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Abstract - A parametric description of the spectral
density of the EGG signal using its Discrete Cosine
Transform is proposed. This transformation enables
modeling of the ECG efficiently using lower order
polynomials. The Steiglitz-McBride, Shanks and the
Maxim Likelihood Estimator algorithms are used
for modeling. Certain parameters obtained from the
spectrum are used to determine an estimate of the
autocorrelation function that takes the form of a
sum of exponentials and damped sinusoids. Several
normal and abnormal ECGs have been analyzed with
highly satisfactory results. An abnormal beat
required more parameters for its description than a
normal.

INTRODUCTION

several ways of representing
biosignals, spectral characterization is commonly
used. Zetterberg [1,2] employed , a rational
funciion in the frequency variable £2 of the type
Q (f°)/P(£%) ,where Q(x) and P(x) are polynomials” of
low order, to study EEG modeled as an ARMA process
with  white noise input, under conditions of
stationarity. In this paper we study the ECG
signal considered as the impulse response of a
linear time invariant system. Modelin the direct
ECG signal requires orders of (20,207 or higher
(30,30) [3]. Instead we model the Discrete Cosine
Transform (DCT) coefficients of the time domain
signal. A (2,2) order was sufficient to model the
transform of the component waves while a (6,6)
order wes required for the transform of the
complete ECG cycle. The auto correlation function
(ACF) is characterized by a set of parameters, the
resonant frequency, the half power bandwidth and
the power content at the resonant frequency. While
the first two parameters are obtained from the
spectrum, the third one is evaluated from the model
coefficients.

of the

METHOD

The transformed signal is modeled as a pole-
zero process, whose system function

H(z) = [B(z"")/A(z"")] is to be determined
: -1 _ -1 - \
Define B(z™ ') = b+ bz + . qu (1)

-1 _ _
A(z)=a0+a1z1+...+apzp
q <p.

From eqns. (1) and (2) the power spectral

density
(PSD) is given by

, B(z") B(z)
c

Az A(z)

The A is obtained by taking the inverse fourier
transform of the PSD.

Thus ) )
o B(z™) B(z)

T, = -— mm——mgTm——— Z dz. (3)
2m  |z|=1 A(z7') A(z)
With the notation

+ a_zP,

A(z) =ao+a1z+a2z2+ .
8,(2) = 2PAGT), Ay(a) = [aA, (2)/da],
ay(2) = 2P ay(aT), By (2) =2t BT,
(3) can be rewritten as
2

o B (z) B(z)
N e (4)
2 lzl=1 A1(z) A(z)
Using the residue technique we evaluate the
integral at the poles of the system function to
yield
NI N U U oy
k =1 Ay(zg) Alzg) T
-1
p B(z. ') B(z,)
= 02 X ——}—:1-———'-&—- Zik (5)
i=1 AB(Zi )A(zi)
For the pl real poles z, = exp(-ai) we get
-1
p, B(z; ") B(z;)
k= 2 _21 -—-—1-:7 ----- exp(-ka ) (6)
=1 Ay(z 7)) AGz)
By
= 1 F. exp(-ka,)
=1 1

where F, is the power content at DC given by
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-1
L
1 A3(Zi—l> A(Zl)

For the p2 complex poles z, = exp(—Bi +j wi) we
evaluate r, as follows:

k
Denote
- - I
B(zi) = BX + JBY R B(zi ) =B+ JBy y
- Ay, +
Mz) =872 ahyT, Byle ) = Ay 1T Ay

Substituting in (5) yields

p, (B, *+JB7)B_~+ 3B )
r, = 02 22 ( X_ Y ( X - y+ exp(_kBiikjwi)
L + A .
=1 (A, Jy)ABX—JBy)
p
= ):2 exp(-kq.) G. cos(kw,) (8)
= i/ i i
L B
(B."+jB ) (B +3B. 1)
_ 5 R X =7y x — 97y
where G; = 2d - - T T3
j ) (A + jA
(A 2 3A7) (A "+ AT

Finally when ¢ = p, we get an additional term
b b
= _P._ 2
a_ a
p o
Hence the expression for the ACF takes the form
+ 3 F. e (k. )+ B2 G, exp(-kB. )cos(kw,)
I Fy expi-kuy  SKPLHby Jcost, )
ko i= (97

where §, = 1 ifqg=p
ko 0 otherwise.

rk:Eé

Hz, were used for analysis. Of the three
algorithms, the maximum likelihood estimator gave
the best spectral fit in terms of the normalized
root mean square error (NRMSE), but had the highest
time complexity. Steiglitz-McBride and  Shanks
algorithms gave similar results. For purposes of
illustration we have shown the results obtained on
analyzing a normal beat and its component waves,
after modeling them using the Steiglitz-McBride
algorithm.

Figure 1(a) shows the complete HEIG cycle.
Fig. 1(b) gives the power spectral density (PSD)
evaluated from the ACFs, obtained directly from the
transformed signal and evaluated using Eq. (9).
Figs. 2(a) -2(b), 3(a) - 3(b) and 4(a) - 4(D)
give the corresponding plots for the component
waves.

CONCIUSIONS

In [1], a parameter H., defined as the
skewness of the spectral densi%y about the resonant

frequency, is used for characterization. Our
analysis shows that this parameter is not
necessary. The ACF is thus a function of only four
parameters Oss Wy, G.l and F.. Using these
parameters we have not only” been able to
reconstruct our signal but also to simulate a
whole class of ECG signals.
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