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Volume of fluid (VOF) method is a sharp interface method employed for simulations 
of two phase flows. Interface in VOF is usually represented using piecewise linear line 
segments in each computational grid based on the volume fraction field. While VOF for 
cartesian coordinates conserve mass exactly, existing algorithms do not show machine-
precision mass conservation for axisymmetric coordinate systems. In this work, we propose 
analytic formulae for interface reconstruction in axisymmetric coordinates, similar to those 
proposed by Scardovelli and Zaleski (2000) [12] for cartesian coordinates. We also propose 
modifications to the existing advection schemes in VOF for axisymmetric coordinates to 
obtain higher accuracy in mass conservation.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Multiphase flows are ubiquitious in several industrial applications. In the last three decades, there has been a surge in 
the numerical methods and algorithms for simulations of complex multiphase flows. There have been several different types 
of interface capturing strategies that have been proposed for two-phase flows. The most popular of these are the Level set 
method, Volume of Fluid (VOF) method, and Front tracking scheme [1,2]. VOF methods with geometric advection strictly 
conserve the volume of the two phases.

Several improvements have been made since the inception of the method (see Hirt and Nichols [3–8]). The simplest
and earliest representation for interface reconstruction is simple line interface calculation (SLIC) in which the interface 
is approximated by horizontal or vertical lines. Subsequently, piecewise line interface construction (PLIC) was introduced 
where the interface is approximated as a linear line at an angle in the cell [9]. Higher order interface construction has been
proposed (such as Parabolic reconstruction by [4]), but considering the associated computational cost and complexity for 
geometric advection, PLIC is usually preferred.

In PLIC based method the interface is approximated as a line segment given by m.x = a, where m = (mx, my) is the 
unit normal to the interface and a is the line constant. The reconstruction step in VOF methods consists of two steps, 
the computation of m and then the computation of line constant a such that the volume cut by the interface matches 
the volume fraction of the cell. The interface normal is computed using the volume fraction gradient by using an accurate 
gradient computing algorithm like Youngs method [9], a least-squares method (e.g.: (E)LVIRA [7]) or a height function 
method [10]. Another popular method for interface reconstruction is the Moment-of-Fluid (MoF) method [11], which uses 
the volume fraction value of the cell along with the geometric centroids of the individual fluid volumes within the cell 
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to reconstruct the interface. The MoF methods require one to track the advection of the geometric centroids of the fluid 
volumes along with the volume fraction. In the present, work we are primarily interested in the computation of the line 
constant given an interface normal in the frame work of VOF methods. Nevertheless the reconstruction algorithm presented 
in the study is quite generic for structured grids.

Scradovilli and Zaleski [12] proposed analytical formulae for the piecewise linear reconstruction of the interface in carte-
sian coordinates that led to a significant speedup over the earlier iterative schemes. However, for curvilinear coordinates 
(such as axisymmetric coordinate system), the proposed analytical formulae cannot be employed directly. Diot et al. [13]
proposed a semi-analytic formulae for arbitrary convex cells which required the use of Newtons iteration for axisymmetric 
coordinate system. In the present work, we derive similar analytic formulae for axisymmetric coordinates, which result in 
a speedup of ∼ 28 over the iterative counterparts (Brent’s root finding method). Further, we demonstrate that the existing 
interface advection schemes in VOF for axisymmetric coordinates are not strictly mass conserving. In this study, we propose 
modifications to the current operator split algorithms that result in machine-precision mass conservation in axisymmetric 
coordinates. We show the efficacy of the proposed algorithms using several test cases.

The paper is organized as follows. We first present analytical formulae for the interface reconstruction schemes in ax-
isymmetric coordinates in section 2. In section 3, we propose modifications in the existing interface advection algorithm for 
axisymmetric VOF and present test cases to show the efficacy of the scheme. Finally, in section 4, we discuss the important 
conclusions.

2. Interface reconstruction scheme

Interface reconstruction in the volume of fluid (VOF) method requires the volume fraction field. Using the volume fraction 
field, a piece-wise linear or a higher order interface is constructed in a given grid-cell. Interface reconstruction is an integral 
part of the geometric advection schemes to ensure mass conservation property of the VOF method [2]. Initial condition for 
a multiphase flow simulation requires the initial distribution of the volume fraction field, usually provided as an implicit 
function of the spatial coordinates. VOFI library [14] is an open source library to initialize the liquid volume fraction field in 
cartesian coordinate systems accurately. In VOFI, for cells cut by the interface (see Fig. 1), PLIC reconstruction method [9,6]
is employed to approximate the interface as a linear line segment,

m.x = a, (1)

where m is the local normal at the interface, x is a point on the plane, and a is the normal distance of the origin from 
the plane. Analytical relation, given by Scardovelli and Zaleski [12], between the volume fraction and the line constant is 
employed to determine the line constant a. Thus, for two-dimensional and three-dimensional Cartesian coordinate systems, 
VOFI library can be directly employed for accurate assignment of the initial volume fraction field on a given discretized 
domain using an implicit equation of the interface. However, in curvilinear coordinate systems, for a given implicit func-
tion, the piece-wise linear interface constructed from VOFI would require computation of the volume fraction field using a 
formula specific to the curvilinear coordinates. For instance, for axisymmetric coordinate system, the modified Gauss area 
(shoelace) formula for computation of the area of a convex polygon is given by,

V = π

3

∣∣∣∣∣
n∑

i=1

(xi + xi+1) (xi yi+1 − xi+1 yi)

∣∣∣∣∣ (2)

where (xi, yi) for i = 1, ..., n (with xn+1 = x1 and yn+1 = y1) are the coordinates of the vertices of a convex polygon ordered 
counter clockwise as shown in the Fig. 1.

Thus, for initialization of the volume fraction field, C , once we obtain the linear interface in each grid cell using the VOFI 
library, we use the above formula to compute the volume, V , and assign volume fraction in each grid cell as,

C = V

2πrc�x�y
. (3)

Here rc is the distance of the center of the cell from the axis of symmetry, and �x and �y are the grid-cell sizes in the 
radial (r) and axial (y) directions, respectively. We note that the above procedure is followed essentially to minimize the 
error in the volume-fraction during initialization. To illustrate this, we initialize a torus of minor radius rt = 0.25 and major 
radius r = 0.50 in the center of a computational domain of size 1 × 1 as shown in the Fig. 2. The volume of the torus can be 
analytically computed as Vt = 2π2rr2

t , where the major radius, r, is the distance to the center of the torus from the axis of 
symmetry. We compare the results for initialized volume for various grid sizes by computing the relative error with respect 
to volume obtained using analytical formula, given in Table 1.

Thus, we have shown that for curvilinear coordinates volume fraction field can be initialized up to machine accuracy. 
Now, we derive an analytic relation for PLIC reconstruction for axisymmetric coordinates on the lines of Scardovelli and 
Zaleski [12]. We use Youngs method [9] to get the interface normal (m in equation (1)) from fluid-1 (C = 1) to fluid-2 C = 0
and is given by m = −∇C/|∇C |. To complete the PLIC interface reconstruction for a given C , in addition to the normal m, 
2
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Fig. 1. Coordinates of the vertices of a simple polygon cut by the interface ordered counter clockwise. Here x3, y3 and x4, y4 represents the end points of 
the PLIC line segment with interface normal m and line constant a.

Table 1
Results for relative error in volume during initializa-
tion of a torus of radius, rt = 0.25, for different grid 
sizes.

Relative error in volume: E = |V −Vt |
Vt

Grid Current Solver

16 × 16 5.4 × 10−16

32 × 32 7.1 × 10−16

64 × 64 1.8 × 10−16

128 × 128 5.4 × 10−16

Fig. 2. Reconstructed interface for 16 mesh points of a torus of radius rt = 0.25 and major axis r = 0.50 initialized at the center of 1 × 1 domain where 
reconstructed PLIC line segments for each mixed cell is depicted.

we also need to obtain the line constant, a, which is the normal distance of the interface from one of the vertices of the 
computational cell. In what follows, we present a methodology to get the line constant (a) analytically for a given interface 
normal vector and the volume fraction of a mixed cell.

As discussed in [12], using an analytical relation between the volume fraction (C ), interface normal (m) and the line 
constant (a), we can implement an i f − else − i f − end − i f construct to determine the line constant, a. This approach 
is computationally much more efficient compared to the alternative iterative approach to get the line constant. Given the 
equation of the interface, m1x + m2 y = a, all combinations of m1, m2 (such that m2

1 + m2
2 = 1) can be reduced to one of the 

cases shown in Fig. 3, either by changing the origin or by changing the reference fluid from fluid-1 to fluid-2, such that 
both m1 and m2 are positive and the left bottom corner of the mixed cell under consideration is contained in fluid-1. Fig. 3
shows all the possible configurations for interface arrangement with m1 ≥ 0 and m2 ≥ 0.
3
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Fig. 3. Various cases which can arise in the standard configuration of the interface with m1, m2 ≥ 0 and fluid 1 is occupying the bottom left corner of the 
cell.

We first discuss Case A shown in the Fig. 3 and similar procedure can be followed to obtain relations for other cases. For 
the axisymmetric coordinate system, the shaded area shown in the Fig. 3 for Case A is given by,

V = π

3
(x0 + x2)

3 m1

m2
− π

3
(x0 + x1)

3 m1

m2
− πx2

0 y1. (4)

Using the equation of line m1x + m2 y = a we have x1 = a/m1 − (m2�y)/m1 and x2 = a/m1. In the present study, we 
assume �x = �y, but the same analysis can be easily extended for �x �= �y. Substituting x1 and x2 in the equation (4) and 
collecting the terms in powers of a, we obtain,(

π�y

m2
1

)
a2 +

(
−πm2�y2

m2
1

+ 2π�yx0

m1

)
a +

(
πm2

2�y3

3m2
1

− π�y2m2x0

m1

)
= V . (5)

Thus, we have an analytical relation between the volume and the line constant a. We note that the above relation holds true 
only when the interface cuts through the top and the bottom edges of the cell shown for Case A in Fig. 3: (x2 − x0) ≤ �x, 
y1 = �y and y2 = 0. These conditions yield the bounds on the values of a: m2�y ≤ a ≤ m1�x. Substituting the above 
bounds for a in the equation (5), yield the bounds on the limiting volumes:

V 1 = π�y
(
3�x2m2

1 + 3�xm1 (2m1x0 − �ym2) + �ym2 (�ym2 − 3m1x0)
)

3m2
1

, (6)

and

V 2 = π�y2m2 (�ym2 + 3m1x0)

3m2
1

(7)

For a given volume fraction C and interface normal (m1, m2), the volume occupied by fluid-1 in the configurations shown 
in the Fig. 3 is given by: V = 2πr�x�yC where r = x0 + �x/2 is the distance from the axis of symmetry to the cell center. 
If V 1 ≤ V ≤ V 2 then the analytical relation given by equation (5) can be used to determine the line constant a. For the 
quadratic equation in a given by equation (5), we note that only one of the roots will satisfy the required bounds on a
for case A. For cases B and C, we obtain cubic equations that can be solved for a using Cardano’s formula or using Brent’s 
method to find the appropriate root with necessary bounds for the line constant. Following the same approach we can get 
bounds on volume for case D as:

V 3 = π�y2 (−2�ym1 + 3�ym2 − 3m1x0 + 6m2x0)

3m2
(8)

and

V 4 = π�y2m1 (�y + 3x0)

3m2
. (9)

Fig. 4 shows all the possible configurations of the interface and the volume bounds which separate each case as the 
interface normal in radial direction varies from minimum to a maximum. Fig. 4 clearly shows that the various bounds for 
the cases shown in Fig. 3 do not overlap and provide a unique criterion for computing the line constant a. Thus, we can use 
the following algorithm to classify each case.

We list below the analytical relation between the line constant (a) and the volume (V ) for each case:

Case A(
π�y

m2

)
a2 +

(
−πm2�y2

m2
+ 2π�yx0

m1

)
a +

(
πm2

2�y3

3m2
− π�y2m2x0

m1

)
= V . (10)
1 1 1

4



A. Mohan and G. Tomar Journal of Computational Physics 446 (2021) 110663
Fig. 4. Bounds for different cases shown in Fig. 3 as a function of the x-component of the interface normal, m1. The interfacial cell is placed at a distance 
of 1 from the axis of symmetry with �x = �y = 1. The total volume of the cell is Vcell = 2π given by the top boundary in the plot.

Data: V , m1

Result: Identification of the case in which the standard interface belongs to.
if m1 ≥ 1√

2
then

if V ≥ V 1 then
Case B

else if V ≤ V 2 then
Case C

else
Case A // V 1 > V > V 2

end
else

if V ≥ V 3 then
Case B

else if V ≤ V 4 then
Case C

else
Case D // V 3 > V > V 4

end
end

Algorithm 1: Classification of the standard case of the reconstructed interface where m1,m2 ≥ 0.

Case B

−
(

π

3m2
1m2

)
a3 +

(
π�y

m2
1

− πx0

m1m2

)
a2 +

(
π (�y + x0)

2

m2
− πm2�y2

m2
1

+ 2π�yx0

m1
− πx2

0

m2

)
a

+
(

−π�y (�y + x0)
2 m1

m2
+ πm2

2�y3

3m2
1

− π�y2m2x0

m1
− πm1x3

0

3m2
+ πm1 (�y + x0)

3

3m2

)
= V

(11)

Case C(
π

3m2
1m2

)
a3 +

(
πx0

m1m2

)
a2 = V (12)

Case D

a = 2π�y3m1 + 3π�y2m1x0 + 3m2 V

3π�y (�y + 2x0)
(13)

We note here that the other cases can be readily transformed into one of the cases listed in the Fig. 3 by either changing 
the fluid (by using (1 − C ) instead of C to compute the volume and inverting the interface normal m) or by changing the 
origin (keeping the location of the axis-of-symmetry same but inverting its direction).

We now compare the above described analytical method with the iterative method for finding the line constant for the 
case A given in Fig. 3. The relative error in the line constant is given in Table 2 for the analytical and iterative methods 
with different tolerances. We note that the iterative method to reach an error with a tolerance of 10−8 is about 28 slower 
compared to the analytical method.
5
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Table 2
Relative error in line constant a and the ratio of CPU time required by iterative method (Brent’s algorithm) to 
that required by analytical method for 10000 repetitions for case A shown in Fig. 3 for different tolerances used 
in the iterative method.

Comparision between analytical and iterative reconstruction methods

Method Tolerance Relative Error titerative/tanalytical

Analytical − 0 1
Iterative 1.0 × 10−4 1.8 × 10−4 14.2
Iterative 1.0 × 10−6 1.1 × 10−6 21.2
Iterative 1.0 × 10−8 6.7 × 10−11 28.3

Once the line constant, a, is obtained, the position of the endpoints of the linear approximation of the interface can be 
computed thus completing the construction of a planar interface in a given computational cell. As discussed earlier, this 
more precise description of the interface within the grid cell allows geometric advection which gives the VOF method its 
strict mass conservation property while maintaining a sharp interface.

In what follows, we discuss an operator split algorithm for the geometric advection of the interface in axisymmetric 
coordinates. We note that the straightforward extension of the 2D cartesian algorithm does not yield accurate results, as 
also indicated by the results obtained from the existing open source codes.

3. Advection of the interface

We present here a scheme for accurate geometric advection of the volume fraction in the axisymmetric coordinates. 
We have used a uniform grid to describe the variables with volume fraction being stored at the cell centers (Ci, j ). The 
incompressible fluid flow is determined by the velocity field which is defined at the cell faces (ui+1/2, j , vi, j+1/2). Here, 
u denotes the radial direction velocity and v is the axial velocity. The velocity field satisfies the discrete divergence free 
condition given by:

(ru)i+ 1
2 , j − (ru)i− 1

2 , j

ri�x
+

vi, j+ 1
2

− vi, j− 1
2

�y
= 0. (14)

Motion of the interface is governed by the advection equation for the volume fraction field,

∂C

∂t
+ u · ∇C = 0 (15)

For incompressible fluids, conservation of the individual volumes of the two fluids results in the conservation of mass. 
In the volume of fluid method, geometric advection of the volume fraction field is employed instead of using a higher 
order scalar advection scheme to solve equation (15) since it limits the diffusion of volume fraction field thus maintaining 
a sharp interface and at the same time ensures the conservation of mass to high degree of accuracy [2]. Given a volume 
fraction field, reconstructed interface and solenoidal velocity field, we can solve the equation (15) using an operator splitting 
algorithm consisting of an r-sweep and a y-sweep following [15]. In order to employ an operator splitting algorithm, the 
advection of the interface (equation (15)), using ∇ · u = 0, can be written as:

∂C

∂t
+ ∇ · (uC) = C(∇ · u). (16)

The RHS in equation (16) is the dilatation term or the divergence correction term and is needed in an operator split 
approach since in each step of an operator split algorithm the volume fraction C is advected first in one direction and then 
in the other direction(s). The discrete divergence term or the dilatation term is included in the formulation since in each 
step of an operator split algorithm the volume fraction C is advected in a one dimensional flow which is not divergence 
free. Given a volume fraction (Cn

i, j ) and velocity field (un
i+1/2, j, v

n
i, j+1/2) at the nth time step, the discretized equation (16)

is given by,

Cn+1
i, j = Cn

i, j + �t

ri, j�x

(
δV i−1/2, j − δV i+1/2, j

) + �t

�y

(
δV i, j−1/2 − δV i, j+1/2

)+

Cn
i, j

(
�t

ri, j�x

(
ri+1/2, ju

n
i+1/2, j − ri−1/2, ju

n
i−1/2, j

)
+ �t

�y

(
vn

i, j+1/2 − vn
i, j−1/2

)) (17)

where δV i+1/2, j = (ruC)n
i+1/2, j is the amount of volume fraction fluxed through the right cell face. Similarly, fluxes 

δV i−1/2, j, δV i, j+1/2 and δV i, j−1/2 can be computed for other cell faces.
6
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Using operator splitting, we can split the above equation as follows:

C∗
i, j = Cn

i, j + �t

ri, j�x

(
δV i−1/2, j − δV i+1/2, j

) + Cc
i, j

(
�t

ri, j�x

(
ri+1/2, ju

n
i+1/2, j − ri−1/2, ju

n
i−1/2, j

))
(18)

Cn+1
i, j = C∗

i, j + �t

�y

(
δV i, j−1/2 − δV i, j+1/2

) + Cc
i, j

(
�t

�y

(
vn

i, j+1/2 − vn
i, j−1/2

))
(19)

where C∗
i, j is the intermediate value of the volume fraction. Here, Cc

i, j is a function based on which we can get different 
operator splitting approaches. If Cc

i, j = C∗
i, j then we get Sussman and Puckett’s operator split approach [15]. An implicit 

scheme is used in the first direction and an explicit scheme in the second direction to maintain the conservation of volume 
fraction [16]. The order of sweep of direction is alternated every timestep [17] (“Strang spliting”) to achieve second order 
accuracy in time.

If we use,

Cc
i, j =

{
1 Cn

i, j ≥ 0.5
0 Cn

i, j < 0.5
(20)

where Cc
i, j depends only on the previous time step value of volume fraction we get the axisymmetric form of Weymouth 

and Yue’s operator split approach [18]. This method is explicit in both the sweep directions. For an operator split method 
to be strictly conservative it has to fulfill, following Weymouth and Yue [18], a set of concurrent requirements,

1. The volume flux terms are conservative, and
2. the dilatation term sums to zero, and
3. no clipping or filling of a cell is needed to impose 0 ≤ C ≤ 1.

Using geometric advection (described below) for volume fluxing and a divergence free velocity field, both Sussman and 
Puckett’s and Weymouth and Yue’s methods satisfy the first two requirements. Sussman and Puckett’s method does require 
clipping or filling of a cell to impose 0 ≤ C ≤ 1 and therefore is not strictly conservative. However the mass conservation 
errors introduced in this method are small and thus it has been widely adopted previously. Weymouth and Yue [18] proved 
that, by imposing a grid Courant number restriction of,

�t
N∑

d=1

∣∣∣∣ ud

�xd

∣∣∣∣ <
1

2
(21)

in their method one can satisfy the third requirement for the operator split approach to be conservative. Here N is the 
number of sweep directions and ud and �xd are the maximum velocity and grid size in each of those directions. Thus 
by using Weymouth and Yue’s operator splitting approach we can preserve the mass exactly when advecting the volume 
fraction field.

The volume flux through cell faces, δV cell− f ace , is computed geometrically. Consider the schematic in Fig. 5, where the 
shaded region shows the volume of fluid-1 in the cell to be fluxed through the right face (δV i+1/2, j). Considering the face 
velocity (ui+1/2, j) to be positive, the flux can be computed as,

δV i+ 1
2 , j = (ru)i+1/2, j V

2πr�r�y
(22)

where V is the volume of fluid 1 fluxed through the right face (shown as the shaded region in Fig. 5), �r is the distance 
in the radial direction which contains the volume advected in this timestep and r is the distance to the center of this 
volume from the axis of symmetry. Here the volume V depends on the orientation of the interface. We can calculate �r by 
considering the conservation of volume fluxed through the right face and solving the resulting quadratic equation, which 
yields, �r = ri+ 1

2 , j −
√

r2
i+ 1

2 , j
− 2ri+ 1

2 , jue�t . Using the section of the piece-wise reconstructed interface lying in the volume 

to be fluxed through the cell-face over �t time-step and employing the Gauss area formula, given by equation (2), we can 
calculate the volume cut by this region.

The above small correction in computing �r along with the accurate Gauss formula for axisymmetric simulations allows 
us to improve upon the existing volume fraction advection schemes. Existing schemes [15] modify the velocity in 2D
algorithms by using ru for velocity field and use 2D geometric advection scheme which results in a third order error 
(O (�t2h)), where h is the grid size and �t is the timestep) in mass conservation. To illustrate this geometric fluxing error, 
consider the radial advection of the volume fraction field for a full cell (C = 1) as shown in Fig. 6. The shaded region 
represents the volume advected through the right face of the cell with a radial cell face velocity ue .

The existing schemes compute the volume as V c = 2π(re − ue�t
2 )(ue�t)�y, where re is the distance of the east cell 

face from the axis of symmetry, �t is the timestep, and �y is the height of the cell. Whereas, the proposed scheme yields 
7
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Fig. 5. The fluxed volume through the right face of the cell when ui+1/2, j is positive.

Fig. 6. The shaded region is the volume advected through the east cell face in a single timestep.

the exact volume, V = 2π(re − �r
2 )�r�y with �r = re −

√
r2

e − 2reue�t . Thus, the error in volume calculation is given by, 
E = π(ue�t)2�y.

We validate the proposed modifications with the following test cases and compare with the results obtained using the 
open source multiphase flow solver Gerris [19] which uses a simpler extension of the cartesian operator split approach for 
geometric fluxing.

3.1. Advection of a torus

In this test case, a torus of radius 0.25 is initialized at (0.35, 0.5) in a computational domain of size (2.0, 1.0). The torus 
is advected under the steady state velocity of u = 0.1/r for r > 0.05 and v = 0, where r is the distance from the axis of 
symmetry. The fluid is advected forward in time t = 7.8125 and then the velocity is reversed so as to advect the fluid 
backwards in time till time t = 15.625. In order to illustrate the effect of accurate geometric fluxing, we advect the torus 
using Sussman and Puckett’s method for a grid Courant number of 1 and compare the results with that obtained using 
Gerris flow solver. For a grid size of �x = �y = 1/128, this results in a time step of �t = 0.0078125. Thus the fluid is 
advected a 1000 timesteps forward in time and then backwards. As seen from the Fig. 7, after 1000 timesteps the torus 
is highly compressed during the advection as less area (due to axisymmetry) occupies the same volume as we move away 
from the axis of symmetry. We note that the final interface shape matches very well with the initial position of the torus, 
thus validating our algorithm.

The relative error in the volume between the initial and final distribution of fluid-1 for various number of forward and 
backward advection time steps is given in Table 3. The corresponding relative change in the volume obtained for the same 
test case simulated using Gerris flow solver is also given for comparison. We note that the error obtained from the present 
schemes is highly accurate in comparison to those obtained from Gerris (Table 3).

We repeat this test for different Courant numbers using both Sussman and Puckett’s and Weymouth and Yue’s advection 
schemes and compare the results with those obtained using Gerris flow solver. Table 4 gives the relative error in volume 
8
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Fig. 7. Interface shape after 1000 time steps forward and backward after advecting the torus of radius 0.25 with a grid Courant (CFL) number of 1 advected 
using Sussman and Puckett’s method for grid Courant number of 1.

Table 3
Results for relative error in the volume for a torus of radius 0.25 advected in radial 
direction forward and backward in time for different number of timesteps.

Relative error in volume

Number of timesteps Current Solver 
(Sussman and Puckett)

Gerris Solver

1 5.2 × 10−15 1.1 × 10−5

10 2.9 × 10−14 7.2 × 10−5

100 4.8 × 10−13 2.1 × 10−4

1000 3.4 × 10−10 3.8 × 10−4

Table 4
Results for relative error in the volume for a torus of radius 0.25 advected in radial direction forward and back-
ward in time for different grid Courant numbers.

Effect of Courant number on relative error in volume

Grid Courant number Gerris Solver Current Solver 
(Sussman and Puckett)

Current Solver 
(Weymouth and Yue)

0.1 9.5 × 10−5 1.4 × 10−9 1.9 × 10−12

0.2 3.9 × 10−6 1.9 × 10−10 2.4 × 10−12

0.3 1.3 × 10−4 7.1 × 10−11 2.6 × 10−13

0.4 2.4 × 10−4 1.0 × 10−10 2.5 × 10−15

for various grid Courant numbers. We observe that using Weymouth and Yue’s operator splitting approach along with the 
interface reconstruction algorithm presented we can obtain machine accurate volume conservation. We observe a small 
increase in error as Courant number decreases which can be attributed to the large number of time steps which result in a 
larger number of interface reconstruction events thus leading to larger error accumulation.

As suggested by Kothe et al. [20], simple linear advection test cases do not reveal the efficacy of advection algorithms 
appropriately. Thus, we further test the efficacy of the algorithm by subjecting it to a more severe test case of advection 
of a torus in a Hill’s vortex [21] with a superimposed radial velocity field which results in a divergence free velocity field 
upto machine-precision. This is axisymmetric equivalent of the circle in a vortex test case for 2D cases [20]. For this velocity 
field, the interface undergoes strong topological changes including fragmentation and merging due to strong shear effects. A 
torus of radius 0.1 is initialized at (0.2, 0.8) in a computational domain of size (1.0, 1.0) with L = 0.5. The fluid is advected 
under highly strained steady state velocity field given by (for r ≥ 0.05)

u = 0.1
(

r
L

(y−L)
L

)
+ 0.05

r (23)

v = 0.1

[
1 −

(
y−L

L

)2 − 2
( r

L

)2
]

. (24)

The fluid is advected forward in time t = 4.0 and then the velocity is reversed so as to advect the fluid backwards in 
time till time t = 8.0. For a grid size of �x = �y = 1/128, and grid Courant number of 0.1 this results in a time step of 
�t = 1.0 × 10−3. The fluid is advected 4000 timesteps forward in time and then the velocity is reversed to advect 4000
timesteps backwards in time.
9
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Fig. 8. Interface shape after 4000 time steps forward and backward after advecting the torus placed in a vortex using Weymouth and Yue’s operator split 
approach for a grid Courant number of 0.1.

Table 5
Results for relative error in volume for a torus of radius 0.1 placed in a complex velocity field advected forward and backward in time for different grid 
Courant numbers.

Effect of Courant number on relative error in volume

Grid Courant number Gerris Solver Current Solver 
(Sussman and Puckett)

Current Solver 
(Weymouth and Yue)

0.1 2.7 × 10−4 3.5 × 10−8 2.7 × 10−12

0.2 1.6 × 10−4 3.4 × 10−7 2.2 × 10−15

0.3 8.1 × 10−5 7.6 × 10−7 4.1 × 10−15

0.4 5.4 × 10−4 4.2 × 10−6 1.9 × 10−15

Fig. 9. Interface shape after every 1000 time steps compared against the trajectories of Lagrangian marker particles for simulation using a grid Courant 
number of 0.1 using Weymouth and Yue’s operator splitting approach.

As seen from Fig. 8 after 4000 timesteps the shape of the interface is highly distorted due to highly strained velocity 
field. The final interface shape matches very well with the initial position of the toroid thus validating our algorithm.

We repeat this test for different Courant numbers using both Sussman and Puckett’s and Weymouth and Yue’s advection 
schemes and compare the results with those obtained using Gerris flow solver. Table 5 gives the relative error in volume 
for various grid Courant numbers. We observe that relative error using Sussman and Puckett’s operator splitting approach 
is an order smaller compared to the results from Gerris flow solver even for larger number of time steps. Using Weymouth 
and Yue’s scheme we observe machine accurate volume conservation.
10
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Fig. 10. Interface shape after time t = 1. The interface is flattened against the top wall and stretched due to the underlying velocity. Even when the 
cross-sectional area changes the volume of the toroidal bubble is maintained very accurately.

Table 6
Results for relative error in the volume for a bubble in stagnation point flow for t f inal = 1.0 for different tolerance of Pressure-Poisson solver for both 
Sussman and Puckett’s and Weymouth and Yue’s advection methods.

Tolerance of 
Poisson Solver

Divergence of 
velocity field

Relative error
(Sussman and Puckett)

Relative error
(Weymouth and Yue)

1.0 × 10−4 1.1 × 10−4 1.1 × 10−4 2.3 × 10−5

1.0 × 10−6 5.1 × 10−5 1.1 × 10−6 1.5 × 10−6

1.0 × 10−8 2.6 × 10−7 2.5 × 10−6 2.3 × 10−9

1.0 × 10−10 2.67 × 10−9 2.6 × 10−6 4.8 × 10−10

1.0 × 10−12 1.5 × 10−11 2.6 × 10−6 1.7 × 10−11

1.0 × 10−14 7.5 × 10−13 2.6 × 10−6 1.4 × 10−11

In order to illustrate the accuracy of the reconstructed interface we populate the initial interface position with Lagrangian 
marker particles and advect them with the underlying velocity with a fifth order accurate time integrator [22] for time 
t = 4.0. We compare the final positions of the marker particles with that of the advected interface using Weymouth and 
Yue’s advection scheme and for a grid Courant number of 0.1. The Lagrangian marker particles match the position of the 
reconstructed interface very well as shown in Fig. 9 thus demonstrating the efficacy of the algorithm.

3.2. Bubble in a stagnation point flow

In this test case we implement the VOF algorithm presented in this paper for a more complex flow. We solve Navier-
Stokes equations in one fluid form given by:

ρ(C)

(
∂u

∂t
+ u.∇u

)
= −∇p + ∇ · [μ(C)

(
∇u + (∇u)T

)] + ρ(C)g + fγv (25)

where u and p are the velocity vector and pressure, respectively, ρ(C) and μ(C) are the fluid density and viscosity which 
are a function of volume fraction field, C . We use Chorin’s projection method [23] to solve the above equation (25) where 
we discretized the advection term using a second order ENO scheme [24] and the diffusion terms using central differencing. 
Surface tension forces, fγv are acting only at the interface and have been modeled as volumetric body force using the 
continuum surface force model of Brackbill, Kothe, and Zemach [25]. The interface is captured using CLSVOF algorithm given 
by Sussman and Puckett [15]. This algorithm is mass conserving and calculates the curvature and surface normal with high 
accuracy which is used for surface tension force calculation. The interface is advected by solving the advection equations for 
level-set function, φ, and volume fraction, C . We initialize a toroidal bubble of radius 0.1 at (0.2, 0.5) in a computational 
domain of unit size, 1 × 1. The bottom boundary has an inlet velocity of unity in the upward axial direction and the right 
boundary has outflow boundary conditions. The top boundary acts as a rigid wall with no-slip and impermeable surface. 
The density ratio and viscosity ratio is 10 with the Laplace number of the bubble, La = ρDσ

μ2 = 0.048. The incoming axial 
velocity drags the bubble and flattens it against the top wall, stretching it in the axial direction considerably (see Fig. 10). 
Even though the fluid interface undergoes drastic change in its shape, the volume is conserved with a high degree of 
accuracy.

An accurately computed divergence free velocity field is essential for accurate volume conservation in VOF advection. In 
numerical simulations of incompressible multiphase flows using projection method, this is achieved by solving a pressure 
Poisson equation to a high degree of accuracy by setting a small tolerance value for solving the matrix system. The order 
11
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of error in the divergence free condition for velocity is of the order of the set tolerance value. Solving Poisson equation is 
the most expensive step in the entire simulation [2], thus studying the effect of limiting tolerance for Poisson solver on 
the conservation of volume in VOF methods is relevant to determine the accuracy of the simulation. Using the above test 
case for a grid size of 1

128 and time step of 5.0 × 10−4, we study the effect of accuracy of discretized velocity field in mass 
conservation of the two VOF advection schemes presented in this paper. The divergence of the velocity field is the sum of 
each discretized value of divergence of velocity at the cell center given by (14) for each computational cell.

Table 6 gives the effect of divergence of discretized velocity field in volume conservation for VOF advection schemes. 
Sussman and Puckett’s operator split approach results in fairly uniform error in volume conservation for lower tolerances 
since the error due to clipping and filling of the cells to maintain the boundedness of volume fraction field contributes the 
most to the error. As the divergence free nature of the velocity field deteriorates the error in volume conservation scales 
down with the tolerance. Due to the very small grid Courant number used in the simulation even for a highly divergence 
free velocity field there is small error in the volume conservation when Weymouth and Yue’s operator splitting method is 
employed. The relative error scales uniformly with the tolerance and is better than Sussman and Puckett’s method.

4. Conclusions

In the present work, we have presented several improvements for the implementation of volume of fluid method in 
axisymmetric coordinates. We have presented analytical relations for the reconstruction of piecewise linear interface in ax-
isymmetric coordinates similar to those given by Scardovelli and Zaleski [12] for cartesian coordinates. The proposed scheme 
substantially reduces the computational cost in comparison to the iterative schemes usually employed for the reconstruc-
tion. Further, we showed that for axisymmetric coordinate system, machine-precision advection of volume fraction field 
can be achieved. We illustrated the improvements by comparing the results with the popular open source multiphase flow 
solver Gerris. Finally, we would like to note that similar modifications in the advection scheme for volume of fluid method 
in other curvillinear coordinate systems (such as elliptic coordinates) can be derived using the approach presented in this 
work.
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