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Abstract This tutorial review paper consolidates the existing applications of the power watershed (PW)
optimization framework in the context of image processing. In the literature, it is known that PW frame-
work when applied to some well-known graph-based image segmentation and filtering algorithms such as
random walker, isoperimetric partitioning, ratio-cut clustering, multi-cut and shortest path filters yield
faster yet consistent solutions. In this paper, the intuition behind the working of PW framework, i.e.
exploitation of contrast invariance on image data is explained. The intuitions are illustrated with toy
images and experiments on simulated astronomical images. This article is primarily aimed at researchers
working on image segmentation and filtering problems in application areas such as astronomy where images
typically have huge number of pixels. Classic graph-based cost minimization methods provide good results
on images with small number of pixels but do not scale well for images with large number of pixels. The
ideas from the article can be adapted to a large class of graph-based cost minimization methods to obtain
scalable segmentation and filtering algorithms.

1 Introduction

Machine vision applications are diverse ranging from
segmentation, filtering, object detection, object local-
ization, instance segmentation, semantic segmentation,
image classification, image captioning, image recon-
struction, etc. [49]. Image segmentation and filter-
ing form the building blocks of many machine vision
tasks. Historically, energy-based or cost minimization-
based approaches have been popularly used to solve
image segmentation and filtering. The cost functions
are designed such that the minimizers yields desired
results. Also, the cost functions are constructed to
incorporate an inductive bias in images namely trans-
lation invariance. In the context of image classifica-
tion, translation invariance means—if object(s) in an
image are vertically or horizontally translated within
the image, this image is still expected to be classi-
fied as the same category (or set of categories). CNNs
takes this approach to the next level, by allowing many
parameters to be learned by gradient descent, with the
very same cost function, and allowing the system to
compute parameters that are otherwise difficult to pre-
dict or to tune. Some works additionally capitalize on

a e-mail: laurent.najman@esiee.fr (corresponding author)

rotation invariance by augmenting the training datasets
with customized rotations. This helped to improve the
performance of the cost minimization-based approaches
further.

One of the less exploited aspects of image data is
that of contrast invariance. Intuitively, it is clear that
a human eye perceives the same set of objects in an
image even if the contrast of the image is changed (see
Fig. 1). In fact, the object boundaries are also expected
to be intact when the contrast of the image is altered.
An obvious question arises—how does one exploit the
contrast-invariance nature of solutions to image pro-
cessing tasks? In this article, we provide an answer to
this question in the context of image segmentation and
image filtering. We revisit the power watershed (PW)
framework [39] and show that this optimization frame-
work provides a formalism to impose the constraint that
the solutions are contrast-agnostic. It is well known that
an application of PW to classic graph-based cost min-
imization methods results in high-quality approxima-
tion solutions to the cost minimization problem [1,10–
12,17,18,21–23,54–56]. In other words, PW exploits
contrast-agnostic nature of solutions and allows one to
apply classic graph-based cost minimization methods to
images with very large number of pixels which were oth-
erwise prohibited by computational constraints. In par-
ticular, astronomical images which have a huge number

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjs/s11734-021-00264-0&domain=pdf
mailto:laurent.najman@esiee.fr


2338 Eur. Phys. J. Spec. Top. (2021) 230:2337–2361

Fig. 1 Left: An image from the Weizmann 1-object
database [2]. Right: Enhanced contrast of the image on
left. Observe that the object boundaries are not expected to
change even in the contrast enhanced image. One expects
that a segmentation method applied on either of these
images yields the same result

of pixels can be segmented and/or filtered with graph-
based cost minimization methods using PW framework.

Recall that image segmentation and filtering form the
building blocks of many image processing applications.
Image segmentation and image filtering are typically
used either as a pre-processing or a post-processing
step depending on the machine vision task at hand.
Image segmentation is an ill-posed problem. The goal
of image segmentation is to cluster pixels in an image
such that the clusters are ‘close’ to the clusters obtained
by a domain expert w.r.t. some standard measures that
compare closeness of clusters. Typically, each cluster
obtained by a domain expert contains pixels only from
one object and the number of clusters are usually much
smaller when compared to the total number of pix-
els in the image (see Fig. 2 for a segmentation of an
image obtained by a domain expert using two labels).
Image filtering is another closely related ill-posed prob-
lem. Image filtering is the process of magnifying cer-
tain details while suppressing the others. Informally,
image filtering can be interpreted as summarizing the
content of an image by removing redundant details.
For example, in Fig. 2, to identify the object bound-
aries, details such as feathers are irrelevant and can be
ignored. Although, in this article, we deal with only
image segmentation and image filtering problems spe-
cific to 2D images, the techniques we present are generic
and can be applied to any kind of image data.

Recall that a 2D digital image consists of a finite
number of pixels. Each pixel represents a small phys-
ical area and typically these pixels are square shaped.
To each pixel, one associates a scalar or vector that
represents the average intensity/color reflected by the
corresponding area. A 2D digital image of dimensions
M × N is thus a matrix of scalar/vector-valued entries
with M rows and N columns.

I : {0, 1, . . . ,M − 1} × {0, 1, . . . , N − 1} → Zρ, (1)

where Z is a discrete set consisting of non-negative real
numbers and and ρ denotes the number of bands (ρ = 1
in case of greyscale images and ρ = 3 in case of color
images). However, in this article, we use edge-weighted
graphs to model images and work with those models

instead of Eq. 1. This is because local changes such
as gradients that provide information on object bound-
aries can be captured using the edge weights. Recall
that a gradient is a dissimilarity measure between
neighbouring pixels. A 2D image is represented as a
4-grid graph or a 4-adjacency graph (Von Neumann
neighborhood) with vertices representing the pixels and
the edge weights reflecting a similarity/dissimilarity
between neighbouring pixels. Formally, if I is an image
of dimensions M × N , we have GI = (V,E,W ) where
V , the set of vertices represents the pixels, i.e.

V = {(i, j) : 0 ≤ i ≤ M − 1, 0 ≤ j ≤ N − 1} , (2)

the set of edges are given by

E =
⋃

0≤i≤M−1,0≤j≤N−1

Eij (3)

Eij = {{(i′, j′), (i, j)} : |i − i′| + |j − j′| = 1
and 0 ≤ i′ ≤ M − 1, 0 ≤ j′ ≤ N − 1}, (4)

for each 0 ≤ i ≤ M−1, 0 ≤ j ≤ N−1, and W : E → R
+

is a non-negative real valued function on the set of
edges. The edge weights either represent a similarity or
a dissimilarity depending on the application at hand.
Typically, the edge weights are obtained using mono-
tonic functions of a standard norm of the difference
of the pixel intensities/colors of pixels incident on the
edge.

Recall that the increase (respectively, decrease) in
contrast of an image in the classic sense is obtained
by multiplying intensity/each coordinate in the color
vector of each pixel by a constant non-negative number
greater (respectively, lesser) than one. For the edge-
weighted graph model, this is equivalent to: the con-
trast of an image is increased (respectively, decreased)
when the edge weights are magnified (respectively,
diminished). Mathematically, a magnifying (respec-
tively, shrinking) operation on the edge weights is a
function on the edge weights with derivative greater
(respectively, lesser) than one. Also, a change in con-
trast does not alter the relative ordering of edge
weights. Mathematically, this is equivalent to restrict-
ing the operations on the edge weights to be strictly
increasing functions. Thus, the answer to the question
posed in the second paragraph, i.e. contrast invariance
can be obtained by considering only the ‘solutions that
are invariant to strictly increasing functions on the edge
weights of the graph constructed on the image’. Typi-
cally, a graph constructed to model an image is referred
to as the image graph irrespective of whether the edge
weights reflect a similarity or a dissimilarity or a com-
bination of both. In the rest of the article, we use the
term ‘image graph’ to refer to the ‘graph constructed
on an image’.

In the literature, there are plenty of graph-based
methods to obtain image segmentation and filtering.
For segmentation, broadly they fall under two overlap-
ping categories namely graph-partitioning methods [3,
51] and variational cost minimization [37]. Both these
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Fig. 2 Left: An image of dimensions 548 × 402 from the
Weizmann 1-object database [2]. Middle: Two labels are
used to segment the pixels. The pixels belonging to the
foreground are identified by the colour-code red. Right: The
image on left is filtered using a bilateral filter [50]. A bilat-

eral filter suppresses the texture details within objects which
are irrelevant for summarizing the information on object
boundaries in the image. The boundaries between the fore-
ground and the background are crucial for image segmenta-
tion and are preserved

classes of methods typically optimize a cost defined on
the image graph. Some commonly used segmentation
methods in these categories are graph-cut [7], shortest-
path segmentation [24], random walker [27], ratio cut
[53], normalized cut [48,53], watershed cut [19], multi-
cut [51] and isoperimetric partitioning [29]. For image
filtering, weighted average filters such as shortest-path
filters/morphological amoebas [30,35], tree filter [6,57]
are graph based and yield good results. However, in
practice, these methods cannot be applied to images
with large number of pixels as their asymptotic com-
plexity is very high.

The methods mentioned in the previous paragraph
are based on cost minimization on an edge-weighted
graph. Hence, the final segmentation/filtering result is
a function of the edge weights of the image graph. The
algorithms that are originally introduced to implement
these methods take the actual weights into considera-
tion. To ensure contrast invariance, one needs to con-
sider only the relative ordering of the edge weights
instead of the actual weights in the cost minimiza-
tion. This is the core idea of the PW framework. Given
a cost-minimization problem, PW framework trans-
forms the cost-minimization problem into a series of
nested cost-minimization problems. The transforma-
tion is such that the set of nested cost-minimization
problems remain the same even if the edge weights of
the graph are changed without altering their relative
ordering. Solving the transformed problem is compu-
tationally easier than solving the original minimiza-
tion problem. Additionally, the results obtained on the
transformed problem are similar to those obtained on
the original minimization problem. Thus, application of
PW to graph-based cost minimization methods helps in
scaling these methods to images with large number of
pixels.

The rest of the article is organized as follows: In Sect.
2, graphs used in image processing within the scope of
the article are briefly described. Section 3 provides an
explanation of the PW optimization framework in the
context of image processing. The next four sections,
i.e. Sects. 4, 5, 6, and 7 provide a comprehensive sur-
vey of applications of PW to classic graph-partitioning
and variational cost minimization image segmentation
methods. These methods are explained intuitively using
toy images, simulated astronomical images, and a few

figures replicated from the original articles. Section 8
contains a brief description of the utility of PW frame-
work in explaining the links between shortest path-
based filters and spanning tree-based filters. Section
9 contains experiments on simulated astronomical sky
images [31,43]. It is illustrated that the PW counter-
parts yield similar results as that of the classic methods
at a lower computational cost. The conclusions section
summarizes the article and provides some pointers on
how to use the ideas from the article to build scalable
algorithms in the context of graph-based image segmen-
tation.

2 Graphs in image processing

Graphs are discrete mathematical objects. They are
popularly used for data analysis as there is abundant
literature available on graph algorithms. Although sev-
eral variants of graph models exist, the description of
graphs in this section is restricted to those essential to
follow the rest of the article. The simplest of a graph
model consists of two objects: a set of vertices, a subset
of unordered pairs of vertices called edge set or simply
edges. Two vertices are said to be adjacent to each other
if the unordered pair of these vertices belongs to the
edge set. In the context of images, one can identify each
pixel with a vertex in the graph. As pixels in a 2D image
are aligned ‘nicely’ like a grid, a 4-adjacency relation
(see Fig. 3) is a popular choice for modelling images.
In other words, each vertex is adjacent to exactly four
other vertices (except at the borders of the image) viz.
nearest vertices one in each of left, right, top and bot-
tom. See Eq. 3 for a formal definition.

Each pixel has a grey value (or a triplet of values
corresponding R, G, and B bands in case of colour
images), one can assign a mapping on the set of ver-
tices. However, as described in the previous section, it
is convenient to model local changes. This is done by
assigning weights to edges. A classic usage is to con-
sider a discrete gradient given by the absolute difference
between the pixel values (Euclidean distance between
triplets) of the adjacent vertices in the case of greyscale
images (colour images). This can be viewed as a dis-
similarity between the neighbouring pixels (see Fig. 3).
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Fig. 3 Left: A toy 2D greyscale image of dimensions 3 × 3
containing two objects is represented with a vertex-weighted
graph. Each pixel in the image corresponds to a vertex in
the graph. The pixel intensities are displayed inside the cir-
cled vertices. Vertices are coloured with two distinct colours
to signify that they belong to different objects. Middle:
The image is represented as an edge-weighted graph. The

weights of edges are obtained by the absolute difference of
image intensities and hence represent a dissimilarity mea-
sure between the neighbouring pixels. Right: A change in
the contrast of the image can be represented by a scaling
of the weights. Observe the intensities of the pixels and the
weights of the edges are doubled

Fig. 4 Left: A toy 2D greyscale image containing two
objects is visualized with a edge-weighted graph. Each pixel
in the image corresponds to a vertex in the graph. The
pixel intensities are displayed inside the circled vertices.
Vertices are coloured with two distinct colours to signify
that they belong to different objects. The edge weights are
given by absolute difference of grey values of adjacent pix-
els. Right: The edge weights are transformed to reflect sim-

ilarities, i.e. higher the similarity, higher the weight. Here
f(x) = exp(−x). Image segmentation can be posed as a
minimization problem, i.e. find a set of edges such that the
sum of its weights is minimum and its removal results in two
pieces (as there are two objects in the image). An optimal
set of edges are indicated by highlighting them as dotted
edges

In general, if the weights of edges are constructed so as
to capture dissimilarity between the adjacent vertices
then the graph is said to be a dissimilarity-based edge-
weighted graph. These kinds of graphs are useful for
image filtering applications (see Sect. 8 for details).

On the other hand, for many image processing meth-
ods, it is convenient to capture similarity between
adjacent pixels. The edge-weighted graphs with edge
weights reflecting similarity between adjacent pixels are
known as similarity-based edge-weighted graphs. These
are particularly useful in applications where one wants
to pose the objective as a cost minimization problem
(Fig. 4 illustrates this fact. See Sects. 5, 6 and 7 for
details). For example, if one is interested to find a seg-
mentation of the image with a known number of seg-
ments k, the problem can be posed as finding a set of
edges such that the sum of the weights of these edges is

minimum and their removal results in k pieces (called
‘components’ in graph theory terminology). This yields
good results in practice as most of the pairs of ver-
tices corresponding to low-weight edges w.r.t. a similar-
ity measure belong to different objects. Figure 4 illus-
trates for k = 2, also known as a graph-cut problem. In
general, an image contains more than two objects and
the corresponding mathematical generalization of the
graph partitioning is referred to as a k-way cut [51].

On some occasions, prior information in the image is
available. Labels of some of the pixels might be known.
For example, in an astronomical sky image, some back-
ground pixels and some pixels corresponding to galax-
ies/stars can be identified easily. Extreme values along
with low variability in the neighbourhood (see Fig. 8 in
Sect. 4 for an illustration on marking seeds) are indica-
tors for such pixels in the case of sky images. A basic
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yet important task is to segment the galaxies/stars from
the background. The pixels with known labels are called
seeds in image segmentation terminology. When seeds
are available, one can compute the affinity between each
pixel and the labelled seeds. Then, the non-seed pixels
can be assigned a label corresponding to the label with
maximum affinity. More often than not, these affini-
ties are computed using ‘paths’ that start at the non-
seed pixels and terminate at seeds. Recall that a ‘path’
is a sequence of distinct vertices such that every pair
of consecutive vertices in the sequence are adjacent to
each other. Random Walker segmentation (see Sect. 4)
is based on this idea.

There are other kinds of prior information on the
image. For example, it might be known a priori that
certain set of pairs of pixels have different labels.
This information can be imposed as a constraint on
the graph partitioning problem thus making it a con-
strained optimization problem. Multi-cut partitioning
[51] is based on this idea. More generally, on some occa-
sions, it is known that certain pairs have the same labels
(similar or attractive) and certain other pairs have dif-
ferent labels (dissimilar or repulsive) with varying lev-
els of confidence. A forbidden pair of pixels having the
same label can be seen as a dissimilar pair with infinite
affinity. Similarly, a pair constrained to have the same
labels can be visualized as a similar pair with infinite
affinity. It is important to note that these pairs are not
necessarily adjacent pixels. Hybrid edge-weighted graph
models capturing both similarity and dissimilarity are
used to model such situations. We remark that such
graphs have additional edges on top of the four neigh-
bours that each pixel has, to capture the attractions
and repulsions (see Fig. 5). Each edge in the graph is
either a similarity edge or a dissimilarity edge but not
both. An indicator function on the edge set is used to
identify whether an edge indicates a similarity or a dis-
similarity. Each edge has a weight and the weight of
the edge indicates the confidence on the affinity. For
example, a dissimilarity edge with a high value indi-
cates that the pair of vertices on the edge are likely to
have different labels. Mutex watershed is an algorithm
based on this idea. Muti-cut is closely related to mutex
watershed [54,56] and the reader may refer to Sect. 7
for details.

In the context of astronomical image processing,
domain knowledge of the physical characteristics of the
images can be incorporated into the weights of edges in
various forms: similarity, dissimilarity or a combination
of both similarity and dissimilarity.

3 Power watershed optimization and
contrast invariance

In Sect. 2, we mentioned that edge-weighted graphs are
well suited to image processing tasks. Specifically, three
types of edge-weighted graphs have been described.
These are dissimilarity-based, similarity-based, and

Fig. 5 Left: A hybrid edge-weighted graph capturing sim-
ilarities, dissimilarities along with pairs of pixels that are
forbidden to have the same labels and pairs of pixels that
are required to have the same labels. A red coloured edge
indicates dissimilarity and a black coloured edge indicates
a similarity. The weights displayed on the edges reflects the
strength of affinity. For example, a red coloured edge of value
∞ indicates a pair that is forbidden to have same labels

hybrid edge-weighted graphs capturing both similarity
and dissimilarity. Assume that the objective i.e. image
segmentation or filtering is cast as a cost minimization
problem on the image graph. Further, assume that the
cost can be written as a linear combination of edge
weights. Allowing a slight generalization, we have the
following form for the cost function Q(x):

Q(x) =
∑

eij∈E

f (wij) Qij (xi, xj) , (5)

where E is the set of edges of the image graph, eij

is the edge connecting the vertices i and j, wij is the
weight of eij , f is a known monotonic function (either
an increasing or a decreasing function) and Qij() is a
smooth function (differentiable). Here x is a vector of
size equal to the number of pixels and represents the
set of target labels/values.

PW framework considers the following sequence of
optimization problems:

Q(p)(x) =
∑

eij∈E

(f(wij))
p
Qij (xi, xj) , (6)

where p is a positive integer and the other quantities
are same as that of Eq. 5. Instead of minimizing the
cost for each p, PW framework considers the limit of
minimizers of a sequence of cost functions (Q(p)(x))∞

p=1
as p → ∞, termed as PW limit.
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An image graph is finite, so the number of edges is
finite. Further, let the set of edges, E be relabelled in
the increasing order of their weights. The Qij terms
corresponding to identical weights can be merged. The
cost function can then be as sum of l terms where w1 <
· · · < wl are the distinct set of weights (l ≤ |E| holds for
obvious reasons). It is shown in [39] that the limit of the
minimizers can be obtained by the following algorithm:

Algorithm 1 Calculating limit of minimizers [39]
Input A sequence of cost functions indexed with p ∈ Z

+

given by Eq. 6
Output A limit of minimizers to Eq. 6 as p → ∞.

1: Set i = l and Mi is the entire solution space.
2: while i > 1 do
3: Compute the set of minimizers Mi−1 =

arg minx∈Mi
Qi(x)

4: Return arbitrary x ∈ M1.

To better understand the intuition behind the algo-
rithm, consider the following example (modified from
[39]). Let w > 0 and Q(p) : R2 → R be defined as

Q(p) (x1, x2) = wp
1

(
(x1 − 1)2 + x2

2

)
+ wp

2 (x1 − x2)
2
,

(7)
where w1 = w and w2 = 2w. Observe that Q(p) is a
non-negative function for any p > 0. The minimizer of
Q(p) can be computed directly and is given by

x̂1
(p) =

2p

2p+1 + 1
(8)

x̂2
(p) =

2p + 1
2p+1 + 1

. (9)

With simple calculus, it is easy to verify that the
sequence of minimizers of Q(p) i.e. ((x̂)(p))p>0 =
((x̂1

(p), x̂2
(p)))p>0 converges to ( 12 , 1

2 ) as p → ∞.
On the other hand, application of Algorithm 1 trans-

lates to rewriting Q(p)(x1, x2) as follows:

Q(p)(x1, x2)
wp

2

=

(
(x1 − 1)2 + x2

2

)

2p
+ (x1 − x2)2. (10)

This quantity behaves like the function

(x1 − x2)
2
, (11)

as p → ∞
At the first pass, our search space of solutions is

restricted to the subspace {(x1, x2) ∈ R
2 | x1 = x2}.

At the next pass, within the restricted subspace of the
solutions, the point that minimizes ((x1 − 1)2 + x2

2) is
easily seen to be ( 12 , 1

2 ).
Recall that to ensure contrast invariance, the opti-

mization problem has to remain the same irrespec-
tive of changes to the edge weights subject to preserv-

ing their relative ordering. It can be seen from Algo-
rithm 1 that the limit of minimizers of Q(p)(x) depends
only on the relative ordering of the edges and not the
actual weights. Also, it is worth noting that Algorithm
1 decomposes the cost function on the original graph
into costs on smaller subgraphs. It is shown in [10–
12,17,18,21–23] that the computation of said limit is
easier than minimizing the original cost Q(x). In Sects.
4, 5, 6 and 7, it will be demonstrated that the qual-
ity of the segmentation is retained while reducing the
computational cost.

It is important to mention that the PW limit of a
cost of the form Eq. 5 depends only on a substruc-
ture of the image graph (known as a subgraph in graph
theory). This subgraph is either union of maximum
spanning trees (UMaxST) or the union of minimum
spanning trees (UMinST) depending on whether the
edge weights reflect similarity or dissimilarity. UMaxST
(respectively, UMinST) is the induced subgraph gener-
ated by set of edges that belong to at least one ‘max-
imum spanning tree’ (respectively ‘minimum spanning
tree’) of the image graph. Recall that a ‘spanning tree’
is a subset of edges of the image graph such that there
exists a unique path between every two vertices in the
image graph when the paths are restricted to contain
only edges from the subset of edges (see Fig. 6 for an
illustration). A maximum spanning tree (MaxST) is a
spanning tree such that no other spanning tree has the
sum of its edge weights larger than that of MaxST. A
similar definition holds for a minimum spanning tree
(MinST).

4 Fast random walker segmentation

Recall that in some practical applications, prior infor-
mation of labels of some pixels in the image is available.
Random walker is a seeded segmentation method and
is handy for such situations.

4.1 Classic random walker segmentation

Random walker (RW) can be described as follows: A
similarity-based edge-weighted graph is constructed on
the image. For each non-seed, several random walks
are simultaneously propagated to each of its neighbours
and the process is recursively repeated. At each step,
it is assumed that a random walk splits into multiple
unvisited vertices independently. Further, the branch-
ing probability of an edge on a vertex is equal to the
proportion of similarity of the edge traversed to the
sum of similarities of all possible edges that can be tra-
versed at that step. For example, in Fig. 7, a random
walker starting at vertex 1 selects the edge 1–2 with
probability 2

3 as there are two edges emanating from 1
namely 1–2 with weight 2 and 1–4 with weight 1. These
paths are recursively propagated until they terminate
on labelled points, i.e. seeds. For example, a random
walker starting at the vertex 1 that already chose the
first edge as 1–2 will choose the edge 2–3 with condi-
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Fig. 6 Left: An edge-weighted graph. Middle: A MaxST of the graph on left. Right: UMaxST of the graph on left

Fig. 7 Left: A similarity-based edge-weighted graph with
two labels coloured blue and red with three seeds, two seeds
with colour red, and one seed with colour blue. Middle: The
paths from vertex 1 to seeds with red label are highlighted in
red. Random walk probabilities are displayed on the corre-
sponding edges. The probability that the vertical path from
vertex 1 to red seed vertex 7 is 0.33×0.5. Similarly, the prob-

abilities are computed for the horizontal path from 1 to 3
which is also a red seed. Adding these probabilities yields
the RW probability for vertex 1 to be labelled red. Left: The
paths from 1 to seed with the label blue are highlighted. The
path probability computations are performed similarly. The
RW probability for the vertex to be labelled either red or
blue would add up to 1

tional probability 1
4 . Note that the random walker has

only two choices of edges namely 2–5 and 2–3 at this
stage as vertex 1 is already visited. The probability of
a non-seed pixel having a given label is then calculated
by summing up probabilities of all the paths that start
from the non-seed pixel to all seeds with that label (see
Fig. 7 for an illustration). A non-seed is then assigned
the label to which the RW probability is highest. For
example, in Fig. 7, vertex N would be assigned label
B.

Recall that a seeded classification problem with mul-
tiple labels can also be perceived as a collection of
binary classification problems. The number of such
binary classification problems would be as many as the
number of distinct labels. Let L denote the set of dis-
tinct labels. Each such binary classification problem
deals with identifying label l versus NOT label l, where
l ∈ L is a label. Treating the multiple class classifica-
tion problem this way, it was shown in [27] that RW
probabilities of each such binary classification problem
can be obtained by minimizing the convex cost function
given by Eq. 12.

RWCost(x) =
1
2

∑

eij∈E

wij(xi − xj)2, subject to xseed

= fseed, (12)

where vector x refers to the target labels of all pixels, E
is the set of edges, wij is the weight of eij , xseed refers
to the target labels of seed pixels and fseed is the vector
of preset labels of corresponding seeds. Note that fseed
is a vector of zeros and ones as we are dealing with a
binary classification problem. More particularly, in the
l versus NOT l classification problem, a coordinate in
fseed equals 1 if the corresponding pixel is labelled l and
0 if it is labelled but the corresponding label is NOT l.

Let L denote the unnormalized Laplacian of the
graph [53]. One can write the cost RWCost(x) in Eq.
12 as xT Lx up to a constant factor. Rearranging the
indices of seeds and non-seeds so that the indices of all
seeds appear before those of non-seeds, one can decom-
pose L as follows:
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Fig. 8 Top left: An image to be segmented. Top middle:
Seeds are marked with strokes. Four different labels are used
for RW segmentation. Top left: Visualization of RW Prob-
ability map of green label. Bottom: From left to right, each

image is a visualization map of label RW probabilities for
labels blue, violet and red in that order. White shades indi-
cate high probability and dark indicate low probability

L =
(

Lseed B
BT LU

)
(13)

RWCost(x) can then be written as

RWCost(x) =
1
2

(
xT
seedLseedxseed

+2xT
UBTxseed + xT

ULUxU

)
, (14)

where xU denotes the sub-vector of x corresponding
to the unlabelled points. Applying elementary calculus,
it can be seen that the solutions to the minimization
problem can be obtained by solving the following linear
system of equations:

LUxU = −BTxseed. (15)

Recall that the number of distinct labels in the multi-
ple class classification problem is |L|. Hence, one needs
to compute an affinity vector of length |L| to encode
probabilities of the unlabelled points to each of the dis-
tinct labels. In other words, Eq. 15 transforms to solving

LUX = −BT S. (16)

where X is a matrix of shape |xU | × |L| and S is a
matrix of size |xseed| × |L|.

An application of RW on a real image is illustrated in
Fig. 8 (this demonstration is similar to the illustration
on the medical image from the original paper on RW
[27]).

4.2 Power watershed approximation to random
qalker

It can be seen that Eq. 12 is in the form of Eq. 5.
In [17,18], the RW cost function is recast in the form
of Eq. 6 using the PW framework. The cost minimiza-
tion is transformed into a family of cost minimization
problems as given by Eq. 17 indexed by p where p ∈ N.

RWCost(p)(x) =
1
2

∑

eij∈E

wp
ij(xi − xj)2,

subject to xseed = fseed. (17)

It was shown in [18] that the results obtained by the
limit of minimizers to Eq. 17 as p → ∞ are compara-
ble to RW at the benefit of lesser computational cost.
Recall Algorithm 1 from Sect. 3. The limit of minimizers
to Eq. 17 as p → ∞ is computed as follows—first, the
sum of terms corresponding to the highest weights in
the summation of Eq. 17 are considered. This summa-
tion is minimized subject to the seed constraints. The
solution set is then restricted to those obtained at this
level and the sum of terms corresponding to the next
highest weight is considered. This summation is mini-
mized subject to seed constraints and the solution set
constraint obtained from the minimization problem(s)
at the higher weights. The sum of terms corresponding
to the next highest weights are then considered. This
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Fig. 9 Consider the toy image from Fig. 7. This figure
shows the application of PW on RW. Left: After first step of
the PW sequential optimization of Eq. 17, the graph is col-
lapsed to a smaller graph. Vertex 8 is then labelled red. Mid-
dle: After the second step in PW optimization, the graph
collapses further as shown. At this stage, vertex 9 is also

labelled red. Using the next highest weights of magnitude
3, random walks are illustrated in respective colours to the
labels. Left: After solving the RW in the middle figure, the
probabilities that vertex 6 is labelled red and blue are com-
puted (probabilities are not shown in the figure). In the next
step, the graph is further collapsed and is illustrated here

process is repeated until all the distinct weights are pro-
cessed.

In case of random walker, this process can be envi-
sioned as follows: consider the subgraph of the image
graph with only the highest weights. Examine each of
the connected components of this graph. If there is no
seed in a connected component, the connected compo-
nent is collapsed and the target labels of each of the
vertices in the connected component are constrained to
be same. If there is exactly one seed in a connected
component, the connected component is collapsed and
the target labels of each of the vertices in the connected
component are set as the label of the seed. In case of
two or more seeds in a connected component, a random
walker is solved on the connected component using Eq.
16 as described in Sect. 4.1. The collapsed graph is con-
sidered for the sequential processing. The pixels that are
already labelled are also treated as seeds for the subse-
quent steps. Next, the edges of second highest weight
are considered and the process is repeated. This pro-
cess is continued until all the edges of the image graph
are processed. Figure 9 illustrates an example of PW
approximation to RW. A formal algorithm to solve a
random walker segmentation with two labels is given
by Algorithm 2. For more than two labels, the idea is
similar and one needs to work with one-hot encoding
to obtain probabilities.

Essentially, the application of PW implies that the
linear system of equations used for computing random
walk probabilities have to be solved on subgraphs of
the image graph sequentially. In general, the sizes of
the subgraphs obtained at each step are not determin-
istic in nature. However, typically these subgraphs end
up being very small when compared to the image graph.
This would significantly reduce the computational cost.
Figure 10 from [18] shows a comparison of the time
taken to obtain segmentation results on 2D images [44]
as a function of number of pixels by random walker

Algorithm 2 PW Approximation to Random Walker
Segmentation [18]

Input An edge-weighted graph G = (V, E, W ) and seeds
with two labels xi = 1 for i ∈ F and xj = 0 for j ∈ B,
F, B ⊂ V with F ∩ B = ∅

Output Random walker probabilities for each xk for
k ∈ V \ (F ∪ B)

1: Sort the edge set E in decreasing order of weights.
2: Decompose E into sets of edges with different weights

E = ∪l
i=1El where Er contains edges with weight wr

for each 1 ≤ r ≤ l with wr > wr′ if r > r′.
3: Denote Vr as the set of vertices that are incident on Er

for each 1 ≤ r ≤ l. Set i = l.
4: while i > 0 do
5: Solve Eq. 12 on the graph Gi = (Vi, Ei, W |Ei) on

each connected component separately
6: if Connected component does not contain any vertex

with known label probability then
7: Collapse the vertices of the connected component

into a single vertex. The label probability values will
be identical on each of these vertices eventually when
computed

8: else
9: The solver yields fixed label probabilities. Con-

sider all the label probabilities known for these vertices

10: Set i = i − 1

11: Return label probabilities xi for each i ∈ V .

algorithm (in green), PW approximation to random
walker (in red) along with a few other popular segmen-
tation methods. It can be seen that for images with
relatively larger number of pixels, the PW approxima-
tion to RW scales well. The downside is that there are
no theoretical guarantees on the approximation to the
optimal solution.
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Fig. 10 Comparison of computation times of 2D seeded
image segmentation methods on [44] (this figure is replicated
from [18]). For each dimension, the times were generated by
segmenting the same image scaled down. Power watershed
(q = 2) corresponds to the power watershed approximation
to random walker (in red) and random walker is highlighted
in green. Notice that for images with relatively larger num-
ber of pixels, the difference in time taken is significant

5 Fast and robust isoperimetric
segmentation

Recall from Sect. 2 that a graph-cut separates the graph
into two components by removing a set of edges. The
sum of weights of these edges is minimum among all
such sets whose removal results in breaking the graph
into two components. Mathematically, it boils down to
minimizing the following quantity over all subsets A of
the vertex set.

W (A, Ā) =
∑

eij∈E,i∈A,j∈Ā

wij , (18)

where E denotes the set of edges of the graph and wij

denotes the weight of edge eij . The summation runs
over all edges such that one endpoint of the edge is in
A and the other in Ā.

Each of these components can be viewed as an object.
The sum of edge weights is likely to be less when the
edges removed are less in number. In practice, more
often than not, a graph-cut results in small components
as removal of a few edges is sufficient to separate the
graph into a small and a big component (see Fig. 11).
Small components are not desired as they practically do
not represent any meaningful objects. One of the com-
mon approaches to avoid small components is to impose
a penalty on the size of the components in the cost func-

tion. Ratio cut [8,53], normalized cut [53], and isoperi-
metric cut [28,29,36] are some of the popular methods
that impose a penalty on the size. Isoperimetric cut can
be described as the following cost minimization prob-
lem:

IsoCost(A) =
W (A, Ā)

min{|A|, |Ā|} , (19)

where A is a subset of the vertices and Ā denotes its
complement. The numerator in the cost is the cost func-
tion minimized by graph cut (see Eq. 18). The denom-
inator penalizes the cost on small components so that
minimizing the cost does not yield them. However, this
is an NP-hard problem.

5.1 Classic approach to isoperimetric graph
partitioning for image segmentation

Notice that the numerator in Eq. 19 can be rewritten
as

W (A, Ā) =
∑

eij∈E,i∈A,j∈Ā

wij

=
∑

eij∈E

wij (xi − xj)
2
,

where xi = 1 if i ∈ A and xi = 0 if xi ∈ Ā. Using the
notion of unnormalized graph Laplacian [53], one can
compactly rewrite the cost function in Eq 19 as

IsoCost(A) =
xT Lx

min{xT1, (1 − x)T1} , (20)

where x is the vector of vertex labels, i.e. xi = 1 if
i ∈ A and xi = 0 of i ∈ Ā. L is the unnormalized graph
Laplacian.

Typically, to obtain an approximation solution to
NP-hard problems with a discrete constraint set, the
constraints are relaxed. The transformed problem is
known as a continuous relaxation of the corresponding
NP-hard problem. The solutions to continuous relax-
ation can be obtained easily. All possible thresholds of
such solutions are examined and an optimal threshold,
i.e. the discretized solution with lowest cost is iden-
tified as a heuristic approximation. In practice, such
heuristics work well. However, in this particular case,
allowing continuous relaxation without further con-
straints would lead to meaningless solutions. This is
because of the cost in Eq. 20 is always non-negative
(a graph Laplacian is a positive semi-definite [53]). For
the relaxed constraints, the cost can be made arbitrar-
ily close to zero (which would be the minimum cost)
for every possible partition of the graph (see [22] for
details). Hence, an additional constraint is added, i.e.
the label of an arbitrary vertex r is set to be zero with-
out loss of generality. The transformed problem can be
written as
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Fig. 11 Left: A
similarity-based
edge-weighted graph.
Right: Small Cut problem
illustrated. Eight vertices
in one component and one
vertex in the other resulted
by graph-cut. The cut
edges are highlighted as
dotted red edges and the
vertices belonging to
different components are
colour-coded

Minimize
xT

−rL−rx−r

min
{
xT−r1, (1 − x−r)T1

} ,

subject to each xi ∈ [0, 1], (21)

where x−r denotes the vector x with the xr removed
and L−r denotes L after deletion of rth row and
columns.

Using Lagrange multipliers, solving Eq. 21 is equiva-
lent to solving:

L−rx−r = 1. (22)

The reader may refer to Fig. 24 in Sect. 9 for an
illustration of segmentation on a simulated astronomi-
cal image obtained by solving the relaxed isoperimetric
partitioning.

5.2 Spanning tree-based approaches to
isoperimetric graph partitioning

In [26], it was suggested that solving the continuous
relaxation problem on a MaxST of the image graph
scales well. To elaborate, recall that the average num-
ber of non-zero, non-diagonal elements in each row of
a graph Laplacian is the average degree of a vertex in
the graph (number of neighbours of a vertex is known
as the degree of the vertex in graph theory). For exam-
ple, from 2D images to 3D images, the sparsity of the
graph Laplacian decreases due to an increase in average
degree from four to six. Hence, solving the linear sys-
tem in Eq. 22 is slower on 3D images and can be pro-
hibitively slow for denser graphs. On the other hand,
the graph Laplacian of a MaxST always has an average
of two non-zero, non-diagonal elements in a row. Also,
the results obtained by solving the continuous relax-
ation on an arbitrary MaxST were shown to be rea-
sonably good in terms of quality for 3D medical image
segmentation.

Later, in [22] it was shown that the solutions obtained
by solving Eq. 22 on an arbitrary MaxST are not
consistent with those solved on the image graph (see
Fig. 12 replicated from [22]). It was established in [22]
that application of PW framework theoretically implies
that it is enough to solve Eq. 22 on UMaxST of the
image graph. Algorithm 3 provides a formal algorithm

to obtain the PW approximation to the isoperimetric
graph partitioning.

Algorithm 3 PW Approximation to Isoperimetric
Graph Partitioning [22]

Input An edge-weighted graph G = (V, E, W )
Output A heuristic approximation to the isoperimetric

graph partition i.e. labels xi = 0 or xi = 1 for each i ∈ V .

1: Choose an arbitrary vertex r ∈ V . Set xr = 0
2: Compute the UMaxST of G. Denote it by GUMaxST

3: Compute the unnormalized graph Laplacian LUMaxST

of GUMaxST .
4: Delete the rth row and column of LUMaxST . Denote this

by L(UMaxST,−r).
5: Denote the vector of labels for each vertex as x. Remove

the rth coordinate from x and denote it by x−r.
6: Solve L(UMaxST,−r)x−r = 1 for x−r and denote the

optimal solution by xopt
−r

7: Let xopt denote the vector with xr = 0 inserted at rth

coordinate.
8: Compute all possible thresholds of xopt, check the cost

obtained by each such threshold solution using Eq. 20.
9: Return the solution corresponding to the lowest cost

in the previous step.

Further, it was supported by empirical evidence that
these solutions are consistent with those solving Eq. 22
on the image graph (see Fig. 12). Although the number
of edges in the UMaxST varies in general and can be as
large as that of the image graph itself, it was shown
empirically on several 2D image databases that the
reduction in a number of edges on an average is about
25 percent. Figure 13 from [22] shows histograms on the
percentage of redundant edges removed, i.e. the edges
present in the image graph but not in the UMaxST of
the image graph. These edges do not contribute to the
final segmentation results. However, if they are not dis-
carded, the linear solver in Eq. 22 can be prohibitively
slow especially when the number of edges are large in
the image graph. This is because, the sparser the adja-
cency matrix of the graph, the more zeros in the corre-
sponding Laplacian.

To summarise, the solution obtained by application
of PW to the relaxed isoperimetric partitioning cost
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Fig. 12 The relative ordering of the solutions to the con-
tinuous relaxation problem of the isoperimetric partitioning
(this figure is replicated from [22]). Each colour in the left
and middle figures correspond to one image in the Weiz-
mann 1-object dataset [2]. A strictly increasing plot implies
perfectly consistent solutions w.r.t. solving Eq. 22 on the

image graph. In both the figures in left and middle, the X -
axis corresponds to the image graph. Left: Arbitrary MaxST
versus image graph. Middle: UMaxST versus image graph.
Right: A box plot indicating the proportion of inversions on
the solutions obtained by an arbitrary MaxST and UMaxST
w.r.t. the solutions on image graph

Fig. 13 Histograms indicating the percentage of redun-
dant edges removed by UMaxST. x -axis represents the per-
centage reduction obtained (this figure is replicated from
[22]). y-axis represents the number of images achieving the

given amount of reduction. The results are computed on
Left: Weizmann 2-Object dataset [2], Right: on BSDS500
dataset [3]

minimization is a robust yet fast approximation to
the relaxed isoperimetric partitioning cost minimiza-
tion problem. In particular, the PW approximation is
very useful for segmenting astronomical images which
usually have very large number of pixels. The down-
side is that there are no theoretical guarantees on how
close the PW approximation solution is from the opti-
mal solution to the relaxed problem. For experiments
on simulated astronomical images, the reader may refer
to Sect. 9.

6 Fast spectral clustering

Ratio cut is another variant of graph-cut designed to
avoid small components. Suppose we know that an
image contains k objects, ratio cut can be described
as minimizing the following cost splitting the vertex set
V of the image graph into disjoint subsets A1, . . . , Ak:

RatioCost(A1, . . . , Ak) =
k∑

t=1

W (At, Āt)
|At| . (23)

where W (A, Ā) is given by Eq. 18.

6.1 Classic approach to ratio cut

However, the ratio-cut problem is NP-hard. To obtain
an approximation solution, typically a continuous relax-
ation is constructed. A basic construction is done as
follows:

Set xi =
√

|Ā|
|A| if i ∈ A and xi = −

√
|A|
|Ā| if

i ∈ Ā. These xis are supposed to be visualized as one-
dimensional representations of the vertices. The ratio-
cut cost can then be rewritten as

RatioCost(A, Ā) =
(

2
|A| + |Ā|

)
xT Lx, (24)

where L is the unnormalized Laplacian of the image
graph. Observe that xTx = |A|+|Ā| = |V | is a constant
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by the choice of each xi. The relaxed ratio cut problem
can be expressed as

Minimize xT Lx subject to xTx = |V |. (25)

This is the classic eigenvector problem i.e. finding an
eigenvector with smallest eigenvalue. It is easy to see
that the ratio cut cost is always non-negative. Further,
a zero cost is attained when x is a constant vector.
However, a constant vector does provide any informa-
tion on partitioning the vertices as the corresponding
xi values are identical. Hence an additional constraint
should be added to avoid constant vectors. As we are
working with Eigenspaces, it is enough to search in the
orthogonal space to the linear space spanned by con-
stant vectors, i.e.

Minimize xT Lx subject to
xTx = |V |, and xT1 = 0. (26)

In general, representations with more than one
dimension carry more information. As a thumb rule,
for partitioning the graph into k components, a k-
dimensional representation is used. A continuous relax-
ation of the ratio cut problem can thus be rewritten as
the following minimization problem:

Minimize Tr
(
HT LH

)
subject to HT H = Ik, (27)

where Tr() denotes the trace operator of a matrix i.e.
sum of diagonal elements of a matrix, Ik is an iden-
tity matrix of size k, H denotes a |V | × k matrix with

xti =
√

|Āt|
|At| if i ∈ At and xti = −

√
|At|
|Āt| if i ∈ Āt. The-

oretically, the solution to Eq. 27 is obtained by finding
the first k eigenvectors of Laplacian L of the image
graph.

The row vectors of H obtained by solving Eq. 27
are called spectral embeddings. Simple Euclidean dis-
tances between spectral embeddings capture the objects
reasonably well in an image. Typically, standard algo-
rithms such as k -means [32] are applied to use these
distances to obtain the final image segmentation (see
Fig. 14 for an illustration on a general edge-weighted
graph). It is worth mentioning that multi-scale combi-
natorial grouping [4,41] which uses spectral clustering
as a building block achieved state-of-the-art on a pop-
ular image segmentation dataset when published.

An application of ratio cut on a simulated astronomi-
cal image shown in the left image of Fig. 8 is illustrated
in Fig. 15. The ratio cut is performed as follows: first, a
histogram equalization is performed on the noisy image.
This is followed by a median filter. A 4-adjacency sim-
ilarity graph is constructed on this image. An opening
is then performed on the median filtered image. On the
opened image, pixels with intensities less than a low
preset threshold and pixels with intensities greater than
a high preset threshold are identified as two groups of
pixels. Each of pixels in the first group are connected
to an auxiliary vertex. Similarly, each of the pixels in

the second group are connected to a second auxiliary
vertex. The weights of the edges incident on either of
the auxiliary vertices are set to the same value slightly
larger than the highest weight among the edges of the
4-adjacency graph. A ratio cut is then performed on
this graph with k = 2 clusters. The auxiliary vertices
are then discarded and the labels of the other vertices
i.e. image pixels are returned.

6.2 Power ratio cut

One of the major issues with spectral clustering is
computational complexity. A ratio cut requires O(|V | 3

2 )
computations where V is the set of vertices of the graph.
Intuitively, it is expected that pairs of vertices with
‘high’ similarity should belong to the same component.
This can be done by collapsing high similarity vertices
together to hybrid vertices thereby reducing the size of
the graph (see Fig. 16 for an illustration). However, two
questions need to be answered: (1) how to quantify a
‘high’ similarity edge? (2) what are appropriate weights
for the edges incident on the hybrid vertices so that
spectral clustering on the collapsed graph yields simi-
lar results as that of spectral clustering on the original
graph? PW framework answers these questions.

Applying the PW framework to Eq. 27, one can
obtain the following collection of minimization prob-
lems labelled with p, where p ∈ N:

Minimize
∑

i

wp
i Tr

(
HT LiH

)
subject to HT H = Ik,

(28)
where the summation is over a distinct set of weights in
the graph, Li is the Laplacian of the subgraph induced
by the edges of weight wi (see Fig. 17 for an example)
resetting the weights to 1. It was shown in [12] that
limit of minimizers to Eq. 28 as p → ∞, also known
as power ratio cut, can be computed as follows: The
edges of the image graph are sorted in decreasing order
of weights say wl ≥ · · · ≥ w1. A graph is constructed
with edges of highest weights wl of the image graph G,
i.e. the induced subgraph G≥wl

. Edges are added to this
graph gradually in decreasing order of weights. Then a
critical value, i.e. 1 < r ≤ l is found such that G≥wr

,
the induced subgraph generated with edges of weights
greater than or equal to wr, has number of connected
components greater than or equal to k but G≥wr−1 has
less than k components. A spectral clustering is per-
formed on G≥wr−1 subject to the condition that the
representations on each of the connected components
of G≥wr

are same. See Algorithm 4 from [12] for a for-
mal algorithm.

Observe that the collapsed graph on which spectral
clustering is performed is of much smaller size when
compared to the original graph as k � |V |. Hence,
the computation cost for the spectral clustering part
is negligible in PW approximation. However, there is a
sorting step involved and hence this algorithm runs in
O(|V |log|V |). This is a significant improvement as the
classic ratio cut runs in O(|V | 3

2 ). Figure 18 from [12]
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Fig. 14 Left: A similarity-based edge-weighted graph with
seven vertices. The edge weights are displayed on the edges
and are colour-coded to indicate the strength of similar-
ity. Red, green, and blue indicate low, medium, and high,
respectively. Right: 2 dimensional spectral embedding of the
vertices obtained by solving the continuous relaxation of

ratio cut. Observe that most of the pairs of vertices with
higher similarity are closer and the pairs with low simi-
larity are farther in the embedded space. Hence, a simple
distance-based clustering would work well on the embed-
dings for clustering purposes

Fig. 15 Left: A simulated
astronomical image to be
segmented (same as left
image in Fig. 8). Right:
Clusters obtained by
performing a ratio cut on
the image on left. The
details of implementation
are provided in the text

Fig. 16 Left: A similarity-based edge-weighted graph with
seven vertices (this figure is replicated from [12]). The edge
weights are displayed on the edges and are colour-coded to
indicate the strength of similarity. Red, green, and blue indi-
cate low, medium, and high respectively. Right: The vertices
d and e are merged to form hybrid vertex de. This hybrid

vertex is adjacent to every vertex that either of d and e are
adjacent. However, it is not clear on how the edge weights
for the edges containing hybrid vertices have to be set so
that ratio cut on this collapsed graph yields similar results
as that of the original graph. PW answers this question
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Fig. 17 Top Left: A
similarity-based
edge-weighted graph with
six vertices. The edge
weights are displayed on
the edges. Top Right,
Bottom Left and Bottom
Right: The edge-weighted
graph is decomposed into
several subgraphs, each
consisting of edge weights
of a fixed value in
decreasing order of
weights. These are called
subgraphs induced by
edges of fixed weight of the
graph on top left

Algorithm 4 PW Approximation to Ratio Cut Parti-
tioning [12]

Input An edge-weighted graph G = (V, E, W ) with
bucketed weights w1 < · · · < wl

Output A representation of the subspace spanned by
the PW approximation to ratio cut optimal solution.

1: Set i = l
2: while Number of connected components of G≥wi is

greater than or equal to k do
3: Set i = i − 1.

4: Let {Ci}, i ∈ {1, . . . , nc} be the connected components
in G≥wi .

5: Let ICi be the vector

ICi(x) =

{
1/

√|Ci| if x ∈ Ci

0 otherwise
(29)

6: Construct matrix N with ICi as column vectors
7: Let G1 be the graph with vertex set same as that of G.

Let L1 be the unnormalized Laplacian of G1.
8: Let L̄1 = N tL1N .
9: Calculate the first k eigenvectors of L̄1 and construct A

using these eigenvectors as columns.
10: Return NA

shows the comparison of time taken to cluster simple
blobs dataset [33] with nfeatures = 2 and centers = 2.
Notice that as the number of data points increase, the
PW approximation to ratio cut is a better option in
terms of computations.

Also, it was shown in [10–12] that power ratio cut
yields segmentation results comparable to that of the

Fig. 18 A comparison of time complexities of PW approx-
imation to ratio cut and ratio cut as a function of data size
on blobs dataset [33] with parameters -nfeatures = 2 and
centers = 2 (this figure is replicated from [12]). Observe
that for small data sizes the difference between PW approx-
imation and ratio cut is not significant, while for relatively
larger data sizes, the difference is significant

ratio cut. An intuitive explanation on why the approx-
imation is good is that the number of objects are much
lesser in an image when compared to the number of pix-
els in the image. Hence, expensive computations (such
as spectral clustering steps) are required only near the
object boundaries and a simple greedy algorithm such
as a maximum spanning tree-based label propagation
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suffices in the object interiors. In particular, for astro-
nomical image segmentation, power ratio cut is a prac-
tical solution to implementing an approximation to the
NP-hard ratio cut minimization as these images usually
have a large number of pixels.

7 Mutex watershed and power watershed
optimization

In the previous sections, we have seen random walker,
spectral clustering and isoperimetric partitioning.
Observe that for these methods to work well, a good
estimate of the number of objects in the image should
be computed beforehand. In the case of random walker,
at least one seed pixel should be provided. Isoperimet-
ric partitioning has to be applied recursively as many
times as the number of objects in the image. Spectral
clustering uses the number of objects as the input k and
partitions the graph into k components.

In practical applications, it is often the case that the
number of segments in an image are unknown and diffi-
cult to obtain a reasonable estimate. In such cases, one
needs to apply algorithms that can yield good quality
results which do not require the number of segments
as an input. In this section, one such algorithm namely
multi-cut problem and its PW approximation [54,56]
are reviewed in detail.

7.1 Multi-cut: NP-hard problem

Recall from Sect. 2, in some application areas, one can
obtain information on certain pairs of pixels that are
known to have the same labels and certain pairs to
have different labels, each with a varied level of confi-
dence. Hybrid image graphs capturing similarities and
dissimilarities between pixels are used for such applica-
tions. One can then generalize the notion of graph-cut
as follows: find a set of edges, possibly both similarity
and dissimilarity edges (called cut edges) such that sum
of their weights is minimum. Here the segmentation is
obtained by discarding the dissimilarity edges after the
removal of the cut edges from the image graph. One
expects that the endpoints of the discarded dissimilar-
ity edges belong to different segments. Hence, there is a
requirement of an additional condition on the selected
cut edges which is: removal of the cut edges should not
result in a cycle with exactly one dissimilarity edge (see
Fig. 19 for an illustration on violation of this condition).

Observe that the sum of weights of all edges in the
image graph is constant. Hence, minimizing the sum
of weights of cut edges is the same as minimizing the
negative-sum of weights of edges that do not belong to
the cut. Denote the set of edges that do not belong to
the cut as A, the multi-cut problem can be stated as
the following optimization problem:

Minimize Q(a) = −
∑

e∈E

aewe

subject to a ∈ {0, 1}|E|, C1(A) = ∅
with A = {e ∈ E|ae = 1},

(30)

where E denotes the set of edges of the image graph,
C1(A) denotes the set of cycles in A with exactly one
dissimilarity edge. Unfortunately, Eq. 30 is a NP-hard
problem.

7.2 Interpreting mutex watershed as power
watershed approximation to multi-cut

In [54,56], the authors propose an approximation solu-
tion to Eq. 30 with a greedy algorithm. This algorithm
combined with a CNN architecture to learn the edge
weights achieved state-of-the-art results on EM segmen-
tation challenge [5] when published. It was shown that
this algorithm can be interpreted as an application of
PW on the NP-hard multi-cut problem.

Minimize Q(p)(a) = −
∑

e∈E

aew
p
e

subject to a ∈ {0, 1}|E|, C1(A) = ∅
with A = {e ∈ E|ae = 1}.

(31)

Decomposing the edges of the graph into different
weights in decreasing order of magnitudes wl > · · · >
w1 (see Fig 17), i.e. Er = {e ∈ E|we = wr} for each
1 ≤ r ≤ l. The first level in the PW nested minimization
problem is given by

Minimize −
∑

e∈El

ae

subject to a ∈ {0, 1}|El|, C1(A) = ∅
with A = {e ∈ El|ae = 1}.

(32)

Let the solution space be denoted by Al.
Minimizing Eq. 32 is no longer NP-hard as all the

weights in the subgraph are of the same weight. One
can then greedily add edges so as to satisfy the cycle
condition [15]. At the next level, we have the subgraph
with edges El−1:

Minimize −
∑

e∈El−1

ae

subject to a ∈ {0, 1}|El−1|, C1(A) = ∅
with A = Al ∪ {e ∈ El−1|ae = 1}.

(33)

Let the solution space be denoted by Al−1. This process
is continued all the way until edges are exhausted, i.e.
E1. The solution obtained is A1. Discarding the dissim-
ilarity edges from A1 yields a segmentation satisfying
the cycle constraint. See Algorithm 5 from [54] for a
formal algorithm. Here C0(A) denotes the set of cycles

123



Eur. Phys. J. Spec. Top. (2021) 230:2337–2361 2353

Fig. 19 Left: A hybrid graph on a toy image capturing
similarities and dissimilarities between the pixels. Each ver-
tex represents a pixel. Red coloured edges indicate dissim-
ilarity and black coloured edges indicate similarity. The
weights on the corresponding edges indicate the strength of
similarity/dissimilarity. Right: A set of cut edges removed

on the image graph on left. Observe that these cut edges vio-
late a desired condition. The cycle < 7, 8, 13, 12 > consist-
ing of edges , {7, 8}, {8, 13}, {13, 12}, {12, 7} have exactly
one dissimilarity edge namely {12, 7}. Removal of the edge
{12, 7} would still lead to pixels 12 and 7 to contain in the
same segment

Fig. 20 Left: The set of
edges selected by mutex
watershed when applied on
Fig. 19 left image. Observe
that there are no cycles
with exactly one red edge.
Hence there is no
ambiguity in the
partitions. Right: The final
partition obtained by
mutex watershed. This is
obtained by discarding the
red edges in the left figure

in A with no dissimilarity edges. The result obtained
by applying mutex watershed on Fig. 19 left image is
illustrated in Fig. 20. Figure 21 replicated from [54,56]
shows an image from EM segmentation challenge [5]
and illustrates how mutex watershed works on a real
image.

Algorithm 5 Mutex watershed [54]
Input An edge-weighted graph G = (V, E = E+ ∪

E−, W = W+ ∪ W −)
Output Clusters defined by A∗ ∩ E+.

1: Initialization A = ∅
2: for e ∈ E+ ∪ E− in the descending order of W+ ∪ W −

do
3: if C0(A ∪ {e}) = ∅ and C1(A ∪ {e}) = ∅ then
4: A = A ∪ {e}
5: A∗ = A
6: Return A∗

To summarise, application of PW to multi-cut allows
one to practically implement a multi-cut minimization
and obtain high quality image segmentation results. In
case of astronomical images, learning appropriate edge
weights (using a neural network architecture) suitable
for mutex watershed algorithm is a potentially useful
research direction.

8 Explaining the links between spanning
tree filters and shortest path filters using
PW

Recall from Sect. 1 that image filtering is the process of
summarizing the image by removing redundant details.
The relevant information and the redundant details
depend on the application at hand. A popular class of
filters are edge-preserving image filters i.e. an opera-
tion on the image that blurs the details within objects
and preserves the object boundaries. The bilateral filter

123



2354 Eur. Phys. J. Spec. Top. (2021) 230:2337–2361

Fig. 21 This figure is replicated from [54,56]. Left: Over-
lay of raw data from the ISBI 2012 EM segmentation chal-
lenge and the edges for which attractive (green) or repul-
sive (red) interactions are estimated for each pixel using a
CNN. Middle: vertical/horizontal repulsive interactions at

intermediate/long range are shown in the top/bottom half.
Right: Active mutual exclusion (mutex) constraints that the
proposed algorithm invokes during the segmentation process

illustrated in Fig. 2 is an example of an edge-preserving
filter. There is a vast amount of literature on edge-
preserving filters.

In this section, we restrict the discussion to two fam-
ilies of graph-based weighted average filters namely
shortest path filters and spanning tree based filters. As
the name suggests, graph-based filters implies that the
filtering is performed using a graph model on the image.
The filtered value at each pixel is given by a weighted
average of the other pixels in the image. The pairwise
weights in the shortest path filters arise from a shortest
path between pairs of pixels. On the other hand, the
pairwise weights in the spanning tree-based filters are
computed from spanning trees.

8.1 Shortest path filters

Recall from Sect. 2 that dissimilarity based edge-
weighted graphs are used for image filtering. The family
of the shortest path filters can be described as follows.
The filtered value at pixel i is given by

SPFi =
∑

j∈V

gi(j)Ij , (34)

where gi(j) =
exp(− Θ(i,j)

σ )
∑

q∈V exp(− Θ(i,q)
σ )

. Θ(i, j) is the small-

est number of edges on paths among all shortest path
between pixels i and j on the image graph. σ is a
smoothing parameter. Shortest paths can be defined in
many ways [13,24,35]. Figure 22 illustrates a standard
definition of a shortest path distance. Intuitively, pixels
which are in the same object are separated by shorter
paths when compared to pixels across objects. Thus, it
is expected that such a filter would result in smoothing
of the image keeping the object boundaries intact.

Although, shortest path filters are theoretically promis-
ing, they are computationally expensive. This is because
an exact computation [25] requires finding shortest

paths between all pairs of vertices in the graph which
is O(|V |3) where |V | is the number of vertices of the
image graph.

8.2 Spanning tree filters

On the other hand, spanning tree based filters were
introduced independently w.r.t. shortest path filters.
The spanning tree filters are weighted average fil-
ters. The pairwise similarity weights are computed on
an arbitrary minimum spanning tree (MinST) on the
image graph. A specific spanning tree filter namely Tree
filter [6] can be described as follows. The filtered value
at pixel i is given by

TFi =
∑

j

ti(j)Ij , (35)

where ti(j) = exp(− D(i,j)
σ )

∑
q exp(− D(i,q)

σ )
. D(i, j) is the number of

edges on an arbitrary MinST of the graph (this quan-
tity is well defined as given an arbitrary spanning tree,
there exists a unique path between every pair of ver-
tices in the graph). σ is a smoothing parameter. An
illustration of the spanning tree filter on a toy example
is provided in Fig. 22. Figure 23 provides an illustration
of the tree filter on a simulated astronomical image. In
general, for pairs of pixels i and j belonging to different
objects, D(i, j) is large. However, there is at least one
boundary edge in any arbitrary MinST. In practice such
edges are usually negligible in number. Thus, tree filter
works reasonably well in practice except for a small leak
at object boundaries. A tree filter can be computed effi-
ciently in linear time [58] (using two passes, bottom-up
and top-down).

In [21,23], it was shown using PW framework that
the tree filter is a fast approximation to the contrast-
invariance version of a shortest path filter. The exact
contrast invariant version of a shortest path filter was
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Fig. 22 Left: A toy image represented with an edge-
weighted graph. Vertices represent pixels and the edge
weights represent dissimilarity between adjacent vertices.
The image contains two objects and the pixels correspond-
ing to different objects are highlighted in different colours.
Middle: The shortest path between the pixels i and j is
highlighted in red. Here, a shortest path is determined by
the sum of the weights of its edges. Observe that every

other path between i and j has sum of the edge weights
strictly greater than that of the path highlighted in red.
Thus Θ(i, j) = 3. Right: The unique path between the pix-
els i and j is highlighted in red, i.e. D(i, j) = 5. Notice that
for many pairs of pixels across objects, i.e. pairs such that
both pixels belonging to different objects, the separation on
the MinST is larger than that of their spatial distance

Fig. 23 Top left: A
simulated astronomical
image to be segmented
(same as left image in Fig.
8). Top right: A Canny
edge detector applied on
the image on top left.
Bottom left: A tree filter is
implemented on the image
on left using Eq. 35.
Bottom right: A Canny
edge detector applied on
the tree filtered image. The
boundaries identified by a
simple edge detector such
as Canny edge detector are
more reliable on the tree
filtered image

123



2356 Eur. Phys. J. Spec. Top. (2021) 230:2337–2361

characterized as a weighted average filter with the pair-
wise weights computed on UMinST of the image graph.
Recall that UMinST of a graph is a subgraph gener-
ated by edges of all MinST’s of the graph. Two other
approximations to obtain the contrast invariant version
of a shortest path filter, namely order-based approxi-
mation and depth-based approximation have been pro-
posed in [23]. Algorithms 6, 7, and 8 provide details
on implementation of these approximations. The key
idea to implementing these approximations is that for
every pixel in the image, there exists a spanning tree
from which the pairwise weights for filtering this pixel
can be computed. Such a tree is termed as an adaptive
spanning tree in [23]. These adaptive spanning trees can
be computed in parallel to obtain these approximations
more efficiently. Further, it was shown empirically that
the tree filter and these approximations yield similar
results in practice.

Algorithm 6 Generic algorithm to compute UMinST
filter [23]

Input A 4-adjacency graph G = (V, E, W ) of an image
I, Adaptive Spanning Trees Ti for each i ∈ V , smoothing
parameter σ

Output Filtered image S.

1: for i ∈ V do
2: Starting from i on Ti, use Sp = Ip +∑

q∈children of p exp(−1
σ

)Sq recursively to compute Si

3: Return S

Algorithm 7 Depth-truncated adaptive spanning tree
[23]

Input UMinST of the graph G = (V, E, W ), depth d
and pixel i

Output Depth-Truncated Adaptive Spanning Tree
Ti,d.

1: Set X = {i} and Ti,d = (i, ∅)
2: while True do
3: break = True
4: for e in shortest edges from X to Xc do
5: if dist(e, i, Ti,d) < d then
6: Add e to the edge-set of Ti,d

7: break = False
8: if break = True then
9: Return Ti,d.

9 Experiments on simulated astronomical
sky images

In this section, experiments are performed on simu-
lated astronomical sky images. It is a common prac-
tice to use simulations [31,40,47,52] as it is difficult to

Algorithm 8 Order-truncated adaptive spanning tree
[23]

Input UMinST of the graph G = (V, E, W ), kernel size
N and pixel i, path cost function f determined by reverse
lexicographic ordering of the edges in the path [23]

Output Order-Truncated Adaptive Spanning Tree
T̂i,N .

1: Set T̂i,N = ∅, Q = I, Parent(j) = null for each j ∈ I
and count = 0

2: while Q 
= ∅ and count < N do
3: Remove from Q a pixel j such that f(P ∗(j)) is min-

imum and add it to T̂i,N

4: count+ = 1
5: for each pixel k such that (j, k) ∈ E do
6: if f(P ∗(j)· < j, k >) < f(P ∗(k)) then
7: set Parent(k) = j

8: Return T̂i,N

obtain ground truth segmentation for real astronomi-
cal images. The sky images are generated using the R
code developed by authors in [43]. First, noise-free sky
images with light sources are generated. A threshold is
then applied on the noise-free simulations to obtain a
ground truth foreground and background. Typical noise
such as Viking object shot-noise, sky noise and Pareto
noise are then added to simulate real sky images. See
Fig. 24 for an illustration. The noisy images are used
for segmentation and filtering.

The goal of segmentation is to separate the fore-
ground from the background, i.e. separate the back-
ground sky from the light sources. Recall that one
of the the aims of the article is to demonstrate that
the implementation of classic graph-based cost mini-
mization methods and the corresponding PW versions
yield similar results. F-ratio and AUC curves are used
evaluating segmentation and filtering results. As the
tutorial article does not attempt to achieve state-of-
the-art results, sophisticated measures such as pairs-
of-pixel method [42] or tailor-made evaluation mea-
sures for astronomical sky images such as described in
[31] are not used. The second aim of the article is to
show that the PW versions scale well when compared
to the classic implementations. This is demonstrated
experimentally by implementing both the algorithms
on a same machine (Intel(R) Xeon(R) CPU E5620 at
2.40GHz with RAM size of 16 GigaBytes) and compar-
ing the computation times. All the segmentation meth-
ods described in the article are similar to implement.
Hence, segmentation experiments are performed com-
paring only one segmentation method, namely isoperi-
metric partitioning, i.e. the classic implementation of
isoperimetric partitioning versus the corresponding PW
version. Also, these segmentation methods yield hard
labels. Hence, F-ratio is used to evaluate the quality
of the segmentation. The higher the F-ratio, the better
the segmentation results.

The isoperimetric partitioning is performed as fol-
lows: the noisy images are pre-processed with a thresh-
old operation followed by a morphological opening [45].
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Fig. 24 Top left: A simulation of a noise-free astronomical
sky image. Top middle: A ground truth of foreground and
background obtained by thresholding the image on left. Top
right: Viking object shot-noise, sky noise and Pareto noise
added to the noise-free image to simulate a real astronomical
sky image [43]. A median filtered version of the noisy image
is illustrated for better visualization. Bottom: All three seg-
mentations are obtained on the raw noisy image as described
in the text. Bottom left: Result of segmentation obtained by

implementation of classic approach to isoperimetric segmen-
tation (see Eq. 21). Bottom middle: PW implementation of
isoperimetric segmentation (i.e. solving Eq. 22 on UMaxST)
yields similar results to that of the classic approach. Bottom
Right: Result of solving Eq. 22 on an arbitrary MaxST, i.e.
the method in [26]. Observe that qualitatively these results
appear different when compared to the figure on bottom
left. This observation is consistent with left figure in Fig. 12

The vertices corresponding to the bright pixels in the
pre-processed image are identified as the foreground
pixels. A 4-adjacency similarity graph is constructed
on the image. Each of the vertices corresponding to the
identified foreground pixels in the preprocessing step
are additionally connected to an auxiliary vertex. The
weights of the edges incident on the auxiliary vertex are
set to a value slightly larger than the highest weight
among the edges of the 4-adjacency graph. Isoperimet-
ric partitioning is recursively performed on this graph.
The auxiliary vertex is then discarded and the labels
of the other vertices, i.e. image pixels are returned.
This yields an over-segmentation on some of the images
i.e. more than two labels in the image. Some of the
labels are merged together such that the merging results
in only two labels. Table 1 contains a comparison of
the F ratios obtained on 30 simulated images of sizes
1000 × 1000 for classic implementation of isoperimetric
segmentation, PW counterparts, and on an arbitrary
MaxST as proposed in [26]. It can be observed from the
table that the classic implementation and PW imple-
mentation yields a similar F1 ratio while the MaxST
implementation yields a lower F1 ratio.

Figure 25 compares the scalability of the PW-based
isoperimetric segmentation with the classic implemen-

tation of isoperimetric segmentation. Simulated astro-
nomical images of 10 different sizes and 30 images of
each size, starting from a smallest size of 100 × 100
to a largest size of 1000 × 1000 are used. The lth size
has width and height each of 100l, i.e. its number of
pixels are l2 times the number of pixels in the small-
est size. The ratio of the mean computational time for
each image size to the mean computational time of the
smallest size are plotted on the y axis. The values on the
x axis have to be interpreted as the ratio of number of
pixels in the image to the number of pixels in a 100×100
image. For example, a value of 81 on the x axis indi-
cates that the image is of the shape 900 × 900 and has
81×104 pixels in total. It can be seen that PW counter-
part of the isoperimetric segmentation scales well (the
green plot) while the classic version (the blue plot) is
not scalable.

For comparing the filtering methods, a bilateral fil-
ter is used to compare against the tree filter instead of
a shortest path filter. This is because a bilateral filter
is a widely used as an edge-preserving filter in prac-
tice. Also, shortest path filters are prohibitively slow
to implement. The filters are compared as follows: a
noisy image is filtered using both the filtering meth-
ods. As these filters are supposed to smooth pixel val-
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Table 1 F ratio

Mean F1 ratio on 30 simulated images

Iso PW Iso MST Iso

Mean F -ratio 0.74 0.75 0.68
Std. Dev. F -ratio 0.07 0.06 0.08

Fig. 25 X -axis represents the number of pixels (in mul-
tiples of 104) in the image on which segmentation is per-
formed. A point (x0, y0) has to be interpreted as follows: y0

represents the ratio of mean time taken for implementation
of a segmentation method on an image with x0 × 104 pix-
els to the mean time taken to implement the same method
on an image with 104 pixels. The blue plot corresponds to
the classic implementation of isoperimetric partitioning and
the green plot corresponds to the PW version. It can be
clearly seen that the PW version scales much better when
compared to the classic implementation

ues within objects without losing the boundary details,
simple thresholds on the filtered images are expected
to achieve good segmentation results. The foreground–
background segmentation problem as described ear-
lier is used for this purpose. The filtered images are
post-processed with an opening operator [46] and each
threshold, the segmentation result is compared against
the ground truth w.r.t. AUC. An average AUC mea-
sure over each threshold is used as a quality measure
of the segmentation. A higher average AUC indicates a
better quality segmentation and thus a better filtering
approach. It can be seen from Table 2 that tree filter
outperforms the classic bilateral filter used for edge-
preserving filtering.

A tree filter, an approximation to the contrast invari-
ance implementation of shortest path filter thus yields
good filtering results. It is easy to see that the bottle-
neck of the tree filter is the computation of a MinST.
This is because the filtered values are obtained on the
tree in two passes and can be obtained in linear time.
On the other hand, a MinST computation required
a sorting step which is O(|V |log|V |). Thus, tree fil-
ter scales better than a shortest path filter which has
asymptotic complexity of O(|V |3).

10 Conclusions and perspectives

In this article, several popular graph-based approaches
to image segmentation and filtering, namely random
walker segmentation, isoperimetric partitioning, ratio
cut, multi-cut and shortest path edge-preserving fil-
ters are revisited. The applications of PW framework
to these methods are surveyed and analysed from the
perspective of contrast invariance. It is shown that
the PW versions of these methods can be visualized
as contrast-agnostic fast approximations to the corre-
sponding methods. These methods fall under a large
class of cost minimization problems on finite graphs.
This class encompasses all cost functions that can be
written as a weighted linear combination of pairwise
penalties on pixel labels such that the weights are
monotonic functions of the corresponding weights of the
edges connecting the pixels. On this particular class of
cost minimization problems, the PW framework oper-
ates on a specific substructure of the graph, i.e. either
of UMinST or UMaxST. For graph-based cost min-
imization approaches to image processing with more
general cost functions, the PW framework can still be
applied by considering the sequence of nested mini-
mization problems as mentioned in the article. This
results in scalable algorithms and is potentially use-
ful in image processing applications such as astronomy
where images with massive number of pixels needs to
be processed.

A recent trend in the usage of graph-based opti-
mization in imaging applications is to learn the edge
weights of the underlying image graph using deep neu-
ral networks. For example, an end-to-end learned ran-
dom walker proposed in [9] achieved state-of-the-art
results on some image segmentation database [20]. How-
ever, these methods do not scale well. PW is compat-
ible with such end-to-end learned graph-based meth-
ods and can be applied at the test phase. This would
be useful in building scalable state-of-the-art mod-
els for image segmentation and filtering. As a cur-
rent instance of such research direction, the mutex
watershed [54–56] was shown to achieve state-of-the-art
results on a popular image segmentation database [5]
and high-quality results on popular semantic segmen-
tation databases [14,38], using edge-weights obtained
thanks to a CNN architecture. In case of astronomi-
cal images, learning appropriate edge weights (using a
neural network architecture) suitable for mutex water-
shed algorithm is a potentially useful research direc-
tion. Essentially, domain knowledge of the physical
characteristics of astronomical images can be incor-
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Table 2 AUC

Mean AUC on 30 simulated images

BF TF

Mean 0.61 0.79
Std. Dev. 0.03 0.03

porated into the weights of edges. PW has also been
used for other interesting applications such as surface
reconstruction [16] and estimation of separating planes
between touching 3D objects [34]. Anisotropic diffusion
for L0 [17] is another interesting direction of research.
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34. C. Jaquet, E. Andó, G. Viggiani, H. Talbot, Estima-
tion of separating planes between touching 3d objects
using power watershed. In: International Symposium on
mathematical morphology and its applications to signal
and image processing, (Springer, 2013), pp. 452–463
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