, [pn1
1 , . . . , pn�

� ]) = (12, [31, 41, 31, 41]), then K consists of 8 triangles and 6 squares. Consider the graph G1 whose 
nodes are the triangles of K . Two nodes zi, z j are joined by a link zi z j in G1 if zi ∩ z j �= ∅. Since the intersecting triangles 
in K meet on a vertex and through each vertex there are exactly two triangles, it follows that G1 is a simple 3-regular 
graph. Since K is a map on S2, G1 can be drawn on S2. Thus, G1 gives a map K on S2 with 8 vertices. The four triangles 
intersecting a square of K form a face of K . So, K is of vertex-type [43]. Thus, K is the boundary of the cube. Hence, 
by Lemma 4.6 and Proposition 2.1, R(K ) is the boundary of cuboctahedron. Clearly, the operations X 
→ X & Y 
→ R(Y )

are inverse operations. Thus, K is isomorphic to R(K ). So, K is isomorphic to the boundary of cuboctahedron. Similarly, a 
30-vertex map of vertex-type [31, 51, 31, 51] is isomorphic to the boundary of icosidodecahedron.

If (n, [pn1
1 , . . . , pn�

� ]) = (60, [31, 41, 51, 41]), then K consists of 20 triangles, 30 squares and 12 pentagons. Consider the 
graph G2 whose nodes are the squares of K . Two nodes xi , x j are joined by a link xi x j in G2 if xi ∩ x j �= ∅. Since the inter-
secting squares in K meet on a vertex and through each vertex there are exactly two squares, it follows that G2 is a simple 
4-regular graph. Again, G2 can be drawn on S2, and hence G2 gives a 30-vertex map K on S2. The three squares intersect-
ing a triangle and the four squares intersecting a pentagon form faces of K . So, K is of vertex-type [31, 51, 31, 51]. Thus, by 
the observation in the previous paragraph, K is the boundary of the icosidodecahedron. Hence, by Lemma 4.6 and Propo-
sition 2.1, R(K ) is the boundary of small rhombicosidodecahedron. Clearly, the operations X 
→ X & Y 
→ R(Y ) are inverse 
operations. Thus, K is isomorphic to R(K ). Therefore, K is isomorphic to the boundary of small rhombicosidodecahedron.

Finally, if (n, [pn1
1 , . . . , pn�

� ]) = (120, [41, 61, 101]), then K consists of 30 squares, 20 hexagons and 12 decagons. Consider 
the graph G3 whose nodes are the squares of K . Two nodes yi, y j are joined by a link yi y j in G3 if there exists a hexagon 
F in K such that yi ∩ F �= ∅ & y j ∩ F �= ∅. Since K is a polyhedral map, the adjacent squares of each hexagon in K are 
distinct. This implies that G3 is a simple 4-regular graph and can be drawn on S2. This gives a 30-vertex map K on S2. 
The three squares intersecting a hexagon and the five squares intersecting a decagon form faces of K . So, K is of vertex-
type [31, 51, 31, 51]. Thus, (as above) K is the boundary of the icosidodecahedron. Hence by Lemma 4.4 and Proposition 2.1, 
R(K ) is the boundary of great rhombicosidodecahedron. Clearly, the operations X 
→ [X] & Y 
→ T (Y ) are inverse operations. 
Thus, K is isomorphic to T ([K ]). Therefore, K is isomorphic to the boundary of great rhombicosidodecahedron. Similarly, a 
48-vertex map of vertex-type [41, 61, 81] is isomorphic to the boundary of great rhombicuboctahedron. �
Lemma 4.9. A semi-equivelar spherical map of vertex-type [34, 41] with 24 vertices (respectively, [34, 51] with 60 vertices) is unique.

Proof. Let X be a 24-vertex map of vertex-type [34, 41]. So, X has 24×4
3 = 32 triangles and 24

6 = 6 squares. Let us call an 
edge blue if it is the intersection of two triangles and red if it is the intersection of one triangle and one square. So, each 
vertex is in two red edges and (hence) in three blue edges. We say a blue edge uv is deep blue if three triangles containing 
u (respectively, v) lie on one side of uv and one lies on the other side of uv . (Clearly, if uvx and uv y are triangles then 
uv is deep blue if and only if one of ux, uy (respectively, vx, v y) is red. Since two red edges are disjoint, it follows that an 
edge uv is deep blue if and only if there exist vertices x, y such that ux, v y are red and uy, vx are blue.)
9
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Fig. 6. (a) and (b): Parts of X as in the proof of above claim. (c): Part of X̃ .

Claim. For each vertex u, there exists a unique deep blue edge through u.

Let the faces containing u be uv1 v2, uv2 v3, uv3 v4, uv4 v5, uv5 w1 v1. So, uv3 is not deep blue. Since v1u and v1 w1 are 
red edges, v1 v2 is blue. Let v1 v2 w2 be a triangle containing v1 v2. Since v3 is in a unique square, v2 v3 and v3 v4 cannot 
be simultaneously red. Suppose both are blue. Let the face containing v2 v3 (respectively, v3 v4) and not containing u be 
v2 v3 w4 (respectively, v3 v4 w5) (see Fig. 6 (a)). Then the square containing v2 must contain v2 w4 and the square containing 
v3 must contain v3 w4. Thus, w4 is in two squares. This is not possible since vertex-type is [34, 41]. So, exactly one of v2 v3, 
v3 v4 is red. If v3 v4 is red and v2 v3 is blue (see Fig. 6 (b)) then uv4 is deep blue and uv2 is not deep blue. In the other 
case, uv2 is deep blue and uv4 is not deep blue. This proves the claim.

It follows by the claim that the deep blue edges form a perfect matching in the edge graph of X . Let X̃ be the map 
obtained from X by removing all the 12 deep blue edges. (This makes 24 triangles to 12 squares.) Then X̃ is a 24-vertex 
map with 32 − 24 = 8 triangles and 6 + 12 = 18 squares. Moreover, the degree of each vertex in X̃ is 5 − 1 = 4. Since yw
and wz cannot both be deep blue (see Fig. 6 (c)). Thus, one of γ , δ is a triangle in X̃ . So, u is in at least one triangle in 
X̃ . Since there are 8 triangles and 24 vertices, it follows that each vertex is in exactly one triangle and hence in 4 − 1 = 3
squares. Thus, X̃ is a semi-equivelar map of vertex-type [31, 43].

Let xuyv is a new square in X̃ , where uv is a deep blue edge in X . Assume that xuv is the unique triangle in X
containing u on one side of uv . Then ux is a red edge and is in a square α (see Fig. 6 (c)). This implies that the other three 
faces (other than xuv & α) incident to x are triangles in X . Thus, vx is blue and hence vx is in a triangle β of X̃ . Similarly 
uy is in a triangle γ in X̃ . These imply that the new square xuyv in X̃ is of type 2 (as in the proof of Lemma 4.7). Therefore, 
X̃ has at least 12 type 2 squares and hence by the proof of Lemma 4.7, X̃ is the boundary of small rhombicuboctahedron.

On the other hand, if Y is the boundary of small rhombicuboctahedron then, as in the proof of Lemma 4.7, Y has twelve 
type 2 squares. We can divide each of these type 2 squares into two triangles by adding one diagonal in two ways. It is 
not difficult to see that if we chose one diagonal in one type 2 squares then there exists exactly one diagonal for each of 
the other 11 type 2 squares so that these 12 new diagonals form a perfect matching. And we get a map Ŷ of vertex-type 
[34, 41] in which these 12 new edges are the deep blue edges. If we choose other set of 12 diagonals then we get another 
map of vertex-type [34, 41] which is isomorphic to Ŷ under a reflection of Y . Thus, Ŷ is unique up to an isomorphism. 
Again, it is easy to see that the operations X 
→ X̃ and Y 
→ Ŷ are inverse of each other. Since 24-vertex map of vertex-type 
[31, 43] on S2 with twelve type 2 squares is unique, it follows that 24-vertex map of vertex-type [34, 41] on S2 is unique 
up to isomorphism.

Let X be a 60-vertex map of vertex-type [34, 51]. As before we have 30 deep blue edges and by removing, we get (by 
similar arguments) a 60-vertex map X̂ of vertex-type [31, 41, 51, 41]. Hence, by Lemma 4.8, X̂ is isomorphic to the boundary 
of small rhombicosidodecahedron. On the other hand, if Y is the boundary of small rhombicosidodecahedron then Y has 30
squares. We can divide each of 30 squares into two triangles by adding one diagonal in two ways. Again, it is not difficult 
to see that if we chose one diagonal in one square then there exists exactly one diagonal for each of the other 29 squares 
so that these 30 new diagonals form a perfect matching. And we get a map Ỹ of vertex-type [34, 51] in which these 30
new edges are the deep blue edges. If we choose other set of 30 diagonals then we get another map of vertex-type [34, 51]
which is isomorphic to Ỹ under a reflection of Y . Thus, Ỹ is unique up to an isomorphism. Again, it is easy to see that the 
operations X 
→ X̂ and Y 
→ Ỹ are inverse of each other. Since, by Lemma 4.8, 60-vertex map of vertex-type [31, 41, 51, 41]
on S2 is unique, it follows that 60-vertex map of vertex-type [34, 51] on S2 is unique up to isomorphism. �
Lemma 4.10. Let K be a semi-equivelar spherical map. If the vertex-type of K is [42, n1] for some n ≥ 3 then K is isomorphic to the 
boundary of the 2n-vertex regular prism Pn.

If the vertex-type of K is [33, n1] for some n ≥ 4 then K is isomorphic to the boundary of the 2n-vertex antiprism Q n.

Proof. Let the vertex-type of K be [42, n1]. Let u1 ∈ V (K ) and the link-cycle of u1 be u2-u3- · · · -un-bn-b1-b2-u2 where 
faces u1u2 . . . un, unu1b1bn, u1u2b2b1 are incident at u1. Then, the link-cycle of u2 would be u3-u4- · · · -un-u1-b1-b2-b3-u3
for some vertex b3. Clearly, b3 �∈ {b1, b2, u1, . . . , un}. If b3 = bn then the edges b3u3, b3b2, bnun, bnb1 are incident with 
b3. This implies that deg(b3) ≥ 4, a contradiction. So, b3 �= bn . Continuing this way, we get the link-cycle of u j is 
10
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Fig. 7. Projection of the boundary of the snub cube on the square 1234

u j+1-u j+2- · · · -un-u1- · · · -u j−1-b j−1-b j-b j+1-u j+1 for j ≥ 3 where bt �= b� and ui �= us for � �= t, i �= s, 1 ≤ �, t, i, s ≤ n. Hence, 
the faces of K are u1u2 . . . un, b1b2 . . .bn, unu1b1bn, uiui+1bi+1bi (1 ≤ i ≤ n − 1). Then, K is isomorphic to the boundary of 
the prism Pn .

Let the vertex-type of K be [33, n1]. Let u1 ∈ V (K ) and link-cycle of u1 be u2-u3- · · · -un -b1-b2-u2, where faces 
u1u2 . . . un, b1u1un, b1b2u1, u1u2b2 are incident with u1. Then, the link-cycle of u2 would be u3- · · · -un-u1-b2-b3-u3 for 
some vertex b3. Then b3 �∈ {u1, u2, . . . , un, b2}. Also, b3, b1 belong in link-cycle of b2. So, b3 �= b1. Hence, let the link-
cycle of u3 be u4-u5- · · · -un-u1-u2- b3-b4-u4 for some vertex b4. As before, b4 �∈ {u1, u2, . . . , un, b3, b2}. If b4 = b1 then 
b4 is in the edges b4u4, b4u3, b4b3, b4un, b4u1, b4b2. This implies that deg(b4) ≥ 6, a contradiction. So, b4 �= b1. Con-
tinuing this way, we get link-cycle of u j = u j+1-u j+2- · · · - un-u1- · · · -u j−1-b j-b j+1-u j+1 where bt �= b� and ui �= us for 
� �= t, i �= s, 1 ≤ �, t, i, s ≤ n. Clearly, the cycle b1- · · · -bn-b1 is the third face containing b j for each j. So, the faces of K
are u1u2 . . . un, b1b2 . . .bn, unbnb1, u1b1un, uibibi+1, uibi+1ui+1 (1 ≤ i ≤ n − 1). Then, K is isomorphic to the boundary of the 
antiprism Q n . �
Proof of Theorem 1.1. The result follows from Corollary 3.3 and Lemmas 4.1, 4.7, 4.8, 4.9, 4.10. �
Definition 4.11. An involution of a map is an automorphism of order 2. An involution ρ of a map X is called an antipodal 
automorphism (or antipodal symmetry) if no vertex, edge or face of X is fixed by ρ . A map X is called centrally symmetric if 
X has an antipodal symmetry.

We know that the antipodal map of the snub cube (respectively, of the snub dodecahedron) is not an automorphism of 
the boundary of the snub cube (respectively, of the snub dodecahedron) ([2]). We need the following stronger result for the 
proof of Theorem 1.2.

Lemma 4.12. If X is the boundary of the snub cube or the boundary of the snub dodecahedron then X does not have any antipodal 
symmetry.

Proof. Let X be the boundary of the snub cube. Assume that X is as in Fig. 7. Suppose there exists an antipodal automor-
phism ρ of X . Since no edge is fixed by ρ , xρ(x) is a non-edge for each vertex x. Also, ρ sends a square to another square. 
If ρ(1234) = 56kj then ρ(1) = j or k. If ρ(1) = j then ρ(1-5- j) must be j-5-1 and hence ρ(5) = 5, a contradiction. So, 
ρ(1) �= j. Similarly, ρ(1) �= k. Thus, ρ(1234) �= 56kj. Similarly, ρ(1234) �= 78el, 90g f , uvih. So, ρ(1234) = abcd. If ρ(1) = c
then ρ({2, 4}) = {b, d} and hence ρ({5, 7}) = {k, i}. This implies that ρ(6) = j and hence ρ(56kj) = 56kj, a contradiction. 
So, ρ(1) �= c. If ρ(1) = b then, by the same argument, ρ(6) = � and hence ρ(6�) = 6�, a contradiction. So, ρ(1) �= b. Sim-
ilarly, ρ(2) �= c, d. So, ρ((1, 2)) = (a, b) or (d, a). In the first case, ρ(5) = e and hence ρ(56kj) = 78e�. Then ρ(156) = axy, 
where xy is an edge of 78e� and hence ρ(156) is not a triangle, a contradiction. In the second case, ρ(5) = g and hence 
ρ(56kj) = g f 90. Then, by the same argument, ρ(156) is not a triangle, a contradiction. This shows that ρ(1234) �= abcd. 
Thus, there does not exist any antipodal automorphism of the boundary of the snub cube. By similar arguments, one can 
show that there does not exist any antipodal automorphism of the boundary of the snub dodecahedron. �
Lemma 4.13. Let X be the boundary of the pseudorhombicuboctahedron. Then (a) X is not a vertex-transitive map, and (b) X does 
not have antipodal symmetry.
11
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Proof. As before, for 2 ≤ i ≤ 4, let’s call a square type i if it intersects i other squares on edges. Then there are two type 4 
squares, eight type 3 squares and eight type 2 squares. Let u be a vertex of a type 4 square (there are 8 such vertices) and 
v be a vertex which is not in any type 4 square (there are 16 such vertices). If ϕ is an automorphism, then the image of a 
type 4 square under ϕ is again a type 4 square. Therefore, ϕ(u) cannot be v . Thus, X is not a vertex-transitive map. This 
proves part (a).

Consider X as A ∪ C as in Fig. 5. If possible, let ρ be an antipodal automorphism of X . Then ρ sends all the eight type 
3 squares to themselves. And ρ interchanges two type 4 squares. These imply that ρ({u5, . . . , u12}) = {u13, . . . , u20}. Since 
the edge u5u6 is in the intersection of two squares, ρ(u5u6) is u14u15, u16u17, u18u19 or u20u13. Assume ρ(u5u6) = u16u17. 
Since ρ is an antipodal automorphism, this implies that

ρ = (u5, u16)(u6, u17)(u7, u18)(u8, u19)(u9, u20)(u10, u13)(u11, u14)(u12, u15) · · · .

Then ρ(u5u6u14u13) = u16u17u11u10. This is a contradiction since u5u6u14u13 is a face but u16u17u11u10 is not a face of X . 
Similarly, we get contradictions in other three cases. This proves part (b). �
Proof of Corollary 1.3. From Lemma 4.13 (a), we know that the boundary of the pseudorhombicuboctahedron is not a 
vertex-transitive map.

From the results in [1], it follows that all the maps on S2 other than the boundary of the pseudorhombicuboctahedron 
mentioned in Theorem 1.1 are vertex-transitive. The result now follows by Theorem 1.1. �
Proof of Theorem 1.2. Let the number of vertices in Y be n and the vertex-type of Y be [pn1

1 , pn2
2 , . . . , pn�

� ]. Since S2 is 
a 2-fold cover of RP 2, by pulling back, we get a 2n-vertex map of vertex-type [pn1

1 , . . . , pn�

� ] on S2. Hence, by Corol-
lary 3.3, (n, [pn1

1 , . . . , pn�

� ]) = (2, [33]), (3, [34]), (4, [43]), (6, [35]), (10, [53]), (30, [34, 51]), (12, [34, 41]), (15, [31, 51, 31, 51]), 
(6, [31, 41, 31, 41]), (30, [31, 41, 51, 41]), (12, [31, 43]), (30, [51, 62]), (24, [41, 61, 81]), (12, [41, 62]), (60, [41, 61, 101]), (6, [31, 
62]), (12, [31, 82]), (30, [31, 102]), (3, [31, 42]), (r, [42, r1]) for some r ≥ 5 or (s, [33, s1]) for some s ≥ 4.

Clearly, (n, [pn1
1 , . . . , pn�

� ]) = (2, [33]), (3, [34]), (4, [43]), (6, [31, 41, 31, 41]), (12, [31, 82]), (6, [31, 62]) or (3, [31, 42]) is 
not possible.

Now, assume (n, [pn1
1 , . . . , pn�

� ]) = (12, [34, 41]). Then the 2-fold cover Ỹ of Y is a 24-vertex map of vertex-type [34, 41]
on S2 with an antipodal symmetry. From Lemma 4.8, Ỹ is the boundary of snub cube. This is not possible by Lemma 4.12. 
Thus, (n, [pn1

1 , . . . , pn�

� ]) �= (12, [34, 41]). Similarly, (n, [pn1
1 , . . . , pn�

� ]) �= (30, [34, 51]).
If [pn1

1 , . . . , pn�

� ] = [42, n1] for some n ≥ 5 then Y has a unique face α with n vertices and hence contains all the vertices. 
Thus, all the vertices of a square β are in α. Then intersection of α and β cannot be a vertex or an edge, a contradiction. 
Thus, (n, [pn1

1 , . . . , pn�

� ]) �= (n, [42, n1]) for any n ≥ 5. Similarly (n, [pn1
1 , . . . , pn�

� ]) �= (n, [33, n1]) for any n ≥ 4. This proves the 
first part.

Let (n, [pn1
1 , . . . , pn�

� ]) = (6, [35]). Then Y is a 6-vertex triangulation of RP 2. It is known (cf. [4]) that there exists unique 
such triangulation.

Let (n, [pn1
1 , . . . , pn�

� ]) = (12, [31, 43]) then the 2-fold cover Ỹ of Y is a 24-vertex map of vertex-type [31, 43] on S2 with 
an antipodal symmetry. Therefore, by Lemma 4.13, Ỹ is isomorphic to the boundary of small rhombicuboctahedron. Hence 
Y is unique.

If (n, [pn1
1 , . . . , pn�

� ]) = (10, [53]) then the 2-fold cover Ỹ of Y is a 20-vertex map of vertex-type [53] on S2. Hence, 
by Lemma 4.1, Ỹ is the boundary of the dodecahedron. By identifying antipodal vertices of Ỹ we get Y . Since Ỹ is 
unique, Y is unique. Similarly, for each (n, [pn1

1 , . . . , pn�

� ]) = (24, [41, 61, 81]), (12, [41, 62]), (30, [51, 62]), (30, [31, 102]), 
(30, [31, 41, 51, 41]), (15, [31, 51, 31, 51]) or (60, [41, 61, 101]), there is a unique n-vertex map of vertex-type [pn1

1 , . . . , pn�

� ]
on RP 2. This proves the last part. �
Proof of Corollary 1.4. If P is one of the polytopes mentioned in Section 2 then (i) the centre of P is (0, 0, 0), (ii) all the 
vertices of P are points on the unit 2-sphere with centre (0, 0, 0), (iii) each 2-face of P is a regular polygon, and (iv) lengths 
of all the edges of P are same. Let ∂ P denote the boundary complex of P . Let η : R3 \ {(0, 0, 0)} → S2 be the mapping 
given by η(x1, x2, x3) = (x2

1 + x2
2 + x2

3)
− 1

2 (x1, x2, x3). Then η(∂ P ) is a map on S2. Since P satisfies the properties (i) - (iv), 
this map is a semi-regular tiling of S2. (For example, the image of each edge of P under η is a great circle arc on S2 and 
hence a geodesic.) Part (a) now follows from Theorem 1.1.

Since S2 is the universal cover of RP 2, part (b) follows from part (a). (More explicitly, let Y be a semi-equivelar map 
on RP 2. By pulling back to the universal cover, we get a semi-equivelar map Ỹ (of same vertex-type) on S2. By part (a), 
up to an isomorphism, Ỹ is a semi-regular tiling of S2 and Y is obtained from Ỹ as quotient by an order 2 automorphism 
of Ỹ . This implies that, up to an isomorphism, Y is a semi-regular tiling on RP 2.) �
Proof of Corollary 1.5. Since all the maps on RP 2 mentioned in Theorem 1.2 are vertex-transitive ([1]), the result follows 
by Theorem 1.2. �
12
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