
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=oaed20

Cogent Education

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/oaed20

Types and time of interaction for teaching
introductory programming using instruction
method of extreme apprenticeship

Srinivasan Lakshminarayanan & N. J. Rao |

To cite this article: Srinivasan Lakshminarayanan & N. J. Rao | (2021) Types and time
of interaction for teaching introductory programming using instruction method of extreme
apprenticeship, Cogent Education, 8:1, 1969880, DOI: 10.1080/2331186X.2021.1969880

To link to this article: https://doi.org/10.1080/2331186X.2021.1969880

© 2021 The Author(s). This open access
article is distributed under a Creative
Commons Attribution (CC-BY) 4.0 license.

Published online: 04 Sep 2021.

Submit your article to this journal

Article views: 172

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=oaed20
https://www.tandfonline.com/loi/oaed20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/2331186X.2021.1969880
https://doi.org/10.1080/2331186X.2021.1969880
https://www.tandfonline.com/action/authorSubmission?journalCode=oaed20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=oaed20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/2331186X.2021.1969880
https://www.tandfonline.com/doi/mlt/10.1080/2331186X.2021.1969880
http://crossmark.crossref.org/dialog/?doi=10.1080/2331186X.2021.1969880&domain=pdf&date_stamp=2021-09-04
http://crossmark.crossref.org/dialog/?doi=10.1080/2331186X.2021.1969880&domain=pdf&date_stamp=2021-09-04

FOOD SCIENCE & TECHNOLOGY | RESEARCH ARTICLE

Types and time of interaction for teaching
introductory programming using instruction
method of extreme apprenticeship
Srinivasan Lakshminarayanan1* and N. J. Rao2

Abstract: CS1 courses are designed in Indian Institutions as a lecture course of
three to four credits and one credit lab course. The issues related to curriculum
design, instruction design, and students’ learning manifest themselves as issues in
the lab programs. This situation presents the lab instructor with an opportunity to
understand and address the difficulty the student is facing. The difficulty could be
understanding a concept, applying a concept, the amount of effort invested, and
the time required by the individual to solve the problem. The student might need
help to address various emotional aspects related to peer pressure, need for com
pletion, need for acceptance by the instructor, and achievement goals. The stu
dent’s difficulty is usually handled by a) allowing the student to correct programs by
looking at the working programs of their peers or class notes, b) The teacher or peer
fixes the program. The problem gets solved, and the student moves on to the next
program, but the student’s underlying difficulty may not have been resolved. Since
addressing the underlying difficulty takes more time, we offered the students
a voluntary supplementary CS0 course using the Extreme Apprenticeship instruction
method. In this study, we estimated that students need between four to fifteen
hours of one-on-one synchronous interaction time with the instructor based on

ABOUT THE AUTHOR
Srinivasan Laksminarayanan worked as
a Software Engineer in various roles and is cur
rently pursuing a Ph.D. at Jain University, India.
He held the position of Development Manager at
Oracle (India) before switching to education
research.
N. J. RAO received Ph.D. in Control Systems from
the Indian Institute of Technology, Kanpur. He
was the Chairperson of the Center for Electronics
Design and Technology and subsequently the
Chairperson of the Department of Management
Studies in the Indian Institute of Science. His
research interests included Control Systems,
System Dynamics, and Higher Education. Since
superannuation in 2006, he is working in several
areas related to Higher Education in India. His
current research interests include assessment,
accreditation, and metacognition in Higher
Education.
This study is a part of ongoing research to
achieve transformative learning in introductory
programming courses.

PUBLIC INTEREST STATEMENT
Every year close to 700 thousand students attend
introductory programming course as a part of the
first year of the undergraduate engineering pro
grams in India. The lecture based instruction
method is predominantly used in most institu
tions. These instruction methods result in stu
dents learning programs instead of learning
programming. In order to address the situation
we adopted the Extreme Apprenticeship method.
Any change in the instruction method will have
an impact on the instructor’s effort. This study
measures one on one instructor interaction time
when the Extreme Apprenticeship method of
instruction is adopted. Experienced teachers over
years of interaction develop specific communica
tion patterns. In this study the interactions
between an instructor and students were cap
tured and analysed to identify themes of inter
action. These themes can be used to train
teachers who are new to teaching introductory
programming courses using the Extreme
Apprenticeship method.

Lakshminarayanan & Rao, Cogent Education (2021), 8: 1969880
https://doi.org/10.1080/2331186X.2021.1969880

Page 1 of 14

Received: 21 December 2020
Accepted: 13 August 2021

*Corresponding author: Srinivasan
Lakshminarayanan, Department of
Computer Science and Engineering,
Jain (Deemed to Be University),
Jakkasandra, Ramanagara,
Karnataka, India
E-mail: srinirad@gmail.com

Reviewing editor:
Luís Tinoca, Universidade de Lisboa,
PORTUGAL

Additional information is available at
the end of the article

© 2021 The Author(s). This open access article is distributed under a Creative Commons
Attribution (CC-BY) 4.0 license.

http://crossmark.crossref.org/dialog/?doi=10.1080/2331186X.2021.1969880&domain=pdf
http://creativecommons.org/licenses/by/4.0/

prior exposure. Thematic Analysis of interactions identified fifteen themes in
metacognitive domain interactions, eight themes in cognitive domain interactions,
and six themes in affective domain interactions.

Subjects: Computer Science (General); Engineering Education; Teaching & Learning

Keywords: CS1; introductory programming course; cognitive apprenticeship; extreme
apprenticeship; metacognitive; affective

1. Introduction
Cognitive apprenticeship is an instruction method where the instruction is delivered as modelling,
coaching, scaffolding, articulation, reflection and exploration (Collins, 1991). Modelling is the
demonstration of performing a task while articulating the rationale behind each action and
decision taken by the instructor. Coaching by the instructor is done by observing and facilitating
student’s learning by the instructor while the student is performing the task. Scaffolding is a way of
organizing the content by breaking down the task to smaller tasks or tasks created to help the
student learn concepts needed for performing a task. Articulation refers to the students making
their thinking processes explicit. Reflection refers to the students comparing their performance
with that of peers and the instructor and thereby developing the ability to perform. Exploration
happens when the students do not need the scaffolding by the instructor, and the instructor
predominantly performs the role of evaluation of the work Figure 1.

The basic requirements for cognitive apprenticeship are instructor’s expertise in the subject and
ability to design and deliver the course using the cognitive apprenticeship method. Instructor time
required should be allotted by the curriculum and the institution. The students should have
mastery goal orientation towards the course. About 800 students attend the CS1 course every
semester in the institution where the study was done. It is a mandatory course for all engineering
undergraduates. The study was conducted in the year 2020, January to June semester batch.
C was the programming language used for the course. The lab instructor (LI) in the study was
assigned 164 students in 12 batches. The students had to solve about three problems in every
2-hour lab session over a period of 14 weeks. Majority of the students could not complete even one
lab program. Hence the students would type out the programs looking at the class notes or
reference programs, and the errors were solved by comparing with the class notes or peers’
programs. When the student fails to write the program by comparing the code, the instructor
helps the student. Though the current system students learn the existing programs, many stu
dents found the programming very difficult because of the syntax, and logical errors that inad

Figure 1. Example of a two-part
figure with individual sub-
captions showing that captions
are flush left and justified if
greater than one line of text.

Lakshminarayanan & Rao, Cogent Education (2021), 8: 1969880
https://doi.org/10.1080/2331186X.2021.1969880

Page 2 of 14

vertently happen while typing. The LI proposed to offer a supplementary course (CS0) based on
cognitive apprenticeship method to address the difficulties of the students.

The CS0 course had the following characteristics:

(1) It was not graded.

(2) The institution offered a certificate to all the students who completed the course.

(3) It was optional and voluntary.

(4) The instructor’s availability online and in the lab was high.

(5) The course outcome was that students should be able to write a program for an authentic
programming task.

(6) The instruction was one to one.

The version control data and interactions with the instructor form a basis for understanding the
individual student’s learning. The students who do not perceive any intrinsic value had a choice to
drop from the course without consequences to their grades. Twelve students underwent the
majority of the course with the interactions exclusively on the text chat. Teaching on text chat
makes teaching a linear process and captures all the teacher-student interactions. This study
intends to analyze the course’s chat logs to achieve the following research objectives:

(1) Identify metacognitive, cognitive and affective interactions that facilitate first-year students
learning the basics of programming.

(2) Estimate interaction time needed between a student and the teacher for a novice to learn
programming basics.

2. Related work
Ureel and Wallace (2018) report in their study that cognitive apprenticeship results in an improve
ment in student performance and a clearer understanding of the place of communication in the
lives of computing professionals. Brondino et al. (2019) reported that higher compliance of
students in an extreme apprenticeship course performed better and was characterized by less
intense anxiety, anger, and hopelessness compared to those with lower compliance. Vihavainen
et al. (2011) in their work describe extreme apprenticeship as an extension of Cognitive apprentice
ship. We adopted the extreme apprenticeship method for this study. We adopted, from their work,
the values of learning by doing, continuous feedback, no compromise, and the student should be
able to write programs for an authentic task. We followed the practices of minimal lecturing and
encouraged looking for information. The students were predominantly taught online using online
google hangouts, and the activities were coordinated using google classroom and online git
version control system.

Haatainen et al. (2013) have described the implementation of additional support for students
finding the CS1 course difficult. In the study, they used self-assessment to identify students
needing help. They created a learning environment where participation was voluntary. The stu
dents who participated found lower social barriers to learning since they met others having similar
difficulties. The learning was done by programming in groups before graduating to programming
individually. This process allowed students to learn programming in a socially supported environ
ment. They recommend that differentiated learning and educational constructionism will benefit
students learning. We have adapted some of the methods from this study to address the issues in
our instructional setting. We reduced the social barriers by not having grading and making the
course a voluntary mastery learning course. The student asking questions was a mandatory
beginning to every interaction, and this reduced the social barriers further. Interventions were
attempted in the order of pure discovery, guided discovery, direct questioning, direct answering,
and direct instruction.

Lakshminarayanan & Rao, Cogent Education (2021), 8: 1969880
https://doi.org/10.1080/2331186X.2021.1969880

Page 3 of 14

Campbell et al. (2019) implemented a self-paced mastery learning course online and reported
that though the student reported a deeper engagement, the student tended to procrastinate work
till the end of the course. In our course, we observe that procrastinating students drop out
eventually. McCane et al. (2017) reported the advantages of a mastery learning course in pro
gramming for weaker students. They reported the difficulties in the implementation of the mastery
course. We feel that trying to run a mastery course in a semester format leads to these problems.
We ran the course as a self-paced but regular number of hours every week in mastery learning
mode without any grades as a voluntary supplementary course, which allows the course to focus
on students ability to write a program for authentic tasks instead of completion within a given time
period. Student’s intention to learn becomes a necessary condition for the continuation of the
student course.

Xie et al. (2019) proposed a theory in which they identify four distinct skills that novices learn
incrementally. These skills are tracing, writing syntax, comprehending templates (reusable
abstractions of programming knowledge), and writing code with templates. They mention that
incorporating the theory in the instruction design resulted in improved instruction. Prather et al.
(2019) identified that students have metacognitive difficulties due to forming the wrong con
ceptual model about the problem, dislodging an incorrect conceptual model of the problem,
assuming the correct conceptual model for the wrong problem, and moving too quickly through
one or more stages incorrectly leads to a false sense of accomplishment. We find that cognitive
apprenticeship addresses the methods and issues reported in the studies. Tracing and writing
syntax is addressed in almost all courses as a norm. We incorporated comprehending templates
and writing code with templates as steps in the code review process of the CS0 course. In
addition, the metacognitive difficulties mentioned were addressed during the continuous feed
back adopted in our study.

Mayer (2004) described the disadvantages of pure discovery learning and recommended guided
discovery. We have taken the position that the student’s cognitive load decreases with the
increased familiarity of content over time. By carefully managing the time for pure discovery, we
can give the student the experience of pure discovery learning. This course aims to provide
students with the experiences of pure discovery, that is, the ability to arrive at the right solution
using the internet resources and guided discovery where the instructor attempts corrective feed
back before attempting explanatory feedback. The student can choose to learn the concepts from
many available resources online, but they will have to write the program by themselves when it
comes to solving an authentic task. If they cannot solve and if the instructor has to give direct
instruction, then the student will have to solve another authentic task. This cycle continues until
the student can write a program for an authentic task.

Raj et al. (2018) adopted live-coding as an instruction method. This is a practice where the
instructor writes code in the class while talking out loud, explaining their thought process. They
claim this is a useful pedagogical tool to learn programming. Students directly get to learn
algorithmic thinking, debugging skills and other programming practices from a master. This is
a direct implementation of cognitive apprenticeship in an introductory programming course. Since
our instruction was individually paced, we preferred explaining an already written program and the
rationale behind the decisions for writing the code in a specific way.

Rodríguez-Bonces and Ortiz (2016) conclude that in their programming course, the methods of
the cognitive apprenticeship enhance online collaborative learning not only because students work
together to reach a common goal, but also because they can support each other’s learning
through synchronous interactions when using a chatroom for this purpose. In our study, we use
the synchronous interaction aspect to maintain the continuity of learning between the instructor
and the student.

Lakshminarayanan & Rao, Cogent Education (2021), 8: 1969880
https://doi.org/10.1080/2331186X.2021.1969880

Page 4 of 14

Recent research indicates a tilt toward automation. Automated grading, automated feedback,
online tutorial, MOOCs, educational analytics have all been used to improve the learning of the
students. Increasingly students are using these systems to learn. These systems do not generally
support code review, and the students find them excessively strict (Wilcox, 2015). Yan et al. (2019)
implemented a feedback tool as a way to begin the conversation on metacognition and as a way
to bring a human aspect back to programming despite the size of classrooms. In this study, the
students were required to use a version control system, and the data from the version control
system was used for feedback. Students were encouraged to use any online resources, and the
instructor intervenes when the student is not able to progress in an activity or seeks help.

3. Instruction design
Table 1 lists the activities and corresponding cognitive outcomes. The design was arrived at based
on the experiences with previous batches in previous years. The course is a supplementary course,
and the students also attend a regular CS1 course. Right from the first activity, the instructional
method starts with discovery learning methods, followed by guided discovery learning methods.
When both the methods do not lead to progress, and the student still has the difficulty, then the
direct instruction method is used. Since this process involves elaborate work, the concepts taught
were limited to those required for writing programs for chosen authentic tasks. The authentic tasks
were chosen from ACM high school programming contests.

4. Method
Mixed methods were adopted for the study. The participants interacted with the instructor exclu
sively using the text chat. The programs were submitted for review using the git revision control
system. Quantitative methods were used to analyze the count data from chat logs and estimate
the time taken for interaction between the instructor and the student. The synchronous interaction
time is the sum of all time differences between two messages when the difference is less than two
minutes. Qualitative thematic analysis method with manual coding was used to classify the chat
interactions and understand the kinds of interactions used to resolve the students’ difficulties. Only
the participants who interacted extensively using chat were selected for the analysis.

Table 1. CS0 activities
Activity Cognitive Outcomes
Write a hello world program and write 20 questions
on each aspect of the program.

Use the development environment. Understand
questioning.

Write a program to add two numbers. Understand data types and expressions.

Write a program to add two numbers using four
functions.

Understand modularization in C.

Write a program to find the distance between two
points.

Apply modularization in C.

Write a Program to find the distance between two
points using structures.

Understand data abstraction in C.

Write a program to find the sum of n different
numbers.

Apply for loops and arrays to handle process data of
many objects of the same kind in C.

Write a program to find the sum of two fractions. Apply modularization and data abstraction in C.

Write a program to add n fractions. Apply modularization, data abstraction to handle data
of many objects of the same kind in C.

Write a program for the task from ACM High School
Programming Competition with assistance.

Write a program for an authentic task with instructor
assistance.

Write a program for the task from ACM High School
Programming Competition without assistance.

Write a program for an authentic task without
instructor assistance.

Lakshminarayanan & Rao, Cogent Education (2021), 8: 1969880
https://doi.org/10.1080/2331186X.2021.1969880

Page 5 of 14

Ta
bl

e
2.

 Q
ua

nt
ita

tiv
e

su
m

m
ar

y
of

 s
tu

de
nt

 in
te

ra
ct

io
ns

St
ud

en
t

No
. o

f M
sg

s
by

St

ud
en

t
No

. o
f M

sg
s

by

In
st

ru
ct

or
Pr

ob
le

m
s

Co
m

pl
et

ed
Sy

nc
hr

on
ou

s
In

te
ra

ct
io

n
tim

e
Pr

io
r

Ex
po

su
re

Gi
t

Co
m

m
its

So
ft

w
ar

e
Re

vi
ew

Re

qu
es

ts
N

26
6

38
7

10
3:

57
:0

9
N

o
41

27

U
27

5
34

2
7

9:
43

:3
3

N
o

46
50

A
98

1
10

18
10

6:
39

:3
8

N
o

73
27

P
51

1
63

2
7

10
:5

2:
07

N
o

36
28

SH
85

2
93

6
7

12
:1

0:
24

N
o

85
48

SI
18

3
39

4
6

8:
22

:3
9

N
o

37
8

Y
30

8
47

3
10

3:
58

:5
8

Ye
s

60
35

J
51

2
71

2
6

4:
45

:4
6

N
o

75
46

SU
43

3
37

5
10

3:
31

:0
6

Ye
s

50
40

ST
12

57
12

00
10

5:
16

:5
2

Ye
s

86
46

KV
12

4
14

2
10

5:
20

:2
5

Ye
s

50
14

VA
35

6
39

1
8

1:
48

:4
1

Ye
s

54
51

Lakshminarayanan & Rao, Cogent Education (2021), 8: 1969880
https://doi.org/10.1080/2331186X.2021.1969880

Page 6 of 14

5. Quantitative analysis of data
From Table 2, we can see that only 50% of students were able to write a program for an authentic
task even with additional instruction. Students, who had prior exposure, needed instruction time of
2 to 5 hours to be able to write a program for an authentic task. We see from the table that
students who do not have prior exposure require between 4 to 15 hours of interaction time. This
data can be used to determine the number of credits to the lab course and the number of students
assigned to an instructor. Even if we assume 6 hours of interaction time per semester per student
on an average, one-credit lab course, which is 2 hours per week, and a 14-week course, a lab
instructor can handle a maximum of five students. In the institution where the study was
conducted, each instructor handles 12 students, which reduces the interaction time to less than
3 hours per student per semester, indicating the need for the management to rethink the
curriculum design for the course.

6. Qualitative data analysis
Ben-Ari (2001) writes that a researcher working from a constructivist viewpoint should use quali
tative methods. The insights obtained from qualitative research are far more helpful than the
research that measures performance alone and then draws conclusions on the success of
a technique. Magrini (2012) defines phenomenology as a philosophical “method/practice” of
observing, recording, and interpreting “lived experience” through vivid and detailed descriptions.
The practice of phenomenology seeks to expose, uncover, or reveal “universal” (transcendental)
elements of human existence that are instantiated within practical, “particular” empirical situa
tions. In this study, the instructor interacted with the students completely on the text chat for
synchronous communication. Each student had between 400 to 2000 interactions with the
instructor and hence capturing the lived learning experience in great detail.

Instructors encounter many contexts repeatedly during the interactions in the extreme apprentice
ship method in introductory programming courses. Since this course happened exclusively on the
text, the chat logs provide rich content for identifying these repeated contexts and also a chance to
reflect upon the way the interaction happened for a given context. In this study, we followed the
coding stages of reflexive thematic analysis for identifying the contexts and classifying the interac
tions. We went through multiple rounds of coding to identify the codes since we had to code each
student resulting in refining the codes and combining the codes. We then classified code into
metacognitive, cognitive and affective domains. The whole process intends to develop a repeatable
reflexive practice. The thematic analysis followed the steps of familiarization, coding and generation
of initial themes by the lab instructor and was refined further when the chat logs of the next student
were coded. We present our understanding based on the themes identified during the coding process.

7. Interactions with the students in metacognitive domain
Table 3 is a summary of codes for interactions related to the metacognitive domain. The most
important cultural shift was moving the student from Understand to Apply (TUVSCONS). From the
prior educational experiences, many of the students believe that understanding a solution
explained by the teacher is the end of learning. Programming falls under apply, analyze, evaluate,
and create cognitive levels Sorva. TUVSCONS interaction happens when a student requests for
a direct answer from the instructor. The instructors get an opportunity to present the constructivist
methods of learning. From the data, we see 10 out of 12 students had this interaction with the
instructor. The time required to write a program is significantly more than understanding and
reproducing the program. This shift leads to many metacognitive, affective, and cognitive domain
interactions with the teacher. The student will now have to plan their learning to accommodate
this additional time requirement from their study time. Table 4 shows chat excerpts related to
understanding versus constructing programs.

A common question that comes to a novice programmer’s mind is when a program is working, why
should they improve it. They do not see the need to modularize, making the programming more
readable, using appropriate data types, indenting the program, or using appropriate loops. One of the

Lakshminarayanan & Rao, Cogent Education (2021), 8: 1969880
https://doi.org/10.1080/2331186X.2021.1969880

Page 7 of 14

major difficulties lies in communicating with the student that the program is wrong even though it
works. Students cannot take the comments as objective comments and need discussion to get the
correct attitude towards code reviews. Whenever an attitude needs to be fixed, it takes additional
interactions and time. Student learning time is extremely precious. They have difficulty understanding
that spending time refining a working solution is not a waste of time and is essential. Table 5 shows
chat excerpts related to working programs versus well-written programs.

Interactions were required to delineate learning for grades and learning to program (TLGVSLL).
Interactions happened with 4 out of twelve students. When the students could not progress as
fast as they would like to, they needed counselling to allot more time (TTIME) and improve their
learning strategies (TMDEBUG). 9 out of 12 students needed interactions with respect to giving
more time to the problem, and three students needed interactions for improving learning
strategies. The students needed to be counselled on peer helping (TPQVSPA) since there was
a general tendency to share the program once they got it working. When there was a lack of

Table 3. Metacognitive interaction with students
Code Metacognitive

Interaction
Number of

Interactions
Number of Students

TUVSCONS Student made aware of
the difference between
understanding programs
and apply.

22 10

TTIME Student should give time
to themselves.

36 9

TWCVSWWC Student made aware of
the difference between
working code and well-
written code.

11 8

TFOCUS Student should focus on
the current difficulty.

8 5

TLGVSLL Student should be aware
of the differences
between learning for
grades versus learning
programming.

5 4

TMDEBUG Student and teacher
reflect on strategy.

7 3

TPQVSPA Helping peer by
questioning vs helping
peer by answering.

6 5

TLISTENING Student having difficulty
receiving.

1 1

TOBEYVSAGREE Student obeying without
questioning.

1 1

TPLAN Student and teacher plan 1 1

TRCN Student reminded to
refer class notes while
solving.

32 11

TREPEAT Student asked to repeat
to improve
understanding.

12 5

TRIN Student asked to read
internet reference to
improve understanding.

6 6

Lakshminarayanan & Rao, Cogent Education (2021), 8: 1969880
https://doi.org/10.1080/2331186X.2021.1969880

Page 8 of 14

conceptual knowledge, students were referred to internet resources (TRIN), and when the
student failed to apply the conceptual knowledge, students were referred to class notes
(TRCN). Students would sometimes shift the focus from the difficulty being discussed and needed
to be asked to focus (TFOCUS). One student was predominantly accepting the instructor’s direct
answers without questioning, and there was one discussion on obeying (TOBEYVSAGREE). When
other instruction methods did not result in progress, we ask the student to repeat (TREPEAT) an
existing program.

Table 4. Chat excerpts related to understanding vs constructing programs
LI: Still, higher levels of construction needs to be
achieved.

LI: If I debug, how will it help you? It is not
a conceptual question. it is just a matter of staying on
the problem and debugging it.

STUDENT: Okie. STUDENT: Well, sir, I couldn’t do it.

LI: Arriving at using arrays to return multiple values
from a function was known but was not applied
without prompting.

LI: You didn’t do it, that you couldn’t is a false
statement.

STUDENT: Okay. STUDENT: Couldn’t, sir.

LI: Copying before modification was known but not
applied.

LI: Didn’t.

STUDENT: I didn’t get that idea. STUDENT: I did try, sir.

LI: There were two new things you understood about
them but not constructed . . . Do you see that in life,
you get only one opportunity to construct?

LI: Didn’t try a sufficient length of time.

STUDENT: Yes sir. STUDENT: One day, sir

LI: Once you have understood, the opportunity to
construct is gone forever and forever, but there are
infinite such opportunities, and you have the
potential.

LI: Next time, two days before giving up.

STUDENT: Yes, sir. STUDENT: Okay, sir.

Table 5. Chat excerpts related to working programs vs well written programs
LI: What is the definition of GCD? Why are you passing
a fraction instead of two numbers?

LI: Name of functions are almost always verbs and
datatypes common nouns.

STUDENT: Greatest common divisor of two numbers.
I have to pass the numerator and denominator. So,
I’m passing the fraction. We can do it no, sir. It works.

STUDENT: Ohh, okay.

LI: Why do you think, I think, you should pass two
numbers, and not the fraction.

LI: Variables are proper nouns.

1. It is nor reusable in a situation where you have to
find the GCD of two numbers, and working code is not
necessarily the best code.

STUDENT: Yes. But is the code right?

2. Most people will think that the GCD function will
take two numbers, so code becomes less readable
when you pass a fraction.

LI: What is right? Working code or well-written code?

STUDENT: Okay. STUDENT: Well written.

LI: Which should I check first, for working code or
well-written code? In the code review, it is always
STUDENT: Okay

Lakshminarayanan & Rao, Cogent Education (2021), 8: 1969880
https://doi.org/10.1080/2331186X.2021.1969880

Page 9 of 14

8. Interactions with students in the cognitive domain
Table 6 is a summary of codes related to the cognitive domain. Table 7 shows the interaction flow
from asking lead questions to direct instruction to help students construct programs. In the actual
instruction, the interactions had many variations. Depending on LI’s perception of the student’s
capability, the interaction flow happened. 518 interactions were direct instruction, and 682 inter
actions were attempts at constructivist approaches to learning. Many interactions resulted in
students resolving their difficulties by themselves.

9. Interactions with students in the affective domain
Table 8 is a summary of interactions in the affective domain. Many of the difficulties can only be
resolved by dealing with the emotions of the student. Initial emotions of fear get resolved once the
student gets familiar with CS0 culture. The need for completion (TNCVSNL) interactions happens
when the student submits the working code and is asked by the LI to improve the code. Students
may find the request unreasonable since it delays completion and hence they need interaction to
make them aware of the emotion. The interactions addressing the need for completion also
happens when a student takes a lot of time to complete the program or has to park a problem

Table 6. Cognitive interactions with students
Code Description Interaction Count
TLQ Instructor asks leading question. 639

TDEBUG Instructor asks the student to
debug the program.

30

TEXPT Instructor asks the student to
perform an experiment.

13

TDQ Instructor asks the student a direct
question.

94

TFIB Instructor asks the student to
answer a fill in the blanks question.

13

TDA Instructor gives a direct answer. 211

TDI Instructor gives direct instruction. 200

Table 7. Sample interactions to illustrate flow of interactions and coding
Message Code
STUDENT:But how to return GCD of the numerator
and denominator of a fraction?

TLQ

LI: What is the value of num and den in the function?

STUDENT: How to assign that? Data type is int. TLQ

LI: For which two numbers are you trying to find gcd
of?

STUDENT: Num and den.

LI: Num and den of what? TDQ

STUDENT: Num and den of number.

LI: Wrong. TDI

STUDENT: I will only tell, sir, wait.

LI: The numerator and denominator of which fraction
in the function.

TDQ

STUDENT:f1

LI:good. TDA

Lakshminarayanan & Rao, Cogent Education (2021), 8: 1969880
https://doi.org/10.1080/2331186X.2021.1969880

Page 10 of 14

for the day. Making students aware of this emotion helps them manage their time objectively.
Table 9 shows the chat excerpts related to need for completion.

When students start learning in a constructivist culture, they may not make progress as fast as they
wish to or as fast as their peers are progressing, and they tend to judge themselves as incapable or
unsuitable for the course wrongly. The students need to be counselled that the brain needs more
experiences to learn (TCOUNSEL) and that it is usual for some students to take a longer time to learn.
Table 10 shows chat excerpts related to counselling.

Table 8. Affective domain interaction with students
Code Description No. of interactions No. of students
TCCVSCS Instructor addressing

students taking
comments on code
personally.

8 3

TCOUNSEL Instructor counselling
students having negative
emotions

12 6

TEMOT Instructor address
student’s need to know
teacher emotions.

3 3

TNCVSNL Instructor addresses
need for completion vs
need for learning.

13 8

TOBJECTIVITY Instructor addresses
need for objectivity.

1 1

TRELATIONSHIP Teacher and student
discuss relationship.

6 3

Table 9. Chat excerpts related to need for completion
LI: So how do you feel when you see that it is not
working?

LI: Can a brain that does not complete a thought ever
program?

STUDENT: Obviously, not happy. STUDENT: But what’s
going wrong, sir

STUDENT: Sir, you give some hint.

LI: The day such errors make you happy is when you
have started loving programming. The day when you
say I am going to solve is when you have started
becoming a programmer.

LI: Don’t you trust your brain? That if it waits, it will
come up with a solution?
STUDENT: Sir, I don’t know.

STUDENT: Siiirrrrr. LI: What is the hurry?
STUDENT: Okay, sir.

LI: You are which branch? LI: Nobody knows, not you, not me. When we start
solving a problem, we don’t know if we can ever solve
it. Getting used to uncertainty is an important
achievement.

STUDENT: Ise. I tried solving it, sir STUDENT: Hmmm.

LI: Change your branch or change your attitude. LI: Anyway, for this course, there are no marks. So we
should give ourselves time to solve it.

STUDENT: But just not able to figure out. LI: But that
should excite you.

STUDENT: Okay, sir

STUDENT: Okay, okay . . . I’ll change my attitude

Lakshminarayanan & Rao, Cogent Education (2021), 8: 1969880
https://doi.org/10.1080/2331186X.2021.1969880

Page 11 of 14

Shyness prevents interaction, and it is overcome by the demand to interact with the teacher. When
there is a fault in the programs, students feel a loss of face with the teacher. There is a need to
address this emotion (TCCVSCS). Consequently, the student spends time defending themselves
(TDEFENSE), and making them aware of this helps them listen better. Students also need reassurance
that the teacher is not angry or disappointed with the student because of the time it takes to
overcome the difficulty(TEMOT). It is often important to reiterate the relationship’s nature, which is
non-judgmental, empathic, and respectful (TRELATIONSHIP). In one interaction, the student had to
choose the right solution overcoming the respect for the teacher (TOBJECTIVITY).

10. Conclusions
The study is in a situated context and culture, and hence the time estimates and the kinds of
interaction are specific to the institution. The result can be generalized to many Indian engineering
institutions which are in a similar context. Though the number of students who participated in the
CS0 course is small, they represent a large class of students.

The number of credits allotted to the course, the learning outcomes of the course, instruction
method and teacher effort should all be aligned for successful implementation of the course. In this
study, it was estimated that synchronous one on one interaction time required for teaching students
to write a program for an authentic task is between 4 hours to 15 hours. When the objective is to write
a program for an authentic task, the instructor will also have to address various metacognitive,
affective and cognitive issues that arise during the course. This study categorizes and lists all the
interactions that happened during the course. The interaction time estimates and list of kinds of
interactions will help the other lab instructors plan and design their instruction.

Funding
The authors received no direct funding for this research.

Author details
Srinivasan Lakshminarayanan1

E-mail: srinirad@gmail.com
ORCID ID: http://orcid.org/0000-0003-2224-4156
N. J. Rao2

1 Department of Computer Science and Engineering, Jain
(Deemed to Be University), Jakkasandra, Ramanagara,
Karnataka, India.

2 Indian Institute of Science, Bangalore, Karnataka, India.

Citation information
Cite this article as: Types and time of interaction for
teaching introductory programming using instruction
method of extreme apprenticeship, Srinivasan
Lakshminarayanan & N. J. Rao, Cogent Education (2021),
8: 1969880.

References
Ben-Ari, M. (2001). Constructivism in computer science

education. Journal of Computers in Mathematics and
Science Teaching, 20(1), 45–73. https://www.learnte
chlib.org/p/8505

Table 10. Chat excerpts related to counselling
STUDENT: I am really sorry, sir. STUDENT: Sir, I am getting angry with myself. I am

not getting anything. I will repeat the program again.

LI: See, it takes so much time not just for you for
everybody.

LI: Listen, two things are very important for you. One,
you should enjoy the learning, and two, you should
accept yourself. If you are not getting it, so be it Is it
because of lack of effort or sincerity?STUDENT: Sorry, sir

LI: Learning is a continuous process. It is not how
many programs you completed. It is how many days
you worked.

STUDENT: But sir, for this, I used to spend more than 3
hrs per day.

STUDENT: Okay, sir.

LI: But you were not communicating. Communication
is important, and different people are different. For
some, it takes three months on one problem, all of
a sudden everything becomes clear, and for some, it
is clear on day one.

LI: Daily, you spend one hour on programming for the
next 6 semesters. You will see the magic.

STUDENT: Fine, sir. STUDENT: Okay, sir.

Lakshminarayanan & Rao, Cogent Education (2021), 8: 1969880
https://doi.org/10.1080/2331186X.2021.1969880

Page 12 of 14

https://www.learntechlib.org/p/8505
https://www.learntechlib.org/p/8505

Campbell, J., Petersen, A., & Smith, J. (2019). Self-paced
mastery learning cs1. In Proceedings of the 50th acm
technical symposium on computer science education
(pp. 955–961). New York, NY, USA: Association for
Computing Machinery. Retrieved from https://doi.org/
10.1145/3287324.3287481

Collins, A. (1991). Cognitive apprenticeship and instruc
tional technology. Educational Values and Cognitive
Instruction: Implications for Reform, 1991, 121–138.

Haatainen, S., Lakanen, A.-J., Isomöttönen, V., &
Lappalainen, V. (2013). A practice for providing
additional support in cs1. In 2013 learning and
teaching in computing and engineering (p. 178-183).
Los Alamitos, CA, USA: IEEE Computer Society.
Retrieved from https://doi.ieeecomputersociety.org/
10.1109/LaTiCE.2013.39

Magrini, J. (2012). Phenomenology for educators: Max van
manen and” human science” research. Philosophy
Scholarship. https://dc.cod.edu/philosophypub/32/.

Mayer, R. E. (2004). Should there be a three-strikes rule
against pure discovery learning? American
Psychologist, 59(1), 14. https://doi.org/10.1037/0003-
066X.59.1.14

McCane, B., Ott, C., Meek, N., & Robins, A. (2017). Mastery
learning in introductory programming. In
Proceedings of the nineteenth australasian computing
education conference vol 804. Springer, Cham.
https://doi.org/10.1007/978-3-319-98872-6_15.

Prather, J., Pettit, R., Becker, B. A., Denny, P., Loksa, D.,
Peters, A., . . . Masci, K. (2019). First things first:
Providing metacognitive scaffolding for interpreting
problem prompts. In Proceedings of the 50th acm
technical symposium on computer science educa-
tion (p. 531–537). New York, NY, USA: Association for
Computing Machinery. Retrieved from https://doi.org/
10.1145/3287324.3287374

Raj, A. G. S., Patel, J. M., Halverson, R., & Halverson, E. R.
(2018). Role of live-coding in learning introductory
programming. In Proceedings of the 18th koli calling

international conference on computing education
research (pp. 1–8). New York, NY, USA: Association
for Computing Machinery. Retrieved from https://doi.
org/10.1145/3279720.3279725.

Rodríguez-Bonces, M., & Ortiz, K. (2016). Using the cogni
tive apprenticeship model with a chat tool to
enhance online collaborative learning. GIST
Education and Learning Research Journal, 13(13),
166–185. https://doi.org/10.26817/16925777.318

Ureel, L. C., & Wallace, C. (2018). Board 156: Enriching
communication in introductory computer science
courses: A retrospective of the agile communicators
project. In 2018 asee annual conference & exposition.
Salt Lake City, Utah: ASEE Conferences. Retrieved
from https://peer.asee.org/29959

Vihavainen, A., Paksula, M., & Luukkainen, M. (2011).
Extreme apprenticeship method in teaching pro
gramming for beginners. In Proceedings of the 42nd
acm technical symposium on computer science edu
cation (pp. 93–98).

Wilcox, C. (2015). The role of automation in under
graduate computer science education. In
Proceedings of the 46th acm technical symposium
on computer science education. New York, NY,
USA: Association for Computing Machinery.
(pp. 90–95). Retrieved from https://doi.org/10.
1145/2676723.2677226.

Xie, B., Loksa, D., Nelson, G. L., Davidson, M. J., Dong, D.,
Kwik, H., Tan, A. H., Hwa, L., Li, M., & Ko, A. J. A theory
of instruction for introductory programming skills.
(2019). Computer Science Education, 29(2–3),
205–253. https://doi.org/10.1080/08993408.2019.
1565235

Yan, L., Hu, A., & Piech, C. (2019). Pensieve: Feedback on
coding process for novices. In Proceedings of the 50th
acm technical symposium on computer science edu
cation (pp. 253–259). New York, NY, USA: Association
for Computing Machinery. Retrieved from https://doi.
org/10.1145/3287324.3287483.

Lakshminarayanan & Rao, Cogent Education (2021), 8: 1969880
https://doi.org/10.1080/2331186X.2021.1969880

Page 13 of 14

https://doi.org/10.1145/3287324.3287481
https://doi.org/10.1145/3287324.3287481
https://doi.ieeecomputersociety.org/10.1109/LaTiCE.2013.39
https://doi.ieeecomputersociety.org/10.1109/LaTiCE.2013.39
https://dc.cod.edu/philosophypub/32/
https://doi.org/10.1037/0003-066X.59.1.14
https://doi.org/10.1037/0003-066X.59.1.14
https://doi.org/10.1007/978-3-319-98872-6_15
https://doi.org/10.1145/3287324.3287374
https://doi.org/10.1145/3287324.3287374
https://doi.org/10.1145/3279720.3279725
https://doi.org/10.1145/3279720.3279725
https://doi.org/10.26817/16925777.318
https://peer.asee.org/29959
https://doi.org/10.1145/2676723.2677226
https://doi.org/10.1145/2676723.2677226
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1145/3287324.3287483
https://doi.org/10.1145/3287324.3287483

© 2021 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.
You are free to:
Share — copy and redistribute the material in any medium or format.
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions

You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Cogent Education (ISSN: 2331-186X) is published by Cogent OA, part of Taylor & Francis Group.
Publishing with Cogent OA ensures:
• Immediate, universal access to your article on publication
• High visibility and discoverability via the Cogent OA website as well as Taylor & Francis Online
• Download and citation statistics for your article
• Rapid online publication
• Input from, and dialog with, expert editors and editorial boards
• Retention of full copyright of your article
• Guaranteed legacy preservation of your article
• Discounts and waivers for authors in developing regions
Submit your manuscript to a Cogent OA journal at www.CogentOA.com

Lakshminarayanan & Rao, Cogent Education (2021), 8: 1969880
https://doi.org/10.1080/2331186X.2021.1969880

Page 14 of 14

© 2021 The Author(s). This open access article is distributed under a Creative Commons
Attribution (CC-BY) 4.0 license.

http://creativecommons.org/licenses/by/4.0/

	1. Introduction
	2. Related work
	3. Instruction design
	4. Method
	5. Quantitative analysis of data
	6. Qualitative data analysis
	7. Interactions with the students in metacognitive domain
	8. Interactions with students in the cognitive domain
	9. Interactions with students in the affective domain
	10. Conclusions
	Funding
	Author details
	References

