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ON BEST APPROXIMATIONS TO COMPACT OPERATORS

DEBMALYA SAIN

Abstract. We study best approximations to compact operators between Ba-
nach spaces and Hilbert spaces, from the point of view of Birkhoff-James or-
thogonality and semi-inner-products. As an application of the present study,
some distance formulae are presented in the space of compact operators. The
special case of bounded linear functionals as compact operators is treated sep-
arately and some applications to best approximations in reflexive, strictly con-
vex and smooth Banach spaces are discussed. An explicit example is presented
in ℓn

p
spaces, where 1 < p < ∞, to illustrate the applicability of the methods

developed in this article. A comparative analysis of the results presented in
this article with the well-known classical duality principle in approximation
theory is conducted to demonstrate the advantage in the former case, from a
computational point of view.

1. Introduction

The purpose of this article is to study best approximations in the space of com-
pact operators between Banach spaces and Hilbert spaces, and to present some
distance formulae in certain special cases. Let us first establish the notations and
the terminologies to be used throughout the article.
The letters X,Y,Z stand for Banach spaces and the letter H is used to denote
a Hilbert space. The symbol 〈 , 〉 is used to denote the inner product on H.
Let θ denote the zero vector of any vector space, other than the scalar field. We
work with both real and complex Hilbert spaces and only real Banach spaces. Let
BX = {x ∈ X : ‖x‖ ≤ 1} and SX = {x ∈ X : ‖x‖ = 1} be the unit ball and the
unit sphere of X, respectively. X is said to be strictly convex if every element of
SX is an extreme point of BX. Let K(X,Y) denote the Banach space of all compact
operator from X to Y, endowed with the usual operator norm and let X∗ denote
the dual space of X. For the sake of brevity, we write K(X,Y) = K(X), whenever
X = Y. Given T ∈ K(X,Y), we use the notations R(T ) and N (T ) to denote the
range of T and the kernel of T, respectively. The study of best approximation(s) to
a given element out of a given subspace is a classical area of research in functional
analysis. Let us recall the following basic definition in this context:

Definition 1.1. Given an element x ∈ X and a subspace Y of X, let dist{x,Y} =
inf{‖x − z‖ : z ∈ Y} denote the distance between x and Y. An element y ∈ Y is
said to be a best approximation to x out of Y if ‖x− y‖ = min{‖x− z‖ : z ∈ Y}.

It is well-known that in general neither the existence nor the uniqueness of best
approximation is guaranteed. However, best approximation(s) always exist for
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finite-dimensional subspaces, and more generally for compact subsets of infinite-
dimensional subspaces. Moreover, best approximation is unique in a strictly con-
vex Banach space, provided it exists. Clearly, the above definition makes sense
in the space of operators between Banach (Hilbert) spaces, and it is worth study-
ing only when x /∈ Y. For the study of best approximations of linear operators
in various contexts and under additional assumptions, one may consult [1, 2, 18]
and the references therein. The study of best approximations in Banach spaces
is intimately connected to the concepts of Birkhoff-James orthogonality and semi-
inner-products. Given x, y ∈ X, we say that x is Birkhoff-James orthogonal to y,
written as x ⊥B y, if ‖x + λy‖ ≥ ‖x‖ for all scalars λ. It is easy to observe that
Birkhoff-James orthogonality is homogeneous, i.e., x ⊥B y implies that αx ⊥B βy
for all scalars α, β. Moreover, we note that in a Hilbert space, the Birkhoff-James
orthogonality relation ⊥B coincides with the usual orthogonality relation ⊥ induced
by the underlying inner product 〈 , 〉. Following [13], we say that y ∈ x+(y ∈ x−) if
‖x+λy‖ ≥ ‖x‖ for all λ ≥ 0(λ ≤ 0). We use the notation x⊥ = {y ∈ X : x ⊥B y} to
denote the Birkhoff-James orthogonality set of the vector x.We refer the readers to
the pioneering articles [4, 7, 8] for the basic applications of Birkhoff-James orthog-
onality in understanding the geometry of Banach spaces, and to [3, 13, 15, 16, 17]
for some of the more recent works in Banach spaces, involving the said notion of
orthogonality. It is easy to observe that y ∈ Y is a best approximation to x out of
Y if and only if (x− y) ⊥B Y, i.e., (x− y) ⊥B z for all z ∈ Y. We next mention the
concept of semi-inner-products in Banach spaces, which is integral to the theme of
this article.

Definition 1.2. Let X be a real Banach space. A function [ , ] : X×X −→ R is a
semi-inner-product (s.i.p.) if for any α, β ∈ R and for any x, y, z ∈ X, it satisfies
the following:
(a) [αx+ βy, z] = α[x, z] + β[y, z],
(b) [x, x] > 0, whenever x 6= 0,
(c) |[x, y]|2 ≤ [x, x][y, y],
(d) [x, αy] = α[x, y].

It was proved in [5] (see also [14] for a rigorous proof of the same) that every
Banach space (X, ‖.‖) can be represented as an s.i.p. space (X, [ , ]) such that for
all x ∈ X, it holds that [x, x] = ‖x‖2. Whenever we speak of an s.i.p. [ , ] in the
context of a Banach space X, we implicitly assume that [ , ] is compatible with
the norm, i.e., for all x ∈ X, we have, [x, x] = ‖x‖2. In general, there can be many
compatible s.i.p. corresponding to a given norm. As observed by Lumer in [10],
there exists a unique s.i.p. on a normed space if and only if the space is smooth.
We recall that X is said to be smooth if there exists a unique supporting hyperplane
to BX at each point of SX.

Bhatia and S̆emrl studied Birkhoff-James orthogonality of matrices (viewed as
operators on a finite-dimensional Hilbert space) and obtained some useful distance
formulae in their seminal article [3]. Indeed, Theorem 1.1 of [3], also known as the

Bhatia-S̆emrl Theorem, gives a complete characterization of the Birkhoff-James
orthogonality of matrices. For an analogous study of orthogonality of operators
between real Banach spaces, we refer the readers to [13, 15, 16]. For the study of
orthogonality and best approximations in the space of matrices (a special case of
compact operators on a Hilbert space), one should see [6, 11]. The notion of the
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norm attainment set of an operator plays a central role in the study of orthogonal-
ity of operators. Given T ∈ K(X,Y), let MT = {x ∈ SX : ‖Tx‖ = ‖T ‖} denote
the norm attainment set of the operator T. Observe that whenever X is reflexive,
it follows that MT 6= ∅.

Our aim in the present article is to further build upon the ideas presented in
the above mentioned works, in the space of compact operators. We obtain a com-
plete characterization of best approximations to a given compact operator out of
a given finite-dimensional subspace, separately for Hilbert spaces and reflexive Ba-
nach spaces. In particular, distance formula for a compact operator and a one-
dimensional subspace are presented in both the cases. As the most important part
of this article, we treat the special case of functionals as compact operators and
present an efficient algorithm to study the best approximation problems in reflexive
smooth and strictly convex Banach spaces. Explicit examples are presented in the
setting of ℓnp spaces to illustrate the applicability of the methods developed here. In
the short final section of this article, we make a comparative analysis of our results
with the classical duality principle in approximation theory. Indeed, we show that
from a purely computational point of view, the use of orthogonality can evidently
strengthen the well-known duality principle.

2. Best approximations to compact operators

We begin with the observation that Bhatia-S̆emrl type theorems for compact
operators on a reflexive Banach space immediately give a complete characterization
of best approximations out of a one-dimensional subspace.

Proposition 2.1. Let X be a reflexive Banach space and let Y be any Banach space.
Let T,A ∈ K(X,Y) be linearly independent and let λ0 ∈ R. Then the following are
equivalent:

(i) (T − λ0A) ⊥B A,
(ii) there exist x, y ∈ MT−λ0A and s.i.p. [ , ]1, [ , ]2 on Y such that [Ax, Tx −
λ0Ax]1 ≥ 0 and [Ay, Ty − λ0Ay]2 ≤ 0,

(iii) λ0A is a best approximation to T out of span{A}.
Proof. The equivalence of (i) and (iii) follows from the definitions of Birkhoff-James
orthogonality and best approximations. Let us first prove that (i) implies (ii).
It follows from Theorem 2.1 of [16] that there exist x, y ∈ MT−λ0A such that
Ax ∈ ((T − λ0A)x)

+ and Ay ∈ ((T − λ0A)y)
−. Applying Theorem 2.4 of [17], we

deduce that (ii) holds true. In similar spirit, applying the converses of these two
theorems, we obtain that (ii) implies (i). �

If MT−λ0A is of a particularly nice form then we have a refinement of the above
observation. The proof is omitted as it follows directly from Theorem 2.2 of [17]
and the observation that (T −λ0A)x ⊥B Ax if and only if there exists an s.i.p. [ , ]
on Y such that [Ax, Tx− λ0Ax] = 0.

Proposition 2.2. Let X be a reflexive Banach space and let Y be any Banach
space. Let T,A ∈ K(X,Y) be linearly independent and let λ0 ∈ R. Also assume
that MT−λ0A = ±D, where D is a connected subset of SX. Then the following are
equivalent:

(i) (T − λ0A) ⊥B A,
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(ii) there exists x ∈MT−λ0A and an s.i.p. [ , ] on Y such that [Ax, Tx−λ0Ax] = 0,
(iii) λ0A is a best approximation to T out of span{A}.

In case of compact operators on a Hilbert space, we have yet another refinement
of both the above results.

Proposition 2.3. Let H be a Hilbert space and let T,A ∈ K(H) be linearly inde-
pendent. Let λ0 ∈ C. Then the following are equivalent:

(i) (T − λ0A) ⊥B A,
(ii) there exists x ∈MT−λ0A such that 〈Tx,Ax〉 = λ0‖Ax‖2,
(iii) λ0A is a best approximation to T out of span{A}.
Proof. To prove the equivalence of (i) and (ii), we first observe that the inner
product 〈 , 〉 is the only s.i.p. on H. Applying Remark 3.1 of [3] (also see Theorem
2.2 of [17] and Theorem 2.2 of [15] for the real case), and the compactness of the
operator T − λ0A, we deduce that (T − λ0A) ⊥B A if and only if there exists x ∈
MT−λ0A such that 〈Ax, Tx − λ0Ax〉 = 0. Now the desired conclusion follows from
the conjugate symmetry and additivity properties of the inner product 〈 , 〉. �

Remark 2.4. In view of the above results, a natural question arises regarding the
uniqueness of best approximation to a compact operator out of a one-dimensional
subspace. This can be answered in terms of a strengthening of Birkhoff-James or-
thogonality introduced in [12]. Given x, y ∈ X, we say that x is strongly orthogonal
to y in the sense of Birkhoff-James, written as x ⊥SB y, if ‖x + λy‖ > ‖x‖ for
all λ 6= 0. In each of the above propositions, it is easy to observe that λ0A is the
unique best approximation to T out of span{A} if and only if (T − λ0A) ⊥SB A.

In Theorem 2.9 of [17], a distance formula has been presented for a compact
operator and a one-dimensional subspace, under additional assumptions on norm
attainment of certain operators. We would like to observe that the norm attainment
condition can be relaxed, without any essential changes to the argument presented
there. To this end, we first prove the following modification of Theorem 2.5 of [17].

Lemma 2.5. Let X be a reflexive Banach space and let Y be any Banach space.
Let T,A ∈ K(X,Y) be such that T ⊥B A and MT = ±D, where D is a connected
subset of SX. Then there exists an s.i.p. [ , ] on Y such that

‖T ‖ = max{|[Tx, y]| : x ∈ SX, y ∈ SY, y ⊥B Ax}
= max{|[Tx, y]| : x ∈ SX, y ∈ SY, [Ax, y] = 0}.

Proof. It follows from the defining properties of s.i.p. that given any s.i.p. [ , ] on
Y, the following holds true:

max{|[Tx, y]| : x ∈ SX, y ∈ SY, y ⊥B Ax} ≤ ‖T ‖.
On the other hand, Theorem 2.2 of [17] implies that there exists x0 ∈MT such

that Tx0 ⊥B Ax0. If Tx0 = θ then T is the zero operator and the result follows
trivially. Let us assume that Tx0 6= θ. Now, taking x = x0 and y = Tx0

‖Tx0‖
, we

obtain by the homogeneity of Birkhoff-James orthogonality that x ∈ SX, y ∈ SY

and y ⊥B Ax. Since

|[Tx, y]| = |[Tx0,
T x0
‖Tx0‖

]| = ‖Tx0‖ = ‖T ‖,
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the first equality follows. To prove the second equality, we only need to observe
that y ⊥B Ax if and only if there exists an s.i.p. [ , ] on Y such that [Ax, y] = 0.
Indeed, applying Theorem 2.1 of [7], there exists f ∈ SY∗ such that f(y) = ‖y‖ = 1
and f(Ax) = 0. Following the argument presented by Lumer in Theorem 2 of [10],
we can construct an s.i.p. [ , ] on Y such that [Ax, y] = f(Ax) = 0. This establishes
the lemma. �

Remark 2.6. We would like to note that the above lemma holds true for compact
operators on a Hilbert space, real or complex, with the s.i.p. replaced by the
underlying inner product 〈 , 〉. This can be verified easily by an easy application of
Remark 3.1 of [3].

Applying the above lemma, we next obtain an improvement of Theorem 2.9 of
[17].

Theorem 2.7. Let X be a reflexive Banach space and let Y be any Banach space.
Let T,A ∈ K(X,Y) be such that T /∈ span{A}. Let λ0A be a best approximation to
T out of span{A}. Also assume that MT−λ0A = ±D, where D is a connected subset
of SX. Then there exists an s.i.p. [ , ] on Y such that

dist(T, span{A}) = max{|[Tx, y]| : x ∈ SX, y ∈ SY, [Ax, y] = 0}.
Proof. As T −λ0A,A are compact, (T −λ0A) ⊥B A and MT−λ0A = ±D, where D
is a connected subset of SX, it follows from Lemma 2.5 that there exists an s.i.p. [ , ]
on Y such that ‖T − λ0A‖ = max{|[(T − λ0A)x, y]| : x ∈ SX, y ∈ SY, [Ax, y] = 0}.
Now, the desired result follows from the properties of s.i.p. and the fact that
‖T − λ0A‖ = dist(T, span{A}). This establishes the theorem. �

The above distance formula becomes more useful from a computational point of
view when [ , ] is the unique s.i.p. on Y, or, equivalently, when Y is smooth. In
particular, given any A ∈ K(X,Y), the distance of a compact operator T ∈ K(X,Y)
from span{A} can be obtained by computing the maximum of the quantities [Tx, y],
where x ∈ SX, y ∈ SY, and [Ax, y] = 0, provided the condition on the norm attain-
ment set is satisfied. The interesting thing to observe in this context is that we
do not require the smoothness condition on X. This is illustrated in the following
example:

Example 2.8. Let T,A ∈ K(ℓ2∞, ℓ
2
2) be given by

T (u, v) = (u+ 2v, 5u+ 5v), A(u, v) = (u, 0) for all (u, v) ∈ ℓ2∞.

Let us compute dist(T, span{A}), by applying Theorem 2.7. Given any B ∈
K(ℓ2∞, ℓ

2
2), we begin with the following two basic observations:

(i) ‖B‖∞,2 = max{‖B(1, 1)‖2, ‖B(1,−1)‖2},
(ii) if ‖B(1, 1)‖2 6= ‖B(1,−1)‖2 then MB is necessarily of the form MB = ±D,
where D is a connected subset of Sℓ2

∞

. In fact, it is easy to show by using the
convexity of norm that in this case D must be singleton.

Now, taking B = T − λA, where λ ∈ R, an easy computation reveals that
‖B(1, 1)‖2 = ‖B(1,−1)‖2 if and only if λ = λ1 = 13.5. Let λ0A be a best ap-

proximation to T out of span{A}. Since ‖T − λ1A‖∞,2 = 14.5 > ‖T ‖∞,2 =
√
109,

hence λ1 6= λ0, so for B0 = T − λ0A, we have ‖B0(1, 1)‖2 6= ‖B0(1,−1)‖2, and



6 DEBMALYA SAIN

we conclude that the norm attainment condition on the operator T − λ0A in
Theorem 2.7 is satisfied. Taking any x = (u, v) ∈ Sℓ2

∞

, we note that Ax is a
scalar multiple of (1, 0) ∈ Sℓ2

2

. Therefore, by the homogeneity of Birkhoff-James

orthogonality, if y ∈ Sℓ2
2

is such that y ⊥B Ax, then y = ±(0, 1). In particular,

|[Tx, y]| = |[(u+2v, 5u+5v), (0, 1)]|= |5u+5v|, where [ , ] = 〈 , 〉, the usual inner
product on R2. Maximizing over (u, v) ∈ Sℓ2

∞

, we obtain by applying Theorem 2.7,

dist(T, span{A}) = 10.

Remark 2.9. The above example shows that Theorem 2.7 is a proper improvement
of Theorem 2.9 of [17]. Indeed, Theorem 2.9 of [17] is not applicable in case of the
above example, as it can be easily checked that MT−λ1A = {±(1, 1),±(1,−1)},
which is not of the desired form.

In case of compact operators on a Hilbert space, we have the following corollary
to Theorem 2.7, the proof of which is omitted as it is now obvious in light of Remark
2.6.

Corollary 2.10. Let H be a Hilbert space and let T,A ∈ K(H) be such that
T /∈ span{A}. Then

dist(T, span{A}) = max{|〈Tx, y〉| : x, y ∈ SH, y ⊥ Ax}.
Remark 2.11. When H is finite-dimensional, the above corollary was proved in
[3], for the special case A = I, where I is the identity operator on H. In this context,
the significance of Theorem 2.7 is to illustrate that the concerned distance formula
is valid for compact operators on a reflexive Banach space, with certain natural
modifications. Moreover, the corresponding statement in case of Hilbert spaces
follows directly from Theorem 2.7.

We next obtain a complete characterization of the best approximation to a com-
pact operator out of an n−dimensional subspace, where n ≥ 2, under an additional
condition on the norm attainment set.

Theorem 2.12. Let X be a reflexive Banach space, let Y be any Banach space
and let n ≥ 2. Let T,A1, A2, . . . , An ∈ K(X,Y) be such that A1, A2, . . . , An are
linearly independent and T /∈ Z, where Z = span{A1, A2, . . . , An}. Also assume
that MT−S = ±DS , where DS is a connected subset of SX, for every S ∈ Z. Let
αi ∈ R, where 1 ≤ i ≤ n. Then

∑n

i=1 αiAi is a best approximation to T out of Z if
and only if given any n scalars β1, β2, . . . , βn, there exist scalars γ1, γ2, . . . , γn and
s.i.p. [ , ]1, [ , ]2 on Y such that the following holds true:

‖T −
n∑

i=1

βiAi‖ = max{|[(T −
n∑

i=1

βiAi)x, y]1| : x ∈ SX, y ∈ SY, y ⊥B

n∑

i=1

γiAix}

≥ max{|[(T −
n∑

i=1

αiAi)x, y]2| : x ∈ SX, y ∈ SY, y ⊥B

n∑

i=1

γiAix}

= ‖T −
n∑

i=1

αiAi‖.

Proof. As the sufficient part of the theorem follows trivially, we prove only the
necessary part. An easy application of the Hahn-Banach Theorem shows that
(T −∑n

i=1 βiAi)
⊥ contains a subspace of codimension one in K(X,Y). Since n ≥ 2,
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it follows that (T−∑n

i=1 βiAi)
⊥
⋂
Z 6= {θ}. Let ∑n

i=1 γiAi ∈ (T−∑n

i=1 βiAi)
⊥
⋂
Z

be non-zero, where γi(1 ≤ i ≤ n) are scalars. Since (T −∑n

i=1 βiAi) ⊥B

∑n

i=1 γiAi,
and M(T−

∑
n
i=1

βiAi) is of the desired form, applying Lemma 2.5, we obtain that

‖T −
n∑

i=1

βiAi‖ = max{|[(T −
n∑

i=1

βiAi)x, y]1| : x ∈ SX, y ∈ SY, y ⊥B

n∑

i=1

γiAix},

for some s.i.p. [ , ]1 on Y, proving the first equality. On the other hand, we also have
that (T −∑n

i=1 αiAi) ⊥B

∑n

i=1 γiAi ∈ Z, as
∑n

i=1 αiAi is a best approximation to
T out of Z. Therefore, applying similar arguments, we obtain that

‖T −
n∑

i=1

αiAi‖ = max{|[(T −
n∑

i=1

αiAi)x, y]2| : x ∈ SX, y ∈ SY, y ⊥B

n∑

i=1

γiAix},

for some s.i.p. [ , ]2 on Y, proving the last equality. The remaining inequality
follows from the fact that ‖T −∑n

i=1 βiAi‖ ≥ ‖T −∑n

i=1 αiAi‖. This establishes
the theorem. �

In view of the above theorem, we note that in case Y is smooth, [ , ]1 = [ , ]2.
Regarding the uniqueness of best approximation, we make the following remark.

Remark 2.13.
∑n

i=1 αiAi is the unique best approximation to T out of Z =
span{A1, A2, . . . , An}, if and only if the inequality in Theorem 2.12 is strict. This
can be verified easily by following the proof of the said theorem.

In case of compact operators on a Hilbert space, we have the following corollary
to Theorem 2.12. The proof is an easy adaptation of the proof of Theorem 2.12
since there is a unique s.i.p. in the Hilbert space.

Corollary 2.14. Let H be a Hilbert space and let T,A1, A2, . . . , An ∈ K(H) be
such that A1, A2, . . . , An are linear independent and T /∈ span{A1, A2, . . . , An}. Let
αi ∈ C, where 1 ≤ i ≤ n. Then

∑n

i=1 αiAi is a best approximation to T out of
span{A1, A2, . . . , An} if and only if given any n scalars β1, β2, . . . , βn, there exist
scalars γ1, γ2, . . . , γn such that the following holds true:

‖T −
n∑

i=1

βiAi‖ = max{|〈(T −
n∑

i=1

βiAi)x, y〉| : x, y ∈ SH, y ⊥
n∑

i=1

γiAix}

≥ max{|〈(T −
n∑

i=1

αiAi)x, y〉| : x, y ∈ SH, y ⊥
n∑

i=1

γiAix}

= ‖T −
n∑

i=1

αiAi‖.

Moreover, the best approximation is unique if and only if the above inequality is
strict.

3. Best approximations in reflexive spaces

In light of the results obtained so far in this article, it is evident that for best
approximations to compact operators, norm attainment set plays a central role. By
virtue of Remark 1 in [15], the norm attainment set of a compact operator on a
Hilbert space H is necessarily the unit sphere of some subspace of H. Since such a
nicety is no longer present in case of compact operators between Banach spaces, we
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require additional conditions in that case. However, for the class of bounded linear
functionals on a reflexive Banach space, we do have an additional advantage as
mentioned in the following proposition. The proof is easy, and is therefore omitted.

Proposition 3.1. Let X be a reflexive Banach space and let f ∈ X∗. Then Mf is
of the form ±D, where D is a connected subset of SX (D is a face of BX).

Let us now present an analogous result to Proposition 2.1 and Theorem 2.7, for
bounded linear functionals on a Banach space.

Theorem 3.2. Let X be a reflexive Banach space and let f, g ∈ X∗ be linearly
independent. Let λ0 ∈ R. Then the following are equivalent:

(i) (f − λ0g) ⊥B g,
(ii) Mf−λ0g

⋂N (g) 6= ∅,
(iii) λ0g is a best approximation to f out of span{g}.
Moreover,

dist(f, span{g}) = max{|f(x)| : x ∈ N (g)
⋂
SX} = ‖f

∣∣
N (g)

‖.

Proof. The equivalence of (i) and (iii) follows from the corresponding definitions,
as before. To prove that each of them is equivalent to (ii), we apply Theorem 2.13
of [16] to conclude that there exist z, w ∈ Mf−λ0g such that (f − λ0g)z.g(z) ≥ 0
and (f − λ0g)w.g(w) ≤ 0. By virtue of Proposition 3.1, Mf−λ0g = ±D, where D
is a connected subset of SX. It is now easy to deduce that there exists x ∈Mf−λ0g

such that (f − λ0g)x.g(x) = 0. Clearly, f − λ0g 6= θ. Therefore, we conclude that
g(x) = 0, or, equivalently, x ∈ Mf−λ0g

⋂N (g). On the other hand, if (ii) holds,
then taking x ∈Mf−λ0g

⋂N (g), we obtain that for any λ ∈ R,

‖(f − λ0g) + λg‖ ≥ |(f − (λ0 − λ)g)x| = |(f − λ0g)x| = ‖f − λ0g‖.

This proves that (f − λ0g) ⊥B g, and completes the proof of the first part of the
theorem. The second part follows from Theorem 2.7. We just need to observe
that since Y = R, the only s.i.p. on Y is given by the usual multiplication of real
numbers. Therefore, if x ∈ SX is such that g(x).y = 0 for some y = ±1, then
x ∈ N (g). This establishes the theorem. �

Remark 3.3. Slightly digressing from our main topic of interest, we would like
to note that Proposition 3.1 allows us to improve Theorem 2.13 of [16] by proving
that the condition of strict convexity in the said theorem is redundant.

Our next result on best approximations to functionals is analogous to Theorem
2.12. The proof is omitted as it can be completed using similar arguments as before.

Theorem 3.4. Let X be a reflexive Banach space and let n ≥ 2. Let f, g1, g2, . . . , gn ∈
X∗ be such that g1, g2, . . . , gn are linearly independent and f /∈ Z, where Z =
span{g1, g2, . . . , gn}. Let αi ∈ R, where 1 ≤ i ≤ n. Then

∑n

i=1 αigi is a best approx-
imation to f out of Z if and only if given any n scalars β1, β2, . . . , βn, there exist
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scalars γ1, γ2, . . . , γn such that the following holds true:

‖f −
n∑

i=1

βigi‖ = max{|(f −
n∑

i=1

βigi)x| : x ∈ N (
n∑

i=1

γigi)
⋂
SX}

≥ max{|(f −
n∑

i=1

αigi)x| : x ∈ N (

n∑

i=1

γigi)
⋂
SX}

= ‖f −
n∑

i=1

αigi‖.

If in addition, X is strictly convex, then we have the following refinement of the
above theorem:

Theorem 3.5. Let X be a reflexive strictly convex Banach space and let n ∈ N. Let
f, g1, g2, . . . , gn ∈ X∗ be such that g1, g2, . . . , gn are linearly independent and f /∈ Z,
where Z = span{g1, g2, . . . , gn}. Let αi ∈ R, where 1 ≤ i ≤ n. Then

∑n
i=1 αigi is a

best approximation to f out of Z if and only if
⋂n

i=1 N (gi)
⋂
Mf−

∑
n
i=1

αigi = {±x0},
for some x0 ∈ SX.

Proof. To prove the sufficient part of the theorem, simply observe that for any
1 ≤ j ≤ n, and for any λ ∈ R, we have the following:

‖(f −
n∑

i=1

αigi) + λgj‖ ≥ |{(f −
n∑

i=1

αigi) + λgj}x0|

= |(f −
n∑

i=1

αigi)x0|

= ‖f −
n∑

i=1

αigi‖.

This shows that for any 1 ≤ j ≤ n, we have that (f −∑n

i=1 αigi) ⊥B gj . As X is
reflexive and strictly convex, it is easy to see that X∗ is smooth and consequently,
Birkhoff-James orthogonality is right additive in X∗. Therefore, it follows that
(f − ∑n

i=1 αigi) ⊥B Z. This is clearly equivalent to the desired conclusion that∑n

i=1 αigi is a best approximation to f out of Z. Let us now prove the necessary part
of the theorem. Clearly, for each 1 ≤ j ≤ n, it follows that (f −∑n

i=1 αigi) ⊥B gj.
Therefore, Theorem 3.2 implies that for each 1 ≤ j ≤ n, Mf−

∑
n
i=1

αigi

⋂N (gj) 6= ∅.
We also note that since X is strictly convex, there exists a unique x0 ∈ SX such
that Mf−

∑
n
i=1

αigi = {±x0}. Combining these two observations, we obtain that⋂n
i=1 N (gi)

⋂
Mf−

∑
n
i=1

αigi = {±x0}. This establishes the theorem. �

As an immediate application of the above theorem, we have the following elegant
distance formula in the dual of a reflexive strictly convex Banach space.

Theorem 3.6. Let X be a reflexive strictly convex Banach space and let n ∈ N. Let
f, g1, g2, . . . , gn ∈ X∗ be such that g1, g2, . . . , gn are linearly independent and f /∈ Z,
where Z = span{g1, g2, . . . , gn}. Then

dist(f,Z) = max{|f(x)| : x ∈
n⋂

i=1

N (gi)
⋂
SX}.
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Proof. A standard compactness argument shows that there exists αi ∈ R, where 1 ≤
i ≤ n, such that

∑n

i=1 αigi is a best approximation to f out of Z. Using the necessary
part of Theorem 3.5, we obtain that

⋂n

i=1 N (gi)
⋂
Mf−

∑
n
i=1

αigi = {±x0}, for some

x0 ∈ SX. We also note that ‖f − ∑n
i=1 αigi‖ = |(f − ∑n

i=1 αigi)x0| = |f(x0)| =
max{|f(x)| : x ∈ ⋂n

i=1 N (gi)
⋂
SX}, where the last equality is a consequence of the

fact that f = f −∑n
i=1 αigi, when restricted to

⋂n
i=1 N (gi). Indeed, if there exists

y0 ∈ ⋂n
i=1 N (gi)

⋂
SX such that |f(y0)| > |f(x0)| then we have that

‖f −
n∑

i=1

αigi‖ ≥ |(f −
n∑

i=1

αigi)y0| = |f(y0)| > |f(x0)| = ‖f −
n∑

i=1

αigi‖,

a contradiction. As dist(f,Z) = ‖f −∑n

i=1 αigi‖, this completes the proof of the
theorem. �

The above theorem, in conjunction with Theorem 3.5, turns out to be extremely
useful in studying best approximations in a reflexive, smooth and strictly convex
Banach space X. To illustrate the main idea, let us begin with the following stan-
dard best approximation problem:

Problem: Let X be a reflexive, smooth and strictly convex Banach space. Let
x0, y1, . . . , yn ∈ X, where n ≥ 1, be such that y1, . . . , yn are linearly independent
and x0 /∈ Y = span{y1, . . . , yn}. Find the (unique) best approximation to x0 out of
Y and compute dist(x0,Y).

Theorem 3.5 and Theorem 3.6 allow us to approach the above problem in the
following three steps:

Step 1: We identify X with its double dual X∗∗ via the canonical isometric isomor-
phism ψ. Let ψ(x0) = f0 and ψ(yi) = gi, where 1 ≤ i ≤ n. Let Z = span{g1, . . . , gn}.
The original problem is clearly equivalent to finding the best approximation to f0
out of Z and computing dist(f0,Z). As X

∗ is reflexive, smooth and strictly convex,
we are in a position to apply Theorem 3.5 and Theorem 3.6.

Step 2: Let W =
⋂n

i=1 N (gi). Applying Theorem 3.6, we obtain that

dist(x0,Y) = dist(f0,Z) = max{|f0(x)| : x ∈ W
⋂
SX∗}.

Step 3: Since X∗ is strictly convex, so is W . Therefore, f0
∣∣
W

attains norm at

only one pair of points, say, ±h0 ∈ SW . Applying Theorem 3.5,
∑n

i=1 αigi is the
unique best approximation to f0 out of Z if and only if Mf0−

∑
n
i=1

αigi = {±h0}.
We also note that since X∗ is smooth, there exists a unique ξ0 ∈ X∗∗ such that
Mξ0 = {±h0}. Therefore, we must have that f0−

∑n

i=1 αigi = ξ0, which completely
describes the unique best approximation to f0 out of Z by means of the following
equation:

n∑

i=1

αigi = f0 − ξ0.

We have therefore obtained a complete answer to the original problem in light of
the fact that

∑n

i=1 αiyi is the unique best approximation to x0 out of Y.



ON BEST APPROXIMATIONS TO COMPACT OPERATORS 11

Remark 3.7. Unlike Theorem 3.5 and Theorem 3.6, we have made use of the strict
convexity of X∗ in the above algorithm. Since X is reflexive, this is ensured by (and
is in fact equivalent to) the smoothness of X.

The above algorithm can be applied in a more efficient manner from computa-
tional point of view, in case of ℓnp spaces, where 1 < p < ∞. This is because of

the well-known identification of ℓnp with ℓn
∗

q , where 1
p
+ 1

q
= 1, under the mapping

Ω : ℓnp −→ ℓn
∗

q given by

Ω(x̃) = f ∀ x̃ = (x1, x2, . . . , xn) ∈ ℓnp ,

where f : ℓnq −→ R is given by

f(ei) = xi ∀ i ∈ N,

{ei : 1 ≤ i ≤ n} being the standard ordered basis for ℓnq . Let us explain this in more
detail in the following:

Problem: Let x̃, ỹ1, . . . , ỹm ∈ ℓnp , where 1 < p < ∞ and 1 ≤ m < n, be such
that ỹ1, . . . , ỹm are linearly independent and x̃ /∈ Y = span{ỹ1, . . . , ỹm}. Compute
dist(x̃,Y).

Step 1: Let x̃ = (x1, . . . , xn) and let ỹi = (yi1, . . . , yin), for each 1 ≤ i ≤ m. Let
Ω(x̃) = f and let Ω(ỹi) = gi, for each 1 ≤ i ≤ m. Let Z = span{g1, . . . , gm}. The
original problem is clearly equivalent to finding the best approximation to f out of
Z and computing dist(f,Z).

Step 2: Let W =
⋂m

i=1 N (gi). Clearly, W is a subspace in R
n determined by the

fact that (η1, . . . , ηn) ∈ W if and only if (η1, . . . , ηn) satisfies the following system
of equations:

n∑

j=1

ykjηj = 0 ; 1 ≤ k ≤ m.

Applying Theorem 3.6, we obtain that

dist(x̃,Y) = dist(f,Z) = max{|f(x)| : x ∈ W
⋂
Sℓnq

}.

In particular, when n = 2, we have the following explicit distance formula:

Theorem 3.8. Let X = ℓ2p, where 1 < p <∞. Let x̃ = (a, b) ∈ X, let (c, d) 6= (0, 0)
and let Y = span{(c, d)} be a one-dimensional subspace in X be such that x̃ /∈ Y.
Then

dist(x̃,Y) =
|ad− bc|

(|c|q + |d|q) 1

q

,

where 1
p
+ 1

q
= 1.

Proof. Let ỹ = (c, d). Let Ω : ℓ2p −→ ℓ2
∗

q be the canonical isometric isomorphism.
Let Ω(x̃) = f and let Ω(ỹ) = g. Let us first assume that d 6= 0. Now, we have that

N (g) = {(η1, η2) ∈ R
2 : cη1 + dη2 = 0}.
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Since d 6= 0, it follows that (1,− c
d
) ∈ N (g). Let α ∈ R be such that ‖α(1,− c

d
)‖q = 1.

An easy calculation implies that |α| = 1

(1+| c
d
|q)

1

q

. Applying Theorem 3.6, we obtain

that

dist(x̃,Y) = |f(α(1,− c

d
))| = |ad− bc|

|d|(1 + | c
d
|q) 1

q

=
|ad− bc|

(|c|q + |d|q) 1

q

,

proving the first equality. Similarly, if c 6= 0, it can be proved that

dist(x̃,Y) =
|ad− bc|

(|c|q + |d|q) 1

q

.

This establishes the theorem. �

The methods developed in the present article point to the fact that every best
approximation problem in a reflexive smooth and strictly convex Banach space
corresponds to a maximization problem in a particular subspace of the dual space.
Moreover, in case of ℓnp spaces, where 1 < p < ∞, computation of the distance
of a given point from a given subspace reduces to a trivial calculation when the
subspace is of codimension one in ℓnp . Indeed, in this case we just need to evaluate a
particular functional on the unit sphere of a one-dimensional subspace of ℓnq , where
1
p
+ 1

q
= 1. This is illustrated in the following example:

Example 3.9. Let X = ℓ3p, where 1 < p < ∞. Let x0 = (a, b, c) and let Y0 =
span{(1, 0,−1), (1, 2, 1)}, where a, b, c ∈ R. Let us compute dist(x0,Y0) by using
the ideas developed above. Let Ω : ℓ3p −→ ℓ3

∗

q be the canonical isometric iso-

morphism, where 1
p
+ 1

q
= 1. Let y1 = (1, 0,−1) and let y2 = (1, 2, 1). Let us

assume that Ω(x0) = f0, Ω(y1) = g1, Ω(y2) = g2. An easy computation shows that

N (g1)
⋂N (g2) = span{(1,−1, 1)}. Since ‖(1,−1, 1)‖q = 3

1

q , applying Theorem 3.6
we obtain that

dist(x0,Y0) = |f0(3
−1

q (1,−1, 1))| = 3
−1

q |a− b+ c|.
Let us end this section with the following remark, emphasizing the utility of the

methods developed here in studying best approximation problems.

Remark 3.10. The above example, when viewed purely in the ℓ3p setting, amounts
to solving the following minimization problem:

min
α,β∈R

{|a− α− β|p + |b− 2β|p + |c+ α− β|p} 1

p ,

which require some computational efforts. However, applying the duality theory
of best approximations developed in this article, we can readily conclude via a
trivial computation that the answer to the above minimization problem is given by

3
−1

q |a − b + c|, where 1
p
+ 1

q
= 1. Equivalently, this can be expressed by means of

the following inequality:

|a− α− β|p + |b− 2β|p + |c+ α− β|p ≥ 31−p|a− b+ c|p ∀ α, β, a, b, c ∈ R.

Indeed, the methods developed in this article in view of best approximations in ℓp
spaces give rise to a family of such inequalities, which seem not so easy to prove
otherwise. It should be noted that Theorem 3.6 guarantees that each of these
inequalities is optimal.
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4. A comparison with the classical duality principle

The aim of this section is to make a comparative analysis of some of our results,
namely, Theorem 3.5 and Theorem 3.6, with the following well-known classical
duality principle which is one of the very basic and foundational results in approx-
imation theory:

dist(x,Y) = inf{‖x− y‖X : y ∈ Y} = sup{f(x) : ‖f‖X∗ ≤ 1, f |Y= 0},
where Y is a subspace of X.

We begin with the observation that neither Theorem 3.5 nor Theorem 3.6 of
this article follows as a direct consequence of the above duality principle. In par-
ticular, the use of Birkhoff-James orthogonality in studying best approximations
in a dual space allows us to approach the problem from a point of view which is
computationally much more convenient. To explain this further, let us first have a
closer look at the above distance formula given by the classical duality principle.
To explicitly compute the distance between a given point x and a given subspace Y
of the Banach space X by applying the above formula, the major hindrance is that
in general we do not have an explicit description of all those functionals f in BX∗

which vanish on Y. This can be remedied from a theoretical point of view in case
X is reflexive and Y is of codimension one in X. Since X is reflexive, it follows from
Theorem 1 of [9] that there exists z ∈ SX such that z ⊥B Y. It is now easy to see
that the following holds true:

{f ∈ SX∗ : f(Y) = 0} = {f ∈ SX∗ : |f(z)| = 1}.
If in addition, X is smooth then there exists a unique f0 ∈ SX∗ such that f0(z) =

1. Therefore, by applying the classical duality principle, we obtain that

dist(x,Y) = |f0(x)|.
Unfortunately, Theorem 1 of [9] does not provide us with a method to compute z

such that z ⊥B Y. In fact, even in the finite-dimensional case, it is computationally
not straightforward to explicitly find out such a z in a general Banach space, when
the norm is not induced by an inner product. The reader is invited to verify this
claim for ℓnp spaces, where n ≥ 2 and p ∈ (1,∞) \ {2}. Indeed, to find out such a
z such that z ⊥B Y, it is readily seen from the expression of the unique s.i.p. on
ℓnp that the problem amounts to solving nonlinear equations, which is quite well-
known to be computationally hard. Moreover, if the codimension of Y in X is strictly
greater than one, then it is easy to see that Y cannot be written as Y = v⊥, for any
v ∈ SX. Therefore, it becomes an even more difficult problem to have an explicit
description of all those functionals f in BX∗ which vanish on Y. This explains the
computational difficulty in applying the classical duality principle in determining
the distance between a given point x and a given subspace Y of the Banach space X.

In stark contrast to the above, in case of a reflexive and strictly convex Ba-
nach space X, our method allows us to approach the problem in a computationally
efficient manner, by identifying X with X∗∗ and then by applying Theorem 3.6.
Indeed, in case X is a finite-dimensional strictly convex Banach space, and Y is
of codimension one in X, the problem of computing dist(x,Y) reduces to a trivial
computation involving the solution to a given system of linear equations. This
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explains the computational advantage obtained in applying Theorem 3.6 over the
classical duality principle and it can be further verified readily by trying to establish
Theorem 3.8 or Example 3.9, by the later alone.
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