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Abstract. In this paper, we obtain new Carleman estimates for a class of variable coefficient
degenerate elliptic operators whose constant coefficient model at one point is the so called
Baouendi-Grushin operator. This generalizes the results obtained by the two of us with Garofalo
in [9] where similar estimates were established for the ”constant coefficient” Baouendi-Grushin
operator. Consequently, we obtain: (i) a Bourgain-Kenig type quantitative uniqueness result
in the variable coefficient setting; (ii) and a strong unique continuation property for a class
of degenerate sublinear equations. We also derive a subelliptic version of a scaling critical
Carleman estimate proven by Regbaoui in the Euclidean setting using which we deduce a new
unique continuation result in the case of scaling critical Hardy type potentials.

1. Introduction

In this paper, we study some ad-hoc L2 − L2 Carleman estimates for operators of the type

(1.1) L =
N
∑

i=1

Xi(aij(z, t)Xj),

where (z, t) ∈ R
m × R

k, N = m+ k and the vector fields X1, ...,XN are given by

(1.2) Xi = ∂zi , i = 1, ..,m Xm+j = |z|γ∂tj , j = 1, .., k, γ > 0.

Besides ellipticity, the N × N matrix valued function A(z, t) = [aij(z, t)] is required to satisfy
some structural assumptions that will be specified in (H) in Section 2 below. Such conditions
reduce to the standard Lipschitz continuity when the dimension k = 0 or when γ = 0. One
should note that when A = I, the operator in (1.1) reduces to the well known Baouendi-Grushin
operator given by
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2 CARLEMAN ESTIMATES ETC.

(1.3) Bγ = ∆z + |z|2γ∆t.

The operator Bγ is degenerate elliptic along {z = 0} and it is not translation invariant in

R
N . We recall that a more general class of operators modelled on Bγ was first introduced by

Baouendi who studied the Dirichlet problem in some appropriate weighted Sobolev space in [6].
Subsequently in [28], [29], Grushin analyzed the hypoellipticity of this operator when γ ∈ N. We
also refer to [25, 26, 27, 48] for other interesting works related to Bγ . Remarkably, the operator
Bγ also plays an important role in the work [36] on the higher regularity of the free boundary
in the classical Signorini problem.

To provide the reader with some perspective we mention that when γ = 1 the operator Bγ is
intimately connected to the sub-Laplacians in groups of Heisenberg type. In such Lie groups, in
fact, in the exponential coordinates with respect to a fixed orthonormal basis of the Lie algebra,
the sub-Laplacian is given by

(1.4) ∆H = ∆z +
|z|2

4
∆t +

k
∑

ℓ=1

∂tℓ
∑

i<j

bℓij(zi∂zj − zj∂zi),

where bℓij indicate the group constants. If u is a solution of ∆H that further annihilates the

symplectic vector field
∑k

ℓ=1 ∂tℓ
∑

i<j b
ℓ
ij(zi∂zj − zj∂zi), then, up to a normalisation factor of 4,

u solves the operator Bγ obtained by letting γ = 1 in (1.3) above.
Concerning the question of interest for this paper, the unique continuation property, we

mention that for general uniformly elliptic equations there are essentially two known methods
for proving it. The former is based on Carleman inequalities, which are appropriate weighted
versions of Sobolev-Poincaré inequalities. This method was first introduced by T. Carleman
in his fundamental work [15] in which he showed that strong unique continuation holds for
equations of the type

−∆u+ V u = 0, V ∈ L∞
loc(R

2).

In his pioneering work [2], Aronszajn extended such estimates to higher dimensions and uni-
formly elliptic operators with C2 principal part. Subsequently, in [4] the authors generalised this
result to uniformly elliptic equations with Lipschitz coefficients in the principal part, see also
[33]. We stress that unique continuation fails in general when the coefficients of the principal
part are only Hölder continuous, see Plis’ counterexample in [40], and also [39]. The second
approach came up in the works of Garofalo and Lin, see [23], [24]. Their method is based on the
almost monotonicity of a generalisation of the frequency function, first introduced by Almgren
in [1] for harmonic functions. Using this approach, they were able to obtain new quantitative
information on the zero set of solutions to divergence form elliptic equations with Lipschitz
coefficients.

The unique continuation property for the degenerate operators Bγ is much subtler than the
one for the Laplacian. It was first established by Garofalo in [21]. In that work he introduced a
Almgren type frequency function associated with Bγ , and proved that such function is monotone
non-decreasing on solutions of Bγ = 0. These results were extended to more general variable
coefficient equations by Garofalo and Vassilev in [32]. One should also see the related works
[22] and [30] on the Heisenberg and more general Carnot groups. We also note that a version of
the monotonicity formula for Bγ played an extensive role in the recent work [17] on the obstacle
problem for the fractional Laplacian.

Using some ad hoc Carleman estimates in [31] the authors were able to establish for the first
time some strong unique continuation results for Bγu+V u = 0 in the difficult situation when V
satisfies appropriate Lp integrability hypothesis. Their analysis, which is closer in spirit to the



CARLEMAN ESTIMATES ETC. 3

works [35], [34], [16], [37] to name a few, only covers the special case when γ = k = 1 in (1.3), and
ultimately rests on delicate boundedness properties of certain projector operators generalising
some of the results in [46]. We also refer to the recent work of one of us with Mallick in [10]
where, using such projector operator estimates, a new L2 − L2 Carleman estimate is derived.
Using the latter, the authors deduce strong unique continuation when the potential V satisfies
Hardy type growth assumptions. It is worth mentioning at this point that the general situation
of the results in [31] presently remains a challenging open question.
L2−L2 Carleman estimates with singular weights for the general Baouendi-Grushin operators

Bγ which are analogous to the ones in [2] have been established very recently by two of us
with Garofalo in [9] by using elementary arguments based on integration by parts and by an
appropriate application of Rellich type identity. In the same paper, quantitative uniqueness
result of Bourgain-Kenig type (see [14]) and a strong unique continuation for a class of sublinear
equations of the type (2.26) (when A ≡ I) are also proven.

In the present work, we generalize the results in [9] to variable coefficient principal part where
the matrix valued function A is assumed to be Lipschitz continuous with respect to a suitable
pseudo-distance associated to the system of vector fields {Xi}. We refer to (H) below for the
precise assumptions. This framework was first introduced by Garofalo and Vassilev in the above
cited paper [32]. It is easily seen that in the situation when k = 0 the hypothesis (H) below
coincides with the usual Lipschitz continuity at the origin of the coefficients aij . Our Carleman
estimates thus encompass those in the cited paper [4]. Our main results Theorem 2.12 and
Theorem 2.15 can be seen as the variable coefficient analogues of the corresponding results in
[9]. The key to the proof of such results are the Carleman estimates in (3.1) and (3.36) below
that we derive. As the reader will see, the proof of these estimates are more involved than that
for Bγ because of the additional error terms that are incurred due to the Lipschitz perturbation
of the principal part. Such error terms are eventually handled by a delicate interpolation type
argument in the proof of the respective estimates. As an application of our techniques, we also
show how to obtain a further refined estimate for zero-order C1 perturbations of the operator
as in (2.24) below which in particular implies a quantitative uniqueness result of Donnelly-
Fefferman type (see Theorem 2.14). We mention that the result in Theorem 2.14 has however
been previously obtained by one of us with Garofalo in [8] by an adaptation of the Almgren’s
frequency function approach. Therefore this part of our work can be thought of as an alternate
approach to the Donnelly-Fefferman type quantitative uniqueness in this degenerate setting.
As a further extension of our techniques, we also establish a subelliptic version of a critical
Carleman estimate proven by Regbaoui in [41] for uniformly elliptic operators which in turn
implies a certain unique continuation result for equations of the type (2.30) where the potential
V satisfies the Hardy type growth assumption as in (2.31) (see Theorem 2.29). We mention
that proof of the corresponding estimate in [41] uses in a crucial way the polar decomposition
of the frozen constant coefficient operator. Our proof of (2.29) is quite different from that in
[41] and is instead based on a suitable adaptation of a Rellich type identity as stated in (3.16)
below. Therefore in that sense, the proof of all the Carleman estimates in this paper have a
universal character. Over here, we would like to mention that Theorem 2.29 is however slightly
weaker than the strong unique continuation property because the hypothesis of the theorem
involves a somewhat different notion of vanishing ( see (2.32) below). Nevertheless it provides
an improvement of Theorem 4.4 in [21]. We refer to Section 2 for further discussions on this
topic. Finally we would like to point out that a somewhat technical level, our work also differs
additionally from [32] and [8] (which uses the frequency function approach in this variable
coefficient setting) in the sense that for the proof of the Carleman estimates, a third derivative
estimate of the gauge function ρ as in Lemma 2.8 below is crucial for our analysis. We provide a
proof of such an estimate in the Appendix because it involves a long and delicate computation.
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The paper is organized as follows. In Section 2, we introduce relevant notions, gather some
known results and then state our main results. In Section 3, we prove our main results. In the
Appendix, we give a proof of Lemma 2.8.

Acknowledgment: The authors would like to thank Nicola Garofalo for sharing ideas and
discussions at various stages of the work.

2. Notations and preliminary results

Henceforth in this paper we follow the notations adopted in [21] and [32], with one notable
proviso: the parameter γ > 0 in (1.3), etc. in this paper plays the role of α > 0 in [21] and [32].
The reason for this is that we have reserved the greek letter α for the powers of the singular
weights in our Carleman estimates. Throughout the paper, whenever convenient, we will use
the summation convention over repeated indices. Given a function f , we respectively denote

Xf = (X1f, ...,XNf), |Xf |2 =< Xf,Xf >=
N
∑

i=1

(Xif)
2,

the intrinsic (degenerate) gradient of a function f , and the square of its length where the
vector fields {Xi} are defined as in (1.2). We note that the vector fields Xi are homogeneous of
degree one with respect to the following family of anisotropic dilations

(2.1) δλ(z, t) = (λz, λγ+1t), λ > 0.

Consequently, the Baouendi-Grushin operator Bγ as defined in (1.3) is homogeneous of degree
two with respect to (2.1). Let dzdt denote the Lebesgue measure in R

N . Since d(δλ(z, t)) =
λQdzdt, where

(2.2) Q = m+ (γ + 1)k,

such number plays the role of a dimension in the analysis of the operator Bγ as well as L as
in (1.1). For instance, one has the following remarkable fact (see [21]) that the fundamental
solution Γ of Bγ with pole at the origin is given by the formula

Γ(z, t) =
C

ρ(z, t)Q−2
, (z, t) 6= (0, 0),

where C > 0 is suitably chosen and ρ is the pseudo-gauge

(2.3) ρ(z, t) = (|z|2(γ+1) + (γ + 1)2|t|2)
1

2(γ+1) .

A function v is δλ-homogeneous of degree κ if and only if Zv = κv. Since ρ in (2.3) is homoge-
neous of degree one, we have

(2.4) Zρ = ρ.

We respectively denote by

Br = {(z, t) ∈ R
N | ρ(z, t) < r}, Sr = {(z, t) ∈ R

N | ρ(z, t) = r},

the gauge pseudo-ball and sphere centered at 0 with radius r. The infinitesimal generator of the
family of dilations (2.1) is given by the vector field

(2.5) Z =

m
∑

i=1

zi∂zi + (γ + 1)

k
∑

j=1

tj∂tj .

We note the important facts that

(2.6) divZ = Q, [Xi, Z] = Xi, i = 1, ..., N.
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We also need the angle function ψ introduced in [21]

(2.7) ψ = |Xρ|2 =
|z|2γ

ρ2γ
.

The function ψ vanishes on the characteristic manifold M = R
n × {0} and clearly satisfies

0 ≤ ψ ≤ 1. Since ψ is homogeneous of degree zero with respect to (2.1), one has

(2.8) Zψ = 0.

If f ∈ C2(R) and v ∈ C2(RN ), then we have the important identities (see [21])

(2.9) Bγf(ρ) = ψ

(

f ′′(ρ) +
Q− 1

ρ
f ′(ρ)

)

,

and

(2.10) < Xv,Xρ >=

N
∑

i=1

XivXiρ =
ψ

ρ
Zv.

Henceforth, for any two vector fields U and W , [U,W ] = UW −WU denotes their commutator.
A first basic assumption on the matrix-valued function A = [aij ] is that it be symmetric and

uniformly elliptic. i.e., aij = aji, i, j = 1, ..., N , and there exists λ > 0 such that for every
(z, t) ∈ R

N and η ∈ R
N one has

(2.11) λ|η|2 ≤< A(z, t)η, η >≤ λ−1|η|2.

Throughout the paper we assume that

(2.12) A(0, 0) = IN ,

where IN indicates the identity matrix in R
N . In order to state our main assumptions (H) on

the matrix A it will be useful to represent the latter in the following block form

A =

(

A11 A12

A21 A22

)

,

Here, the entries are respectively m×m, m× k, k×m and k× k matrices, and we assume that
At12 = A21. We shall denote by B the matrix

B = A− IN ,

and thus

(2.13) B(0, 0) = ON ,

thanks to (2.12). We now state the structural assumptions on the matrix A.

HYPOTHESIS. There exists a positive constant Λ such that one has in B1 the following
estimates

|bij | = |aij − δij | ≤











Λρ, for 1 ≤ i, j ≤ m,

Λψ
1
2
+ 1

2γ ρ = Λ |z|γ+1

ργ , otherwise,

(H)

|Xkbij | = |Xkaij | ≤











Λ, for 1 ≤ k ≤ m, and 1 ≤ i, j ≤ m

Λψ
1+ 1

2γ when k > m and max{i, j} > m

Λψ1/2 otherwise.
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An interesting typical example of a matrix A satisfying the conditions (H) is

A =

(

1 + ρf(z, t) |z|γ+1g(z, t)
|z|γ+1g(z, t) 1 + |z|γ+1h(z, t)

)

,

where f, g and h are Lipschitz continuous near the origin in R
2. In this example m = k = 1.

We next collect several preliminary results that will be important in our proof. We first
consider the quantity

µ = 〈AXρ,Xρ〉.(2.14)

In view of the uniform ellipticity of A, we have

λψ ≤ µ ≤ λ−1 ψ.(2.15)

The following vector field F will play an important role in the paper:

F =
ρ

µ

N
∑

i,j=1

aijXiρXj .(2.16)

We note that

Fρ = ρ.(2.17)

Definition 2.1. We have
B = A− Id, σ = 〈BXρ,Xρ〉.

One more notation we will use is: (bij) = B.

In the next theorem we collect several important estimates that have been established in [21]
and [32] which will be useful throughout the work.

Theorem 2.2. There exists a constant C(β, λ,Λ, N) > 0 such that for any function u one has:

(i) |Q− divF | ≤ Cρ;
(ii) |Fµ|, |Fψ| ≤ Cρψ;
(iii) div(σZµ ) ≤ Cρ;

(iv) |Xiρ| ≤ ψ
1+ 1

2γ , i = 1, ...,m, |Xm+jρ| ≤ (γ + 1)ψ1/2, j = 1, ..., k;
(v) |F − Z| ≤ Cρ2;
(vi) | < FAXu,Xu > | ≤ Cρ|Xu|2;
(vii) |[Xi, F ]u−Xiu| ≤ Cρ|Xu|, i = 1, ..., N ;

(viii) |σ| ≤ Cρψ3/2+ 1
2γ |Xσ| ≤ Cψ3/2;

(ix) |
bijXjρXi

µ | ≤ C|z|;

(x) |Xiψ| ≤
Cγψ
|z| , i = 1, ...,m, |Xn+jψ| ≤

Cγψ
ρ , j = 1, ..., k;

(xi) |σµ | ≤ Cρψ, |Zσ| ≤ Cρψ, |Xkσ| ≤ Cψ3/2;

(xii) |[Xi,−
σZ
µ ]u| ≤ Cρ|Xu|, (Lemma 2.7 in [32]);

(xiii) |[Xℓ,
ρ
µ

∑N
i,j=1

bijXjρ
X i

]u| ≤ Cρ|Xu|, ℓ = 1, ..., N .

We also need the following lemmas.

Proposition 2.3 (Proposition 3.1, [32]). We have

Xlρ =

{

ψ zlρ , for 1 ≤ l ≤ m

(γ + 1)ψ1/2 tl−m

ργ+1 , for m+ 1 ≤ l ≤ N.

Consequently it follows that,
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(1) |Xiρ| ≤ ψ
1+ 1

2γ for 1 ≤ i ≤ m.

(2) |Xn+iρ| ≤ (γ + 1)ψ
1
2 for 1 ≤ i ≤ k.

Lemma 2.4. We have the expressions for the second derivatives of ρ (See, Proposition 3.3 in
[32]):

(1) For 1 ≤ i, j ≤ m, we have:

XiXjρ = −(2γ + 1)zizj
ψ2

ρ3
+

[

2γ
zizj
|z|2

+ δij

]

ψ

ρ
.

(2) For 1 ≤ i ≤ m and 1 ≤ j ≤ k, we have:

XiXm+jρ = −(2γ + 1)(γ + 1)
zitj
|z|γ

ψ2

ρ3
+
ψ

ρ

[

γ(γ + 1)
zitj

|z|γ+2

]

.

(3) For 1 ≤ i ≤ m and 1 ≤ j ≤ k we have:

Xm+jXiρ = −(2γ + 1)(γ + 1)
zitj
|z|γ

ψ2

ρ3
.

(4) For 1 ≤ i, j ≤ k we have:

Xm+iXm+jρ = −(2γ + 1)(γ + 1)2
tjti
|z|2γ

ψ2

ρ3
+ (γ + 1)δij

ψ

ρ
.

Lemma 2.4 in particular implies the following bounds.

Proposition 2.5 (Proposition 3.3, [32]).

|XiXjρ| ≤ C
µ

ρ
for 1 ≤ i, j ≤ m or m+ 1 ≤ i, j ≤ N,

|XiXm+jρ| ≤ C
µ

1
2

|z|
= C

µ
1
2
− 1

2γ

ρ
for 1 ≤ i ≤ m, 1 ≤ j ≤ k,

|Xm+jXiρ| ≤ C
µ

3
2
|z|

ρ2
= C

µ
3
2
+ 1

2γ

ρ
for 1 ≤ i ≤ m, 1 ≤ j ≤ k.

Remark 2.6. It is easily seen that

|XlbijXiρ| ≤ Cψ.

We also have (See [32], page 653)

N
∑

i,j=1

|Xibij Xjρ| ≤ Cµ, and
N
∑

i,j=1

|bij XiXjρ| ≤ Cµ.

Lemma 2.7 (Lemma 3.9, [32]). If (H) holds then:

|bkjXjρ| ≤ C ρµ1+
1
2γ .

We also need the following third derivative estimate in our analysis.

Lemma 2.8. Let F = ρ
µ

∑

aqrXqρXr. Then, we have

|F (bijXiXjρ)| ≤ Cψ.(2.18)

The proof of the Lemma 2.8 which is based on a long computation is postponed to the
appendix.

We then define the relevant function space that is repeatedly used in our work.
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Definition 2.9. For a given domain Ω, we denote by S2,2(Ω), the completion of C∞(Ω) under
the norm

||f ||S2,2(Ω) =

∫

Ω
f2 + |Xf |2 +

N
∑

i,j=1

|XiXjf |
2

We instead indicate with S2,2
0 (Ω) the completion of C∞

0 (Ω) under the same norm.

We now introduce the relevant notion of vanishing to infinite order.

Definition 2.10. We say that u vanishes to infinite order at the origin (0, 0), if for every ℓ > 0
one has

∫

Br

|u|2ψ = O(rℓ), as r → 0.(2.19)

Remark 2.11. Throughout this paper, when we say that a constant is universal, we mean that
it depends exclusively on m,k, β, on the ellipticity bound λ on A(z, t), see (2.11) above, and
on the Lipschitz bound Λ in (H). Likewise, we will say that O(1), O(r), etc. are universal if
|O(1)| ≤ C, |O(r)| ≤ Cr, etc., with C ≥ 0 universal.

2.1. Statement of the main results. We now state the main results of the paper. Our first
result is the subelliptic analogue of the corresponding quantitative uniqueness result of Bourgain
and Kenig for the Euclidean Laplacian, see [14]. We also refer to the work of Bakri [13] for a
generalisation of their result to Laplace Beltrami operators on compact manifolds. From now
onwards, by L, we refer to the operator defined in (1.1) where A satisfies the assumptions in
(H).

Theorem 2.12. Let u ∈ S2,2(B1) with |u| ≤ 1 be a solution to

(2.20) Lu = V u,

where the potential V satisfies the following bound

(2.21) |V (z, t)| ≤ Kψ.

Then, there exists universal R0 ∈ (0, 1/2] and constants C1, C2 depending also on
∫

BR0
4

u2ψ,

such that for all 0 < r < R0
9 one has

(2.22) ||u||L∞(Br) ≥ C1

(

r

R0

)C2(K2/3+1)

.

It is worth emphasizing that, when k = 0, we have N = m and then from (2.7) we have ψ ≡ 1.
In such a case the constant K in (2.21) can be taken to be ||V ||L∞ , and Theorem 2.12 reduces
to the cited Euclidean result in [14]. We note that the sharpness of the estimate corresponding
to (2.22) follows from counterexamples due to Meshkov, see [38].

For zero order C1 perturbation of the operator L, we also obtain the following analogue of a
Carleman estimate proven by Bakri in [12] for Laplace Beltrami operators on manifolds.

Theorem 2.13. Let 0 < ε < 1 be fixed. There exists a universal R0 > 0, depending also on ε,
such that for all R ≤ R0, u ∈ S2,2

0 (BR), and V satisfying

(2.23) |V |+ |FV | ≤ Kψ,

one has

α3

∫

ρ−2α−4+εu2e2αρ
ε
µ+ α

∫

BR

ρ−2α−2+ǫe2αρ
ǫ
〈AXu,Xu〉dzdt(2.24)

≤ C

∫

ρ−2αe2αρ
ε
(Lu+ V u)2µ−1,
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for universal constants C,C1 > 0 depending also on ε such that

α ≥ C1(K
1/2 + 1).

As a consequence of the estimate (2.24), we deduce the following quantitative uniqueness
result for ”C1” type potentials V by repeating the arguments as in the proof of Theorem 1.3 in
[9].

Theorem 2.14. Let u solve
Lu+ V u = 0

in B1 where V satisfies (2.23). Then there exists R0 universal such that for all r ≤ R0, we have

(2.25) ||u||L∞(Br) ≥ C1

(

r

R0

)C2(
√
K+1)

,

where C1, C2 have the same dependence as in Theorem 2.12.

It is to be noted that in the Euclidean case, the constant C can be taken to be the C1 norm
of V . As previously mentioned, Theorem 2.14 has already been proven in [8] differently using a
variant of the frequency function approach which in turn is inspired by the work of Zhu in [49]
for the standard Laplacian ( see also [7] for the extension of the frequency function approach
of Zhu to variable coefficients at the boundary). For a historical account, we note that such
an estimate in the Euclidean case was first established by Bakri in the above cited paper [12]
using the Euclidean version of the Carleman estimate (2.24). Such result generalised the sharp
vanishing order estimate of Donnelly and Fefferman in [18] for eigenfunctions of the Laplacian
on compact manifolds. Finally, we refer to the paper [43] for an interesting generalisation to
nonlocal equations of the quantitative uniqueness result in [12], and also to [5] for a generalisation
to Carnot groups of arbitrary step.

We then study strong unique continuation for sublinear equations of the type

(2.26) − Lu = f((z, t), u)ψ + V u,

where V satisfies (2.21), and f and its primitive, G((z, t), s) =
∫ s
0 f((z, t)s)ds, satisfies the

following assumptions analogous to those in [42] and [45] in the uniformly elliptic case:

(2.27)































f((z, t), 0) = 0,

0 < sf((z, t), s) ≤ qG((z, t), s), for some q ∈ (1, 2) and s ∈ (−1, 1) \ {0},

|∇(z,t)f | ≤ K|f |, |∇(z,t)G| ≤ KG,

f((z, t), s) ≤ κsp−1 for some p ∈ (1, 2),

G((z, t), 1) ≥ ε0 for some ε0 > 0.

We note that the conditions in (2.27) imply that for some constant c0, c1, we have

(2.28) c1s
p ≥ G(., s) ≥ c0s

q, for s ∈ (−1, 1).

A prototypical f satisfying (2.27) is

f((z, t), u) =

ℓ
∑

i=1

ci(z, t)|u|
qi−2u, where for each i, qi ∈ (1, 2), 0 < k0 < ci < k1, and |∇ci| < K,

for some k0, k1 and K. In this case, we can take q = max{qi} and p = min{qi}.
Unique continuation properties for uniformly elliptic nonlinear equations of the type

− div(A(x)∇u) = f(x, u),

with f satisfying the assumptions in (2.27), have been recently studied in [45] and [42]. More
precisely, weak unique continuation properties for such sublinear equations were first obtained
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in [45] using the frequency function approach. Subsequently, in [42] the author established the
strong unique continuation property (see also [44] and [47]). In this work we generalise Rüland’s
result to degenerate elliptic equations of the type (2.26). For related results in the parabolic
setting, we refer to [3] and [11]. We have the following generalization of the result of Rüland for
the variable coefficient Baouendi-Grushin operators.

Theorem 2.15. Let u ∈ S2,2(B1) be a solution to (2.26) in B1 where f satisfies the bounds in
(2.27) and V satisfies (2.21). Furthermore, assume that ||u||L∞(B1) ≤ 1. If u vanishes to infinite
order at (0, 0) in the sense of Definition 2.10, then u ≡ 0.

The reader should note that the assumption on the sign of f,G in (2.27) is not restrictive
because, even in the Euclidean case, the strong unique continuation property fails when f =
−|u|q−2u and A = I. This follows from a one dimensional counterexample in [45].

Our final result concerns the following non-Euclidean analogue of a Carleman estimate due
to Regbaoui in [41].

Theorem 2.16. There exists universal C > 0 such that for every β > 0 sufficiently large, R0

sufficiently small and u ∈ S2,2
0 (BR \ {0}) with supp u ⊂ (BR \ {0}) for R ≤ R0, one has

β3
∫

BR

ρ−Qeβ(log ρ)
2
u2µ dzdt+ β

∫

BR

ρ−Q+2eβ(log ρ)
2
〈AXu,Xu〉dzdt(2.29)

≤ C

∫

ρ−Q+4eβ(log ρ)
2
(Lu)2µ−1 dzdt.

As a corollary of the estimate (2.29), we obtain the following unique continuation result for
a class of scaling critical zero order perturbations of L ( as in (2.30) below) by an obvious
modification of the arguments in [10].

Theorem 2.17. Let u ∈ S2,2(B1) with |u| ≤ 1 be a solution to

(2.30) Lu = V u,

where the potential V satisfies the following Hardy type growth assumption,

(2.31) |V (z, t)| ≤ C
ψ

ρ2
.

Assume that u vanishes at (0, 0) in the following sense,

(2.32)

∫

Br

u2ψ = O(e−k(log r)
2
), for all k > 0.

Then u ≡ 0.

We note that Theorem 2.17 can be regarded as a slight improvement of Theorem 4.4 in [21]
where it is instead assumed that V = V + − V − with

0 ≤ V +(z, t) ≤ C
ψ

ρ2
and 0 ≤ V −(z, t) ≤ δ

ψ

ρ2

where δ is sufficiently small. Theorem 2.17 thus gets rid of such a smallness assumption. It is
to be noted that Theorem 2.17 gives a unique continuation result for (2.30) which is somewhat
weaker than strong unique continuation because the notion of vanishing in (2.32) is stronger
than the notion of vanishing to infinite order as in Definition 2.10. As previously mentioned in
the introduction, the strong unique continuation result for the case of the Hardy type potentials
has only been proven when γ = k = 1 in [10]. The proof of the main Carleman estimate in
[10] however relies on some delicate projection operator estimates established previously in [31].
Such estimates are not available for the general Baouendi-Grushin operators and as of now, the
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strong unique continuation property for Hardy type potentials in this degenerate setting remains
an open question.

3. Proof of the Main results

Proof of Theorem 2.12. The proof of Theorem 2.12 is a consequence of the following Carleman
estimate following which one can repeat the arguments as in the proof of Theorem 1.3 in [9]. In
the Euclidean case, such a Carleman estimate was first established by Escauriaza and Vessella
in [20].

Theorem 3.1. For every ε ∈ (0, 1), there exists C > 0 sufficiently large and R0 > 0 sufficiently
small universal depending also on ε such that for every α > 0 sufficiently large( depending also

on ε) and u ∈ S2,2
0 (BR \ {0}) with suppu ⊂ (BR \ {0}) for R ≤ R0, one has

α3

∫

ρ−2α−4+ǫe2αρ
ǫ
u2µ + α

∫

ρ−2α−2+ǫe2αρ
ǫ
〈AXu,Xu〉(3.1)

≤ C

∫

ρ−2αe2αρ
ǫ
(Lu)2µ−1.

Proof. First by a limiting type argument, it suffices to establish the estimate when u is smooth.
Let v = ρ−βeαρ

ε
u. With such choice we have

u = ρβ e−αρ
ǫ
v,

where β is to be determined later (β would finally depend on α and Q!). Then we have that

Lu = Xi(aijXju) = Xi(aijXj(ρ
β e−αρ

ǫ
v)) = Xi

(

aij

[

(ρβ e−αρ
ǫ
)Xjv +Xj(ρ

β e−αρ
ǫ
)v
])

= Xi

(

aij(ρ
β e−αρ

ǫ
)Xjv

)

+Xi

(

aijXj(ρ
β e−αρ

ǫ
)v
)

= Lv(ρβ e−αρ
ǫ
) + 2aij XjvXi(ρ

β e−αρ
ǫ
) +Xi(aijXj(ρ

β e−αρ
ǫ
))v

= Lv(ρβ e−αρ
ǫ
) + 2aij XjvXi(ρ

β e−αρ
ǫ
) + L(ρβ e−αρ

ǫ
)v

Now using

L = Bγ +Xi(bijXj),

we note that the above expression can be further rewritten as

Lu = Lv(ρβ e−αρ
ǫ
) + 2aij XjvXi(ρ

β e−αρ
ǫ
) + Bγ(ρ

β e−αρ
ǫ
)v +Xi(bijXjρ

β e−αρ
ǫ
)v.

Now we calculate last two terms of the right hand side of the above equation. As in [9], we
have

Bγ(ρ
β e−αρ

ε
) =

(

α2ε2ρβ+2ε−2 + β(β +Q− 2)ρβ−2 − αε ((2β + ε+Q− 2)) ρβ+ε−2
)

e−αρ
ε
ψ,

and similarly we have

Xi(ρ
β e−αρ

ǫ
) = ρβ−1 e−αρ

ǫ
(β − αǫρǫ)Xiρ,

and also

XiXj(ρ
β e−αρ

ǫ
) = Xi

[

ρβ−1 e−αρ
ǫ
(β − αǫρǫ)Xjρ

]

= ρβ−2 e−αρ
ǫ (

β(β − 1)− αǫ(2β + ǫ− 1) + (αǫ)2ρ2ǫ
)

XiρXjρ+ ρβ−1 e−αρ
ǫ
(β − αǫρǫ)XiXjρ.
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Thus it follows,

Lu = Lv(ρβ e−αρ
ǫ
) + 2aij XjvXiρ

[

ρβ−1 e−αρ
ǫ
(β − αǫρǫ)

]

+
[(

α2ε2ρβ+2ε−2 + β(β +Q− 2)ρβ−2 − αε ((2β + ε+Q− 2)) ρβ+ε−2
)

e−αρ
ε
ψ
]

v

+
[

Xibij · (β − αǫρǫ)ρβ−1e−αρ
ǫ
Xjρ

]

v +
[

bij

(

ρβ−1 e−αρ
ǫ
(β − αǫρǫ)

)

XiXjρ
]

v

+
[

bij[ρ
β−2e−αρ

ǫ
(β(β − 1)− αǫρǫ(2β + ǫ− 1) + (αǫ)2ρ2ǫ)]XiρXjρ

]

v.

Now in terms of F and µ, we note that Lu can be written in the following way,

Lu = Lv(ρβ e−αρ
ǫ
) + 2µFv

[

ρβ−2 e−αρ
ǫ
(β − αǫρǫ)

]

(3.2)

+
[(

α2ε2ρβ+2ε−2 + β(β +Q− 2)ρβ−2 − αε ((2β + ε+Q− 2)) ρβ+ε−2
)

e−αρ
ε
ψ
]

v

+
[

Xibij · (β − αǫρǫ)ρβ−1e−αρ
ǫ
Xjρ

]

v +
[

aij

(

ρβ−1 e−αρ
ǫ
(β − αǫρǫ)

)

XiXjρ
]

v

+
[

bij[ρ
β−2e−αρ

ǫ
(β(β − 1)− αǫρǫ(2β + ǫ− 1) + (αǫ)2ρ2ǫ)]XiρXjρ

]

v.

Before proceeding further, we make the following discursive remark.

Remark 3.2. From now on unless otherwise specified, we will be following the Einstein notation
for summation over repeated indices.

Now using (a + b)2 ≥ a2 + 2ab with a = 2β µFvρβ−2 and with b being the rest of the terms
in (3.2) above, we obtain

e2αρ
ǫ
(Lu)2 ≥ 4β2ρ2β−4µ2(Fv)2 + 4βµρ2β−2 FvLv − 8αβ ǫµ2(Fv)2ρ2β−4+ǫ(3.3)

+ 4β µρβ−2

[

[(

α2ε2ρβ+2ε−2 + β(β +Q− 2)ρβ−2 − αε ((2β + ε+Q− 2)) ρβ+ε−2
)

ψ
]

+
[

Xibij · (β − αǫρǫ)ρβ−1Xjρ
]

+
[

bij

(

ρβ−1 (β − αǫρǫ)
)

XiXjρ
]

+
[

bij[ρ
β−2(β(β − 1)− αǫρǫ(2β + ǫ− 1) + (αǫ)2ρ2ǫ)]XiρXjρ

]

]

Fv · v.
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Hence from (3.3) we have,

∫

ρ−2αe2αρ
ǫ
(Lu)2µ−1

(3.4)

≥

∫

[4β2ρ−2α+2β−4µ(Fv)2 − 8αβ ǫρ−2α+2β−4+ǫµ(Fv)2] +

∫

4βρ−2α+2β−2 FvLv

+

∫

4β ρ−2α+β−2

[

[(

α2ε2ρβ+2ε−2 + β(β +Q− 2)ρβ−2 − αε ((2β + ε+Q− 2)) ρβ+ε−2
)

ψ
]

+
[

Xibij · (β − αǫρǫ)ρβ−1Xjρ
]

+
[

aij

(

ρβ−1 (β − αǫρǫ)
)

XiXjρ
]

+
[

bij [ρ
β−2(β(β − 1)− αǫρǫ(2β + ǫ− 1) + (αǫ)2ρ2ǫ)]XiρXjρ

]

]

Fv · v

=

∫

[4β2ρ−2α+2β−4µ(Fv)2 − 8αβ ǫµ(Fv)2ρ−2α+2β−4+ǫ] +

∫

4βρ−2α+2β−2 FvLv

+

∫

4β ρ−2α+2β−3 [Xibij · (β − αǫρǫ)Xjρ]Fv · v,

+

∫

4β ρ−2α+β−2

[

[(

α2ε2ρβ+2ε−2 + β(β +Q− 2)ρβ−2 − αε (2β + ε+Q− 2t) ρβ+ε−2
)

ψ
]

+
[

bij [ρ
β−2(β(β − 1)− αǫρǫ(2β + ǫ− 1) + (αǫ)2ρ2ǫ)]XiρXjρ

]

+
[

bij

(

ρβ−1 (β − αǫρǫ)
)

XiXjρ
]

]

F

(

v2

2

)

The following integral in (3.4) above, i.e.

∫

4β ρ−2α+β−2

[

[(

α2ε2ρβ+2ε−2 + β(β +Q− 2)ρβ−2 − αε ((2β + ε+Q− 2)) ρβ+ε−2
)

ψ
]

(3.5)

+
[

bij [ρ
β−2(β(β − 1)− αǫρǫ(2β + ǫ− 1) + (αǫ)2ρ2ǫ)]XiρXjρ

]

+
[

bij

(

ρβ−1 (β − αǫρǫ)
)

XiXjρ
]

]

F

(

v2

2

)

.

is handled using integration by parts as follows.
We first observe from (i) in Theorem 2.2 and also by using Fρ = ρ that for every γ ≥ 0,

(3.6) div(ρ−Q+γF ) = γρ−Q+γ +O(1)ρ−Q+γ+1.

Now we look at each individual term in (3.5). We let

β =
2α+ 4−Q

2
,(3.7)

which gives 2β − 2α− 4 = −Q. With such a choice, it follows using Theorem 2.2 i) and ii) that
the following holds,
(3.8)

2β2(β+Q−2)

∫

ρ2β−2α−4F (v2)ψ = 2β2(β+Q−2)

∫

div(ρ−QFψ)v2 = O(1)β2(β+Q−2)

∫

ρ−Q+1v2ψ.

Similarly we have,
(3.9)

−2βαε(2β+ε+Q−2)

∫

ρ2β−2α−4+εF (v2)ψ = 2βαε2(2β+ε+Q−2)

(
∫

ρ−Q+εv2ψ +O(1)

∫

ρ−Q+ε+1v2ψ

)

,

and

(3.10) 2β(αε)2
∫

ρ2β−2α−4+2εF (v2)ψ = −2βα2ε3
(
∫

ρ−Q+2εv2ψ +O(1)

∫

ρ−Q+2ε+1v2ψ

)

.
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Since ε < 1, thus from (3.8)-(3.10) we deduce the following estimate for all R small enough
depending also on ε,

∫

4βρ−2α+β−2

[

[(

α2ε2ρβ+2ε−2 + β(β +Q− 2)ρβ−2 − αε (2β + ε+Q− 2) ρβ+ε−2
)

ψ
]

Fv.v

(3.11)

≥ cβ3ε2
∫

ρ−Q+εv2ψ,

for some universal c > 0.
Again by integrating by parts and by using |F (bijXiρXjρ)| ≤ Cρψ and the Hypothesis (H),

we note that the following holds,
∫

4βρ−2α+β−2
[

bij [ρ
β−2(β(β − 1)− αǫρǫ(2β + ǫ− 1) + (αǫ)2ρ2ǫ)]XiρXjρ

]

F

(

v2

2

)

= −

∫

div

(

4βρ−2α+β−2
[

bij[ρ
β−2(β(β − 1)− αǫρǫ(2β + ǫ− 1) + (αǫ)2ρ2ǫ)]XiρXjρ

]

F

)

v2

2

≥ −Cβ3
∫

ρ−Q+1v2ψ,

for some universal C. Likewise, we have that
∫

4βρ−2α+β−2
[

bij

(

ρβ−1 (β − αǫρǫ)
)

XiXjρ
]

F

(

v2

2

)

(3.12)

= −

∫

4β div(ρ−2α+β−2
[

bij

(

ρβ−1 (β − αǫρǫ)
)

XiXjρ
]

F )
v2

2

≥ −Cβ2
∫

ρ−Q+1v2ψ.

We note that in (3.12) above, we also used the estimate from Lemma 2.8 and also that |bijXiXjρ| ≤
Cψ. Thus from (3.11)-(3.12) it follows that

∫

4β ρ−2α+β−2

[

[(

α2ε2ρβ+2ε−2 + β(β +Q− 2)ρβ−2 − αε ((2β + ε+Q− 2)) ρβ+ε−2
)

ψ
]

(3.13)

+
[

bij [ρ
β−2(β(β − 1)− αǫρǫ(2β + ǫ− 1) + (αǫ)2ρ2ǫ)]XiρXjρ

]

+
[

bij

(

ρβ−1 (β − αǫρǫ)
)

XiXjρ
]

]

F

(

v2

2

)

≥ cβ3ε2
∫

ρ−Q+εv2ψ,

provided R is chosen small enough depending also on ε.
Now using

∑N
i,j=1 |Xibij Xjρ| ≤ Cµ, we obtain by an application of Cauchy-Schwartz inequal-

ity that the following holds
∫

4β ρ−2α+2β−3 [Xibij · (β − αǫρǫ)Xjρ]Fv · v(3.14)

≤
1

2

[

β2
∫

ρ−2α+2β−4µ(Fv)2dzdt+ 8β2
∫

ρ−2α+2β−2v2µ

]

=
1

2

[

β2
∫

ρ−Qµ(Fv)2 + 8β2
∫

ρ−Q+2v2µ

]

.
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Again by using the Cauchy-Schwartz inequality, we note that if R is chosen sufficiently small
depending also on ε, then for all large enough β we can ensure that

∫

[4β2ρ−2α+2β−4µ(Fv)2 − 8αβ ǫρ−2α+2β−4+ǫµ(Fv)2](3.15)

≥ 3β2
∫

ρ−Q(Fv)2µ.

We finally estimate the remaining integral in (3.4), i.e.
∫

4βρ−2α+2β−2 FvLv.

This is accomplished using an appropriate Rellich type identity similar to that for the constant
coefficient case considered in [9]. However in the present scenario of variable coefficients, as the
reader will see that an error term is incurred after the application of such an identity which is
then eventually handled by an interpolation type argument. We first note that with our choice
of α as in (3.7), such an integral equals

∫

4βρ−Q+2 FvLv.

We now state the relevant Rellich type identity( see for instance Lemma 2.11 in [32]) which will
be used:

∫

∂BR

〈AXu,Xu〉 〈G, ν〉 = 2

∫

∂BR

aijXiu〈Xj , ν〉Gu(3.16)

− 2

∫

BR

aij(divXi)XjuGu− 2

∫

BR

aijXiu[Xj , G]u

+

∫

BR

divG〈AXu,Xu〉 +

∫

BR

〈(GA)Xu,Xu〉 − 2

∫

BR

GuXi(aijXju),

where G is a vector field, GA is the matrix with coefficients Gaij , ν denotes the outer unit normal
to Br, and the summation convention over repeated indices has been adopted. Therefore with
G = ρ−Q+2F, we obtain

4β

∫

ρ−Q+2FvLv = 2β

∫

div[ρ−Q+2F ]〈AXv,Xv〉 − 4β

∫

aijXiv[Xi, ρ
−Q+2F ]v(3.17)

+ 2β

∫

〈(ρ−Q+2FA)Xv,Xv〉

≥ 4β

∫

ρ−Q+2〈AXv,Xv〉 − Cβ

∫

ρ−Q+3〈AXv,Xv〉 − 4β

∫

aijXiv[Xi, ρ
−Q+2F ]v.

In the last step we used the fact that div[ρ−Q+2F ] = 2ρ−Q+2 + O(1)ρ−Q+3 and |Fars| ≤ Cρ.
We next note that

[Xi, G]v = ρ−Q+2[Xi, F ]v +Xi[ρ
−Q+2]Fv

= ρ−Q+2[Xi, F ]v + (−Q+ 2)ρ−Q+1XiρFv.

This gives

aijXiv[Xj , G]v = (−Q+ 2)ρ−Q+1〈AXρ,Xv〉Fv + ρ−Q+2aijXiv[Xj , F ]v

= (−Q+ 2)ρ−Q(Fv)2µ+ ρ−Q+2aijXiv ([Xj , F ]v −Xjv)

+ ρ−Q+2〈AXv,Xv〉,
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where we have used the fact that

ρ〈AXρ,Xu〉 = µFu.

Therefore using the estimate in Theorem 2.2 vii) we obtain that for some universal C the
following holds,

4β

∫

ρ−Q+2FvLv ≥ 4β

∫

ρ−Q+2〈AXv,Xv〉(3.18)

− 4β

∫

ρ−Q+2 〈AXv,Xv〉 − Cβ

∫

〈AXv,Xv〉ρ−Q+3 + 2β(Q− 2)

∫

Br

(Fv)2ρ−Qµ.

Since Q ≥ 2, therefore from (3.18) we deduce that the following holds,

(3.19) 4β

∫

ρ−Q+2FvLv + Cβ

∫

ρ−Q+3〈AXv,Xv〉 ≥ 0.

Therefore, by combining (3.13), (3.14), (3.15) and (3.19), we finally obtain that
∫

ρ−2α e2αρ
ǫ
(Lu)2µ−1(3.20)

≥ 3β2
∫

ρ−Q(Fv)2µ− Cβ

∫

ρ−Q+3〈AXv,Xv〉 + cβ3ε2
∫

ρ−Q+ǫv2µ

where C and c are universal constants. We now estimate the term

Cβ

∫

ρ−Q+3〈AXv,Xv〉

in (3.20) using an interpolation type argument. We first rewrite such an integral in terms of
∫

ρ−2α−1e2αρ
ǫ
< AXu,AXu > as follows,

∫

ρ−2α−1e2αρ
ǫ
〈AXu,Xu〉 =

∫

ρ−2α−1e2αρ
ǫ
〈AX(ρβe−αρ

ǫ
v),X(ρβe−αr

ǫ
v)〉

(3.21)

=

∫

ρ−2α−1e2αρ
ǫ
〈A (β − αǫρǫ)ρβ−1e−αρ

ǫ
Xρv + ρβe−αρ

ǫ
AXv, (β − αǫρǫ)ρβ−1e−αρ

ǫ
Xρv + ρβe−αρ

ǫ
Xv〉

=

∫

ρ−2α−1e2αρ
ǫ

[

µ ρ2β−2e−2αρǫ(β − αǫρǫ)2v2 + 2µFv v(ρ2β−2(β − αǫρǫ)e−2αρǫ) + (e−2αρǫρ2β)〈AXv,Xv〉

]

=

∫

ρ−Q+3

[

µ (β − αǫρǫ)2

ρ2
v2 + 2µ

(β − αǫρǫ)

ρ2
Fv v + 〈AXv,Xv〉

]

=

∫

ρ−Q+3

[

µ (β − αǫρǫ)2

ρ2
v2 − µ

[

ρ−2(β − αǫρǫ) div(F ) + ρ−2(β(−Q+ 1) + αǫ(−Q+ 1 + ǫ))
]

v2 + 〈AXv,Xv〉

]

=

∫

ρ−Q+3

[

µ (β − αǫρǫ)2

ρ2
v2 − µ

[

ρ−2(β − αǫρǫ)(Q+O(ρ))

+ ρ−2(β(−Q+ 1) + αǫ(−Q+ 1 + ǫ))
]

v2 + 〈AXv,Xv〉

]

.

Thus we get for some universal C1 that

(3.22)

∫

ρ−2α−1e2αρ
ǫ
〈AXu,Xu〉 ≥

∫

ρ−Q+3〈AXv,Xv〉 − C1β

∫

ρ−Q+1v2.
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Using (3.22) in (3.20) we obtain that for all large enough β depending also on ε we have,
∫

ρ−2α e2αρ
ǫ
(Lu)2µ−1 + C1β

∫

ρ−2α−1e2αρ
ǫ
〈AXu,Xu〉(3.23)

≥ 3β2
∫

ρ−Q(Fv)2µ+ cβ3ε2
∫

ρ−2α−4+ǫe2αρ
ǫ
u2 µ.

We now show how to incorporate the integral Cβ
∫

BR
ρ−2α−2+ǫe2αρ

ǫ
〈AXu,Xu〉 in the left

hand side of (3.1) by interpolation.
We have by integration by parts,

∫

ρ−2α−2+ǫe2αρ
ǫ
〈AXu,Xu〉 =

∫

ρ−2α−2+ǫe2αρ
ǫ
〈AX(ρβe−αρ

ǫ
v),X(ρβe−αρ

ǫ
v)〉

(3.24)

= −

∫

< X(ρ−2α−2+ǫe2αρ
ǫ
), AX(ρβe−αρ

ǫ
v) > [ρβe−αρ

ǫ
v]−

∫

L(ρβe−αρ
ǫ
v) v [ρ−2α+β−2+ǫeαρ

ǫ
].

Now we look at each individual term on the right hand side of (3.24). We have

−

∫

〈X(ρ−2α−2+ǫe2αρ
ǫ
), AX(ρβe−αρ

ǫ
v)〉ρβe−αρ

ǫ
v = −

∫

e2αρ
ǫ

(3.25)

[ρ−2α−3+ǫ (−2α− 2 + ǫ+ 2αǫρǫ)]〈Xρ,A[ρβe−αρ
ǫ
Xv + (β − αǫρǫ) ρβ−1 e−αρ

ǫ
Xρv](ρβe−αρ

ǫ
v)〉

= −

∫

ρ−2α+2β−4+ǫ(−2α− 2 + ǫ+ 2αǫρǫ)[(β − αǫρǫ)µ v2 + µFv · v] dzdt

=

∫

ρ−Q+ǫ(2α+ 2− ǫ− 2αǫρǫ)(β − αǫρǫ)µ v2

+

∫

ρ−Q+ǫ(2α+ 2− ǫ− 2αǫρǫ)µFv · v.

Let c0 =
c

100 where c is as in (3.23). From (3.25) it follows that

c0βε
2

∫

ρ−2α−2+ǫe2αρ
ǫ
〈AXu,Xu〉 ≤ c0βε

2

∫

ρ−Q+ǫ(2α + 2− ǫ− 2αǫρǫ)(β − αǫρǫ)µ v2dzdt

(3.26)

+ c0βε
2

∣

∣

∣

∣

∫

ρ−Q+ǫ(2α+ 2− ǫ− 2αǫρǫ)µFv · v

∣

∣

∣

∣

+ c0βε
2

∣

∣

∣

∣

∫

L(ρβe−αρ
ǫ
v) v [ρ−2α+β−2+ǫeαρ

ǫ
]

∣

∣

∣

∣

.

Now by applying Cauchy-Schwartz inequality to the integrals

c0βε
2

∣

∣

∣

∣

∫

ρ−Q+ǫ(2α + 2− ǫ− 2αǫρǫ)µFv · v

∣

∣

∣

∣

and c0βε
2

∣

∣

∣

∣

∫

L(ρβe−αρ
ǫ
v) v [ρ−2α+β−2+ǫeαρ

ǫ
]

∣

∣

∣

∣

,

we obtain from (3.26) that the following inequality holds for all large enough β,

c0βε
2

∫

ρ−2α−2+ǫe2αρ
ǫ
〈AXu,Xu〉 ≤ 4c0β

3ε2
∫

ρ−Q+εv2µ(3.27)

+ 4c0β
2ε2

∫

ρ−Q(Fv)2µ+ c0ε
2

∫

ρ−2αe2αρ
ǫ
(Lu)2µ−1

Using (3.23) into (3.27) above, we obtain

c0βε
2

∫

ρ−2α−2+ǫe2αρ
ǫ
〈AXu,Xu〉(3.28)

≤ C

∫

ρ−2αe2αρ
ǫ
(Lu)2µ−1 + Cβ

∫

ρ−2α−1〈AXu,Xu〉.
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Now since ε < 1, therefore if R is chosen small enough depending also on ε, then the following
integral in (3.28), i.e.

Cβ

∫

ρ−2α−1〈AXu,Xu〉,

can be absorbed in the left hand side of (3.28) since ε < 1 and we thus deduce that the following
holds for some new c0, C,

c0βε
2

∫

ρ−2α−2+ǫe2αρ
ǫ
〈AXu,Xu〉(3.29)

≤ C

∫

ρ−2αe2αρ
ǫ
(Lu)2µ−1.

The estimate (3.1) now follows by using (3.29) in (3.23).
�

Proof of Theorem 2.13.

Proof. As before, we let u = ρβeαρ
ǫ
v where α and β are related as in (3.7). In terms of v, we

have that

Lu+ V u = Lv(ρβ e−αρ
ǫ
) + 2µFv

[

ρβ−2 e−αρ
ǫ
(β − αǫρǫ)

]

+
[

Xiaij · (β − αǫρǫ)ρβ−1e−αρ
ǫ
Xjρ

]

v

(3.30)

+
[

aij [ρ
β−2e−αρ

ǫ
(β(β − 1)− αǫρǫ(2β + ǫ− 1) + (αǫ)2ρ2ǫ)]XiρXjρ

]

v

+
[

aij

(

ρβ−1 e−αρ
ǫ
(β − αǫρǫ)

)

XiXjρ
]

v + V ρβ e−αρ
ǫ
v.

Now again the integral
∫

ρ−2α e2αρ
ǫ
(Lu+ V u)2µ−1

is estimated from below by using (a+ b)2 ≥ a2 +2ab, with a = 2βρβ−2µFv and b being the rest
of the terms in (3.30). Arguing as in the proof of Theorem 3.1 we obtain,

∫

ρ−2α e2αρ
ǫ
(Lu+ V u)2µ−1 + C1β

∫

ρ−2α−1e2αρ
ǫ
〈AXu,Xu〉(3.31)

≥ 3β2
∫

ρ−Q(Fv)2µ+ cβ3ε2
∫

ρ−2α−4+ǫe2αρ
ǫ
u2 µ+ 4β

∫

ρ−2α+2β−2FvV v.

We note that the additional integral in (3.31) is incurred due to the presence of the additional
term V ρβe−αρ

ǫ
v in (3.30) ( that is not present in (3.2) !). Such an integral is estimated as

follows. We have

4β

∫

ρ−2α+2β−2Fv V v = 2β

∫

V ρ−Q+2F (v2)

= −2β

∫

FV ρ−Q+2 v2 + 4β

∫

V ρ−Q+2v2.(3.32)

Recall V satisfying the bound

|V (z, t)| ≤ Kψ and |ZV (z, t)| ≤ Kψ.

Thus both the integrals in (3.32) can be controlled by the following term in (3.31), i.e.

cβ3ε2
∫

ρ−2α−4+ǫe2αρ
ǫ
u2µ,
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provided
cβ3ε2

2
> CKβ

which in turn can be ensured by choosing

(3.33) α ≥ C1(K
1/2 + 1)

( in view of (3.7)) where C1 is some universal constant.
Finally, we show how to incorporate the integral β

∫

ρ−2α−2+ǫe2αρ
ǫ
〈AXu,Xu〉dxdt in the left

hand side of (2.24) by an interpolation type argument as before.
We have by integration by parts,

β

∫

ρ−2α−2+ǫe2αρ
ǫ
〈AXu,Xu〉 = β

∫

ρ−2α−2+ǫe2αρ
ǫ
〈AX(ρβe−αρ

ǫ
v),X(ρβe−αρ

ǫ
v)〉

(3.34)

= −β

∫

X(ρ−2α−2+ǫe2αρ
ǫ
) · AX(ρβe−αρ

ǫ
v)[ρβe−αρ

ǫ
v]− β

∫

L(ρβe−αρ
ǫ
v)[ρ−2α−2+ǫe2αρ

ǫ
] [ρβe−αρ

ǫ
v]

Now by writing Lu = (Lu + V u) − V u, we obtain from (3.34) that the following inequality
holds,

β

∫

ρ−2α−2+ǫe2αρ
ǫ
〈AXu,Xu〉

(3.35)

≤ β

∫

ρ−Q+ǫ(2α+ 2− ǫ− 2αǫρǫ)(β − αǫρǫ)µ v2 + β

∣

∣

∣

∣

∫

ρ−Q+ǫ(2α + 2− ǫ− 2αǫρǫ)µFv · v

∣

∣

∣

∣

+ β

∣

∣

∣

∣

∫

(Lu+ V u) v [ρ−2α+β−2+ǫeαρ
ǫ
]

∣

∣

∣

∣

+ Cβ3
∫

ρ−Q+2+εv2µ,

where in the last inequality above, we used that |V | ≤ β2ψ which follows from (3.33). Therefore,
at this point by suitably applying Cauchy Schwartz inequality to the integrals,

∣

∣

∣

∣

∫

ρ−Q+ǫ(2α + 2− ǫ− 2αǫρǫ)µFv · v

∣

∣

∣

∣

and

β

∣

∣

∣

∣

∫

(Lu+ V u) v [ρ−2α+β−2+ǫeαρ
ǫ
]

∣

∣

∣

∣

,

we can argue as in the proof of Theorem 3.1 using the estimate (3.31) instead of (3.23) to get
to the desired conclusion.

�

Proof of Theorem 2.15. The proof of Theorem 2.15 is a consequence of the following Carleman
estimate after which one can repeat the arguments in [9].

Theorem 3.3. Let ε ∈ (0, 1), 1 < q < 2 and let f satisfy the assumptions in (2.27). Then for
every ε > 0, there exists C universal depending also on ε and the constants in (2.27) such that

for every α > 0 sufficiently large and u ∈ S2,2
0 (BR \ {0}) with supp u ⊂ (BR \ {0}), one has

α3

∫

e2αρ
ǫ [

ρ−2α−4+ǫu2µρ−2α−2|u|q µ
]

(3.36)

+ α

∫

ρ−2α−2+ǫe2αρ
ǫ
〈AXu,Xu〉 ≤ C

∫

ρ−2α e2αρ
ǫ
(Lu+ f((z, t), u)ψ)2µ−1, .

provided R ≤ R0 where R0 is sufficiently small.
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Proof. The proof is similar to that of Theorem 3.1 except that we additionally exploit the
intrinsic nature of the sublinearity f((z, t), u) and the structural assumptions in (2.27). As
before, we let u = ρβeαρ

ǫ
v where α and β are related as in (3.7). In terms of v, we have that

Lu+ f((z, t), u)ψ = Lv(ρβ e−αρ
ǫ
) + 2µFv

[

ρβ−2 e−αρ
ǫ
(β − αǫρǫ)

]

+
[

Xiaij · (β − αǫρǫ)ρβ−1e−αρ
ǫ
Xjρ

]

v

(3.37)

+
[

aij [ρ
β−2e−αρ

ǫ
(β(β − 1)− αǫρǫ(2β + ǫ− 1) + (αǫ)2ρ2ǫ)]XiρXjρ

]

v

+
[

aij

(

ρβ−1 e−αρ
ǫ
(β − αǫρǫ)

)

XiXjρ
]

v + f((z, t), ρβ e−αρ
ǫ
v)ψ.

Now again the integral
∫

ρ−2α e2αρ
ǫ
(Lu+ f((z, t), u)ψ)2µ−1

is estimated from below by using (a+b)2 ≥ a2+2ab, with a = 2βρβ−2µFv and b being the rest of
the terms in (3.37). In this case, we note that all the other terms ( with the exception of (3.38)
below) are handled in the same way as before and therefore we only need to focus our attention
on the following additional term which is incurred due to the presence of the additional term
f((z, t)ρβe−αρ

ǫ
v)ψ in (3.37) ( that is not present in (3.2) !), i.e.

(3.38) 4β

∫

ρ−2α+β−2eαρ
ǫ
Fvf((z, t), ρβe−αρ

ǫ
v)ψ.

Now from the fact that G is the ”s−antiderivative” of f we have

F
(

G((z, t), ρβe−αρ
ǫ
v)
)

= Fvf((z, t), ρβe−αρ
ǫ
v)ρβe−αρ

ǫ
+ (β − αǫρǫ)ρβ e−αρ

ǫ
vf((z, t), ρβ e−αρ

ǫ
v)

(3.39)

+ 〈∇(z,t)G((z, t), ρ
βe−αρ

ǫ
v), F 〉.

Note that in (3.39) above, we used the fact that Fρβ = βρβ. Then by using (3.39) we obtain

4β

∫

ρ−2α+β−2eαρ
ǫ
Fvf((z, t), ρβe−αρ

ǫ
v)ψ = 4β

∫

F
(

G((z, t), ρβe−αρ
ǫ
v)
)

ρ−2α−2eαρ
ǫ
ψ

(3.40)

− 4β

∫

(β − αǫρǫ)ρ−2α−2f((z, t), ρβ e−αρ
ǫ
v)ρβeαρ

ǫ
vψ − 4β

∫

ρ−2α−2e2αρ
ǫ
〈∇(z,t)G((z, t), ρ

βe−αρ
ǫ
v), F 〉ψ.

Now from the third condition in (2.27) we have

(3.41) f((z, t), ρβe−αρ
ǫ
v)ρβe−αρ

ǫ
v ≤ qG((z, t), ρβe−αρ

ǫ
v)

and the fourth condition in (2.27) implies

(3.42)

〈

∇z,tG,F

〉

≤ C2G.

Thus by using (3.41) and (3.42) in (3.40) we get the following inequality,

4β

∫

ρ−2α+β−2eαρ
ǫ
Fvf((z, t), ρβ e−αρ

ǫ
v)ψ

(3.43)

≥ 4β

∫

F

(

G((z, t), ρβe−αρ
ǫ
v)

)

ρ−2α−2e2αρ
ǫ
ψ − 4βq

∫

(β − αερǫ)ρ−2α−2e2αρ
ǫ
G((z, t), ρβe−αρ

ǫ
v)ψ

− 4C2β

∫

ρ−2α−2e2αρ
ǫ
G((z, t), ρβe−αρ

ǫ
v)ψ.
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where in order to estimate the last integral, we used that µ ∼ ψ. Now the first term in the right
hand side of (3.43), i.e. the integral

4β

∫

F

(

G((z, t), ρβe−αρ
ǫ
v)

)

ρ−2α−2e2αρ
ǫ
ψ

is handled using integration by parts in the following way using the estimates in Theorem 2.2 i)
and ii).

4β

∫

F

(

G((z, t), ρβe−αρ
ǫ
v)

)

ρ−2α−2e2αρ
ǫ
ψ(3.44)

= −4β

∫

G((z, t), ρβe−αρ
ǫ
v) div(ρ−2α−2e2αρ

ǫ
Fψ)

=

∫

(8β(β − 1)− 8αβερε − 4βO(ρ))ρ−2α−2e2αρ
ǫ
G((z, t), ρβv)ψ.

We note that over here we used (3.7) which implies that

div(ρ−2α−2e2αρ
ǫ
F ) = [−2α− 2 + 2αǫρǫ]ρ−2α−2e2αρ

ǫ
+ ρ−2α−2e2αρ

ǫ
divF

= (−2(β − 1) + 2αǫρǫ +O(ρ))ρ−2α−2e2αρ
ǫ
.

Now since q < 2, by using (3.43) and (3.44) we obtain that

∫

ρ−2α+β−2eαρ
ǫ
4βFvf((z, t), ρβe−αρ

ǫ
v)ψ

(3.45)

≥

∫

(4β2(2− q) + 4αβερǫ(q − 2)− Cρ− 4C2β − 8β)ρ−2α−2e2αρ
ǫ
G((z, t), ρβe−αρ

ǫ
v)ψ

≥ cβ2
∫

ρ−2α−2e2αρ
ǫ
G((z, t), ρβe−αρ

ǫ
v)ψ, for large enough β provided R is small enough.

Thus it follows from the computations as in the proof of Theorem 3.1 and by using (3.45)
that the following inequality holds,

∫

ρ−2α e2αρ
ǫ
(Lu+ f((z, t), u)ψ)2µ−1 +C1β

∫

ρ−2α−1e2αρ
ǫ
〈AXu,Xu〉(3.46)

≥ 3β2
∫

ρ−Q(Fv)2µ+ cβ3ε2
∫

ρ−2α−4+ǫe2αρ
ǫ
u2 µ+ cβ2

∫

ρ−2α−2e2αρ
ǫ
G((z, t), u)ψ.

Finally as before, we show how to incorporate the integral β
∫

ρ−2α−2+ǫe2αρ
ǫ
〈AXu,Xu〉 in

the left hand side of (3.36) by interpolation.
We have,

β

∫

ρ−2α−2+ǫe2αρ
ǫ
〈AXu,Xu〉 = β

∫

ρ−2α−2+ǫe2αρ
ǫ
〈AX(ρβe−αρ

ǫ
v),X(ρβe−αρ

ǫ
v)〉(3.47)

= −β

∫

X(ρ−2α−2+ǫe2αρ
ǫ
) · AX(ρβe−αρ

ǫ
v)[ρβe−αρ

ǫ
v]− β

∫

Lu v [ρ−2α+β−2+ǫeαρ
ǫ
].
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Now by rewriting Lu = (Lu+ f((z, t), u)ψ) − f((z, t).u)ψ we obtain from (3.47) that

β

∫

ρ−2α−2+ǫe2αρ
ǫ
〈AXu,Xu〉

(3.48)

≤ β

∫

ρ−Q+ǫ(2α+ 2− ǫ− 2αǫρǫ)(β − αǫρǫ)µ v2 + β

∣

∣

∣

∣

∫

ρ−Q+ǫ(2α + 2− ǫ− 2αǫρǫ)µFv · v

∣

∣

∣

∣

+ β

∣

∣

∣

∣

∫

(Lu+ f((z, t), u)) v [ρ−2α+β−2+ǫeαρ
ǫ
]

∣

∣

∣

∣

+ β

∫

ρ−2α−2+εe2αρ
ε
f((z, t), u)uµ

≤ β

∫

ρ−Q+ǫ(2α+ 2− ǫ− 2αǫρǫ)(β − αǫρǫ)µ v2 + β

∣

∣

∣

∣

∫

ρ−Q+ǫ(2α + 2− ǫ− 2αǫρǫ)µFv · v

∣

∣

∣

∣

+ β

∣

∣

∣

∣

∫

(Lu+ f((z, t), u)) v [ρ−2α+β−2+ǫeαρ
ǫ
]

∣

∣

∣

∣

+ βq

∫

ρ−2α−2+εe2αρ
ε
G((z, t), u)ψ,

where in the last inequality in (3.48) above, we used that uf((z, t), u) ≤ qG((z, t), u). We now
note that the last integral in (3.48) above, i.e.

βq

∫

ρ−2α−2+εe2αρ
ε
G((z, t), u)µ

can be estimated from above by the following integral in (3.46), i.e.

cβ2
∫

ρ−2α−2e2αρ
ǫ
G((z, t), u)ψ,

provided β is sufficiently large. At this point , the rest of the argument is similar to that for
Theorem 3.1 where we use the inequality (3.46) instead of (3.23) and we finally arrive at the
following estimate

α3

∫

e2αρ
ǫ [

ρ−2α−4+ǫu2µ+ ρ−2α−2G((z, t), u)µ
]

(3.49)

+ α

∫

ρ−2α−2+ǫe2αρ
ǫ
〈AXu,Xu〉 ≤ C

∫

ρ−2α e2αρ
ǫ
(Lu+ f((z, t), u)ψ)2µ−1.

The desired inequality (3.36) now follows by using (2.28) in (3.49).
�

Proof of Theorem 2.16.

Proof. Let v = e
β
2
(log ρ)2 u. Then it follows,

Lu = Lv(e−
β
2
(log ρ)2) + 2aij XjvXi(e

−β
2
(log ρ)2) + L(e−

β
2
(log ρ)2)v

Since aij = δij + bij , therefore we have,

Lu = Lv(e−
β
2
(log ρ)2) + 2aij XjvXi(e

−β
2
(log ρ)2) + Bγ(e

−β
2
(log ρ)2)v +Xi(bijXj(e

−β
2
(log ρ)2))v.

Now, we compute the last two terms in the right hand side of the above expression. By a
standard calculation we obtain,

Bγ(e
−β

2
(log ρ)2) = ψ e−

β
2
(log ρ)2 ρ−2

(

(β log ρ)2 − β − (Q− 2)β log ρ
)

,

and

Xi(e
−β

2
(log ρ)2) = −β(log ρ)ρ−1 e−

β
2
(log ρ)2Xiρ.
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Similarly we have,

XiXj(e
−β

2
(log ρ)2) = Xi

[

−β(log ρ)ρ−1 e−
β
2
(log ρ)2Xjρ

]

= βρ−2 e−
β
2
(log ρ)2

(

−1 + (log ρ) + β(log ρ)2
)

XiρXjρ− β(log ρ)ρ−1 e−
β
2
(log ρ)2XiXjρ.

Thus,

Lu = Lv(e−
β
2
(log ρ)2) + 2aij XjvXiρ

[

−β(log ρ)ρ−1 e−
β
2
(log ρ)2

]

+
[

ψ e−
β
2
(log ρ)2 ρ−2

(

(β log ρ)2 − β − (Q− 2)β log ρ
)

]

v

−
[

Xibijβ(log ρ)ρ
−1 e−

β
2
(log ρ)2Xjρ

]

v +
[

bij

(

−β(log ρ)ρ−1 e−
β
2
(log ρ)2

)

XiXjρ
]

v

+
[

bij

(

βρ−2 e−
β
2
(log ρ)2

(

−1 + (log ρ) + β(log ρ)2
)

)

XiρXjρ
]

v.

Consequently in terms of the vector field F , we observe that Lu can be written as,

Lu = Lv(e−
β
2
(log ρ)2) + 2µFv

[

−β(log ρ)ρ−2 e−
β
2
(log ρ)2

]

(3.50)

+
[

ψ e−
β
2
(log ρ)2 ρ−2

(

(β log ρ)2 − β − (Q− 2)β log ρ
)

]

v

+
[

Xibij · β(− log ρ)ρ−1 e−
β
2
(log ρ)2Xjρ

]

v +
[

bij

(

−β(log ρ)e−
β
2
(log ρ)2ρ−1

)

XiXjρ
]

v

+
[

bij

(

βρ−2e−
β
2
(log ρ)2

(

−1 + (log ρ) + β(log ρ)2
)

)

XiρXjρ
]

v.

Now using (a + b)2 ≥ a2 + 2ab with a = 2β (− log ρ)µFvρ−2 and with b being the rest of the
terms on (3.50) above, we obtain,

eβ(log ρ)
2
(Lu)2 ≥ 4β2ρ−4(log ρ)2 µ2(Fv)2 + 4βµρ−2(− log ρ)FvLv

+4β (− log ρ)µρ−2

[

[

ψ ρ−2
(

(β log ρ)2 − β − (Q− 2)β log ρ
)]

+
[

Xibij · β(− log ρ)ρ−1Xjρ
]

+
[

bij
(

β(− log ρ)ρ−1
)

XiXjρ
]

+
[

bij
(

βρ−2
(

−1 + (log ρ) + β(log ρ)2
))

XiρXjρ
]

]

Fv · v.
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Hence,

∫

ρ−Q+4 eβ(log ρ)
2
(Lu)2µ−1(3.51)

≥

∫

[4β2ρ−Q(log ρ)2 µ(Fv)2] dzdt +
∫

4βρ−Q+2(− log ρ)FvLv

+

∫

4β ρ−Q+2 (− log ρ)

[

[

ψ ρ−2
(

(β log ρ)2 − β − (Q− 2)β log ρ
)]

+
[

Xibij · β(− log ρ)ρ−1Xjρ
]

+
[

bij
(

β(− log ρ)ρ−1
)

XiXjρ
]

+
[

bij
(

βρ−2
(

−1 + (log ρ) + β(log ρ)2
))

XiρXjρ
]

]

Fv · v

=

∫

[4β2ρ−Q(log ρ)2 µ(Fv)2] dzdt +
∫

4βρ−Q+2(− log ρ)FvLv

+

∫

4β ρ−Q+2 (− log ρ)

[

[

ψ ρ−2
(

(β log ρ)2 − β − (Q− 2)β log ρ
)]

+
[

Xibij · β(− log ρ)ρ−1Xjρ
]

+
[

bij
(

β(− log ρ)ρ−1
)

XiXjρ
]

+
[

bij
(

βρ−2
(

−1 + (log ρ) + β(log ρ)2
))

XiρXjρ
]

]

F

(

v2

2

)

We first handle the following term in the right hand side of (3.51) above,

∫

4β ρ−Q+2 (− log ρ)

[

[

ψ ρ−2
(

(β log ρ)2 − β − (Q− 2)β log ρ
)]

+
[

bij
(

β(− log ρ)ρ−1
)

XiXjρ
]

(3.52)

+
[

bij
(

βρ−2
(

−1 + (log ρ) + β(log ρ)2
))

XiρXjρ
]

]

F

(

v2

2

)

.

We now look at each individual term in (3.52).
First we observe that by applying integration by parts to the integral

∫

4β [(β log ρ)2 − β − (Q− 2)β log ρ](− log ρ)ρ−QψF

(

v2

2

)

we get that the following holds,

∫

4β [(β log ρ)2 − β − (Q− 2)β log ρ](− log ρ)ρ−QψF

(

v2

2

)

= 4

∫

β3 div[(log ρ)3ρ−QFψ]
v2

2

(3.53)

− 4

∫

β2 div((log ρ)ρ−QFψ)
v2

2
− 4

∫

β2(Q− 2) div((log ρ)2ρ−QFψ)
v2

2

Now we estimate each individual term in the right hand side of (3.53). We have using the
estimates in Theorem 2.2,

4

∫

β3 div[(log ρ)3ρ−QFψ]
v2

2
≥ 6β3

∫

ρ−Q(log ρ)2v2ψ − Cβ3
∫

ρ−Q+1(log ρ)3v2ψ.(3.54)
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Likewise it follows that,

−4

∫

β2 div((log ρ)ρ−QFψ)
v2

2
− 4

∫

β2(Q− 2) div((log ρ)2ρ−QFψ)
v2

2

≥ 2β2
∫

ρ−Q[2(Q− 2)(− log ρ)− 1] v2ψ − C

∫

ρ−Q+1[β2(− log ρ) + 4β2(Q− 2)(log ρ)2].

Next, we see that

4β2
∫

ρ−Q(− log ρ)(−1 + (log ρ) + β(log ρ)2)bijXiρXjρF

(

v2

2

)

(3.55)

= −2β2
∫

div(ρ−Q(− log ρ)(−1 + (log ρ) + β(log ρ)2)bijXiρXjρF )v
2

≥ −Cβ2
∫

ρ−Q+2(− log ρ)(−1 + (log ρ) + β(log ρ)2)v2µ− Cβ2
∫

ρ−Q+1v2µ− Cβ3
∫

ρ−Q+1(log ρ)2v2µ

Finally, the second integral in (3.52) can be estimated using the estimates in Theorem 2.2 as
well as the third derivative estimate in Lemma 2.8 in the following way,

4β

∫

ρ−Q+1 [bij(− log ρ)XiXjρ]F

(

v2

2

)

(3.56)

∫

div

(

4β ρ−Q+1 [bij (β(log ρ) )XiXjρF ]

)

v2

2

≥ −Cβ2
∫

ρ−Q+1(− log ρ)v2µ.

Thus from (3.53)-(3.56) it follows that for all R small enough, we have

∫

4β ρ−Q+2 (− log ρ)

[

[

ψ ρ−2
(

(β log ρ)2 − β − (Q− 2)β log ρ
)]

+
[

bij
(

β(− log ρ)ρ−1
)

XiXjρ
]

(3.57)

+
[

bij
(

βρ−2
(

−1 + (log ρ) + β(log ρ)2
))

XiρXjρ
]

]

F

(

v2

2

)

≥ 5β3
∫

ρ−Q(log ρ)2v2µ.

Now using
∑N

i,j=1 |Xibij Xjρ| ≤ Cµ, we obtain by applying Cauchy-Schwartz inequality that the
following holds,

∫

4β ρ−Q+1 [Xibij · β(− log ρ)Xjρ]Fv · v(3.58)

≥ −β2
∫

ρ−Q+1(Fv)2(log(ρ))2µ− C

∫

ρ−Q+1v2µ

We now estimate the second integral in (3.51), i.e.
∫

4βρ−Q+2 (− log ρ)FvLv.

Now in order to estimate this integral, we use the Rellich type identity as in (3.16) with G =
ρ−Q+2(− log ρ)F . It follows using (3.16), the estimates in Theorem 2.2 and by computations
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which are analogous to that in (3.17)-(3.19) that the following holds,

4β

∫

ρ−Q+2 (− log ρ)FvLv ≥ 4β

∫

ρ−Q((Q− 2)(− log ρ) + 1)(Fv)2µ− 2β

∫

ρ−Q+2 < AXv,Xv >

(3.59)

− Cβ

∫

ρ−Q+3(− log ρ)〈AXv,Xv〉 ≥ 4β

∫

ρ−Q((Q− 2)(− log ρ) + 1)(Fv)2µ−
5

2
β

∫

ρ−Q+2 < AXv,Xv >,

where in the last inequality above, we used that for all small enough ρ,

Cρ−Q+3 log(−ρ) ≤
1

2
ρ−Q+2.

Therefore by combining (3.51), (3.57), (3.58) and (3.59), we finally deduce the following
inequality for all β large and R small,

∫

ρ−Q+4 eβ(log ρ)
2
(Lu)2µ−1 +

5

2
β

∫

ρ−Q+2〈AXv,Xv〉(3.60)

≥ 3β2
∫

ρ−Q(log ρ)2(Fv)2µ+ 4β3
∫

ρ−Q(log ρ)2 v2µ.

We now rewrite the integral
∫

ρ−Q+2〈AXv,Xv〉

as follows. We have,

∫

ρ−Q+2eβ(log ρ)
2
〈AXu,Xu〉 =

∫

ρ−Q+2eβ(log ρ)
2
〈AXe−β/2(log ρ)

2
v,Xe−β/2(log ρ)

2
v〉

=

∫

ρ−Q+2

[

(β log ρ)2

ρ2
µv2 + 2

(−β log ρ)

ρ2
vFvµ+ < AXv,Xv >

]

≥

∫

ρ−Q+2

[

(β log ρ)2

ρ2
µv2 +

β

ρ2
v2 − Cβρ−1(− log ρ)v2µ+ 〈AXv,Xv〉

]

.

≥

∫

ρ−Q+2

[

(β log ρ)2

ρ2
µv2 + 〈AXv,Xv〉

]

(provided R is small enough).

Thus, we get

(3.61)

∫

ρ−Q+2eβ(log ρ)
2
〈AXu,Xu〉 ≥

∫

ρ−Q+2〈AXv,Xv〉 + β2
∫

ρ−Q(log ρ)2v2µ.

Using (3.61) in (3.60) we obtain,

∫

ρ−Q+4 eβ(log ρ)
2
(L(e−

β
2
(log ρ)2v))2µ−1 +

5

2
β

∫

ρ−Q+2eβ(log ρ)
2
〈AXu,Xu〉(3.62)

≥ 3β2
∫

BR

ρ−Q(log ρ)2(Fv)2µ+
13

2
β3

∫

ρ−Q(log ρ)2 v2µ.

Finally, we show how to incorporate the integral β
∫

ρ−Q+2eβ(log ρ)
2
〈AXu,Xu〉 in the left hand

side of (2.29) by an interpolation type argument as before. We have,
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β

∫

ρ−Q+2eβ(log ρ)
2
(− log ρ)ε〈AXu,Xu〉 = −β

∫
〈

X(ρ−Q+2eβ(log ρ)
2
, AX(e−β/2(log ρ)

2
v)

〉

e−β/2(log ρ)
2
v

(3.63)

− β

∫

L(e−β/2(log ρ)
2
v)ρ−Q+2eβ/2(log ρ)

2
v.

≤ −β

∫
〈

X(ρ−Q+2eβ(log ρ)
2
), AX(e−β/2(log ρ)

2
v)

〉

e−β/2(log ρ)
2
v

+ C

∫

ρ−Q+4eβ(log ρ)
2
(Lu)2µ−1 + Cβ2

∫

ρ−Qv2

≤ −β

∫
〈

X(ρ−Q+2eβ(log ρ)
2
, AX(e−β/2(log ρ)

2
v)

〉

e−β/2(log ρ)
2
v + C

∫

ρ−Q+4eβ(log ρ)
2
(Lu)2µ−1

+ C

∫

ρ−Q+2eβ(log ρ)
2
< AXu,Xu >,

where in the last inequality in (3.63) above, we used the estimate (3.62).
Now the following term in (3.63) above, i.e.

−β

∫
〈

X(ρ−Q+2eβ(log ρ)
2
), AX(e−β/2(log ρ)

2
v)

〉

e−β/2(log ρ)
2
v

is estimated as follows.
We have,

− β

∫

〈X(ρ−Q+2eβ(log ρ)
2
), AX(e−β/2(log ρ)

2
v)〉e−β/2(log ρ)

2
v

(3.64)

= −β(−Q+ 2)

∫

ρ−Q
[

µβ(− log ρ)v2 + µFv · v
]

+ β

∫

ρ−Q2β(− log ρ)
[

(−β log ρ)v2µ+ Fv · vµ
]

≤
5

2
β3

∫

ρ−Q(log ρ)2v2µ+ Cβ

∫

ρ−Q(log ρ)2(Fv)2µ (for all large β and R small)

≤ C

∫

ρ−Q+4eβ(log ρ)
2
(Lu)2µ−1 +

(

25

26
β + C

)
∫

ρ−Q+2〈AXu,Xu〉,

where in the last inequality above, we again used the estimate (3.62). Thus from (3.63) and
(3.64) we obtain

β

∫

ρ−Q+2eβ(log ρ)
2
〈AXu,Xu〉 ≤ C

∫

ρ−Q+4eβ(log ρ)
2
(Lu)2µ−1 +

(

C +
25

26
β

)
∫

ρ−Q+2〈AXu,Xu〉.

(3.65)

Now for all β large enough, we observe that the following term in (3.65) above, i.e.
(

C +
25

26
β

)
∫

ρ−Q+2〈AXu,Xu〉.

can be absorbed in the left hand side of (3.65) and we thus infer that the following estimate
holds,

β

∫

ρ−Q+2eβ(log ρ)
2
〈AXu,Xu〉 ≤ C

∫

ρ−Q+4eβ(log ρ)
2
(Lu)2µ−1.(3.66)
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The desired estimate (2.29) now follows from (3.62) and (3.66).
�

4. Appendix

Proof of Lemma 2.8. First note that

F (bijXiXjρ) = F (bij)XiXjρ+ (
ρ

µ

∑

aqrXqρ) bijXr(XiXjρ).

Now a standard tedious computation which uses the estimates in Lemma 2.3, Proposition 2.5
and the hypothesis (H) shows that

(4.1)
∑

|(F (bij)XiXjρ| ≤ Cψ.

Consequently, we turn our attention to estimating the term ( ρµ
∑

aqrXqρ) bijXr(XiXjρ). To do

this, we need to compute the third derivatives of ρ. For that, we use the expressions for the
second derivatives of ρ as listed in Lemma 2.4. We first recall the expression for the derivatives
of ψ as in the proof of Proposition 3.2 in [32].

Xlψ =

{

2γψ zl
|z|2 − 2γψ2 zl

ρ2
, for 1 ≤ l ≤ m

−2γ(γ + 1)ψ
tl−m|z|γ
ρ2γ+2 , for m+ 1 ≤ l ≤ N.

We split our consideration into the following cases.

(1) For 1 ≤ r ≤ m and 1 ≤ i, j ≤ m, we have:

Xr(XiXjρ) = −(2γ + 1)Xr(zizj)
ψ2

ρ3
− (2γ + 1)zizjzr

ψ2

ρ3

[

4γ

|z|2
−
ψ

ρ2
(4γ + 3)

]

+Xr

(

2γ
zizj
|z|2

+ δij

)

ψ

ρ
+

(

2γ
zizj
|z|2

+ δij

)

ψ

ρ
zr

[

2γ

|z|2
−
ψ

ρ2
(2γ + 1)

]

= −(2γ + 1) (zjδri + ziδrj)
ψ2

ρ3
− (2γ + 1)zizjzr

ψ2

ρ3

[

4γ

|z|2
−
ψ

ρ2
(4γ + 3)

]

+ 2γ

(

ziδrj + zjδri
|z|2

− 2
zizjzr
|z|4

)

ψ

ρ
+

(

2γ
zizj
|z|2

+ δij

)

ψ

ρ
zr

[

2γ

|z|2
−
ψ

ρ2
(2γ + 1)

]

.

Since |z| ≤ ρ and |z|
ρ = ψ

1
2γ , we have |Xr(XiXjρ)| ≤ C

[

ψ2

ρ2 + ψ
ρ|z|

]

≤ C ψ
1− 1

2γ

ρ2 . Thus, we

have
∣

∣

∣

∣

(

ρ

µ

∑

aqrXqρ

)

bijXr(XiXjρ)

∣

∣

∣

∣

≤ C ρ2µ
1
2γ
ψ1− 1

2γ

ρ2
≤ Cψ.(4.2)

(2) For m+ 1 ≤ r ≤ N and 1 ≤ i, j ≤ m, we have:

Xr(XiXjρ) = (2γ + 1)(γ + 1)zizj
ψ2

ρ2γ+5
tr−m[4γ|z|

γ + 3ργψ1/2]

−

(

(2γ
zizj
|z|2

+ δij)(γ + 1)

)[

ψ

ρ2γ+3
tr−m[2γ|z|

γ + ργψ1/2]

]

.

Since |z| ≤ ρ, |z|
ρ = ψ

1
2γ and |t| ≤ ργ+1, we have |Xr(XiXjρ)| ≤ C ψ1+ 1

2

ρ2
. Thus, we have

∣

∣

∣

∣

(

ρ

µ

∑

aqrXqρ

)

bijXr(XiXjρ)

∣

∣

∣

∣

≤ Cψ.(4.3)
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(3) For 1 ≤ r ≤ m, 1 ≤ i ≤ m and 1 ≤ j ≤ k, we have:

Xr(XiXm+jρ) = −(2γ + 1)(γ + 1)Xr

(

zitj
|z|γ

)

ψ2

ρ3
− (2γ + 1)(γ + 1)

(

zitj
|z|γ

)

ψ2

ρ3
zr

[

4γ

|z|2
−

(4γ + 3)ψ

ρ2

]

+
ψ

ρ

[

γ(γ + 1)Xr

(

zitj
|z|γ+2

)]

+

[

γ(γ + 1)

(

zitj
|z|γ+2

)]

ψ

ρ
zr

[

2γ

|z|2
−
ψ

ρ2
(2γ + 1)

]

= −(2γ + 1)(γ + 1)

(

δritj
|z|γ

− γ
zizrtj
|z|γ+2

)

ψ2

ρ3
− (2γ + 1)(γ + 1)

(

zitj
|z|γ

)

ψ2

ρ3
zr

[

4γ

|z|2
−

(4γ + 3)ψ

ρ2

]

+
ψ

ρ

[

γ(γ + 1)

(

δirtj
|z|γ+2

− (γ + 2)
zizrtj
|z|γ+4

)]

+

[

γ(γ + 1)

(

zitj
|z|γ+2

)]

ψ

ρ
zr

[

2γ

|z|2
−
ψ

ρ2
(2γ + 1)

]

.

Since |z| ≤ ρ, |z|
ρ = ψ

1
2γ and |t| ≤ ργ+1, we have |Xr(XiXm+jρ)| ≤ C

[

ψ3/2

ρ2
+ ψ1/2

|z|2
]

≤

C ψ
1/2− 1

γ

ρ2
. Thus, we have

∣

∣

∣

∣

(

ρ

µ

∑

aqrXqρ

)

bi(m+j)Xr(XiXm+jρ)

∣

∣

∣

∣

≤ C ρ2µ
1
2γ (ψ

1/2+ 1
2γ )

ψ
1/2− 1

γ

ρ2
≤ Cψ.(4.4)

(4) For m+ 1 ≤ r ≤ N , 1 ≤ i ≤ m and 1 ≤ j ≤ k, we have:

Xr(XiXm+jρ) = −(2γ + 1)(γ + 1)Xr

(

zitj
|z|γ

)

ψ2

ρ3
+ (2γ + 1)(γ + 1)2

(

zitj
|z|γ

)

ψ2

ρ2γ+5
tr−m

[

4γ|z|γ + 3ργψ1/2
]

+
ψ

ρ

[

γ(γ + 1)Xr

(

zitj
|z|γ+2

)]

−

[

γ(γ + 1)2
(

zitj
|z|γ+2

)]

ψ

ρ2γ+3
tr−m

[

2γ|z|γ + ργψ1/2
]

= −(2γ + 1)(γ + 1)

(

zi|z|
γδrj

|z|γ

)

ψ2

ρ3
+ (2γ + 1)(γ + 1)2

(

zitj
|z|γ

)

ψ2

ρ2γ+5
tr−m

[

4γ|z|γ + 3ργψ1/2
]

+
ψ

ρ

[

γ(γ + 1)

(

zi|z|
γ δrj

|z|γ+2

)]

−

[

γ(γ + 1)2
(

zitj
|z|γ+2

)]

ψ

ρ2γ+3
tr−m

[

2γ|z|γ + ργψ1/2
]

.

Since |z| ≤ ρ, |z|
ρ = ψ

1
2γ and |t| ≤ ργ+1, we have |Xr(XiXm+jρ)| ≤ C

[

ψ2

ρ2
+ ψ

ρ|z|

]

≤

C ψ
1− 1

2γ

ρ2 . Thus, we have

∣

∣

∣

∣

(

ρ

µ

∑

aqrXqρ

)

bi(m+j)Xr(XiXm+jρ)

∣

∣

∣

∣

≤ C ρ2µ−
1
2 (ψ1/2+ 1

2γ )
ψ
1− 1

2γ

ρ2
≤ Cψ.(4.5)

(5) For 1 ≤ r, i ≤ m and 1 ≤ j ≤ k we have:

Xr(Xm+jXiρ) = −(2γ + 1)(γ + 1)Xr

(

zitj
|z|γ

)

ψ2

ρ3
− (2γ + 1)(γ + 1)

(

zitj
|z|γ

)

ψ2

ρ3
zr

[

4γ

|z|2
−

(4γ + 3)ψ

ρ2

]

= −(2γ + 1)(γ + 1)

(

δritj
|z|γ

− γ
zizrtj
|z|γ+2

)

ψ2

ρ3
− (2γ + 1)(γ + 1)

(

zitj
|z|γ

)

ψ2

ρ3
zr

[

4γ

|z|2
−

(4γ + 3)ψ

ρ2

]

.

Since |z| ≤ ρ, |z|
ρ = ψ

1
2γ and |t| ≤ ργ+1, we have |Xr(Xm+jXiρ)| ≤ C ψ3/2

ρ2 . Thus, we

have
∣

∣

∣

∣

(

ρ

µ

∑

aqrXqρ

)

b(m+j)iXr(Xm+jXiρ)

∣

∣

∣

∣

≤ C ρ2
ψ3/2

ρ2
≤ Cψ.(4.6)
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(6) For m+ 1 ≤ r ≤ N , 1 ≤ i ≤ m and 1 ≤ j ≤ k we have:

Xr(Xm+jXiρ) = −(2γ + 1)(γ + 1)Xr

(

zitj
|z|γ

)

ψ2

ρ3
+ (2γ + 1)(γ + 1)2

(

zitj
|z|γ

)

ψ2

ρ2γ+5
tr−m

[

4γ|z|γ + 3ργψ1/2
]

= −(2γ + 1)(γ + 1)

(

zi |z|
γδrj

|z|γ

)

ψ2

ρ3
+ (2γ + 1)(γ + 1)2

(

zitj
|z|γ

)

ψ2

ρ2γ+5
tr−m

[

4γ|z|γ + 3ργψ1/2
]

.

Since |z| ≤ ρ, |z|
ρ = ψ

1
2γ and |t| ≤ ργ+1, we have |Xr(Xm+jXiρ)| ≤ C ψ3/2

ρ2
. Thus, we

have
∣

∣

∣

∣

(

ρ

µ

∑

aqrXqρ

)

b(m+j)iXr(Xm+jXiρ)

∣

∣

∣

∣

≤ C ρ2ψ−1/2ψ
3/2

ρ2
≤ Cψ.(4.7)

(7) For 1 ≤ r ≤ m and 1 ≤ i, j ≤ k we have:

Xr(Xm+iXm+jρ) = −(2γ + 1)(γ + 1)2Xr

(

tjti
|z|2γ

)

ψ2

ρ3
− (2γ + 1)(γ + 1)2

(

tjti
|z|2γ

)

ψ2

ρ3
zr

[

4γ

|z|2
−

(4γ + 3)ψ

ρ2

]

+ (γ + 1)δij
ψ

ρ
zr

[

2γ

|z|2
−
ψ

ρ2
(2γ + 1)

]

= −(2γ + 1)(γ + 1)2
(

−2γ
tizrti
|z|2γ+1

)

ψ2

ρ3
− (2γ + 1)(γ + 1)2

(

tjti
|z|2γ

)

ψ2

ρ3
zr

[

4γ

|z|2
−

(4γ + 3)ψ

ρ2

]

+ (γ + 1)δij
ψ

ρ
zr

[

2γ

|z|2
−
ψ

ρ2
(2γ + 1)

]

.

Since |z| ≤ ρ, |z|
ρ = ψ

1
2γ and |t| ≤ ργ+1, we have |Xr(Xm+iXm+jρ)| ≤ C

[

ψ
ρ + ψ

ρ|z|

]

≤

C ψ
1− 1

2γ

ρ2
. Thus, we have

∣

∣

∣

∣

(

ρ

µ

∑

aqrXqρ

)

b(m+i)(m+j)Xr(Xm+iXm+jρ)

∣

∣

∣

∣

≤ C ρ2µ
1
2γ
ψ1− 1

2γ

ρ2
≤ Cψ.(4.8)

(8) For m+ 1 ≤ r ≤ N and 1 ≤ i, j ≤ k we have:

Xr(Xm+iXm+jρ) = −(2γ + 1)(γ + 1)2Xr

(

tjti
|z|2γ

)

ψ2

ρ3
+ (2γ + 1)(γ + 1)3

(

tjti
|z|2γ

)

ψ2

ρ2γ+5

tr−m
[

4γ|z|γ + 3 ργ ψ1/2
]

− (γ + 1)2δij
ψ

ρ2γ+3
tr−m

[

2γ|z|γ + ργψ1/2
]

= −(2γ + 1)(γ + 1)2
(

tj |z|
γδri

|z|2γ
+
ti|z|

γδrj
|z|2γ

)

ψ2

ρ3
+ (2γ + 1)(γ + 1)3

(

tjti
|z|2γ

)

ψ2

ρ2γ+5

tr−m
[

4γ|z|γ + 3 ργ ψ1/2
]

− (γ + 1)2δij
ψ

ρ2γ+3
tr−m

[

2γ|z|γ + ργψ1/2
]

.

Since |z| ≤ ρ, |z|
ρ = ψ

1
2γ and |t| ≤ ργ+1, we have |Xr(Xm+iXm+jρ)| ≤ C ψ3/2

ρ2
. Thus, we have

∣

∣

∣

∣

(

ρ

µ

∑

aqrXqρ

)

b(m+i)(m+j)Xr(XiXjρ)

∣

∣

∣

∣

≤ C ρ2µ−
1
2
ψ3/2

ρ2
≤ Cψ.(4.9)

The estimate (2.18) now follows from (4.1)-(4.9).
�
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