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Abstract 

We consider discrete time versions of two classical prob- 
lems in the optimal control of admission to  a queueing system: 
(i) optimal routing of arrivals t o  two parallel queues and (ii) 
optimal acceptancefrejection of arrivals to  a single queue. We 
extend the formulation of these problems to  permit a k step 
delay in the observation of the queue lengths by the controller. 
For geometric inter-arrival times and geometric service times 
the problems are formulated as Controlled Markov Chains with 
expected total discounted cost as the minimization objective. 

For problem (i) we show that  when k = 1, the optimal 
policy is t o  allocate an arrival to  the queue with the smaller ez- 
pected queue length (JSEQ: Join the Shortest Expected Queue) 
For k 2 2 ,  however, JSEQ is not optimal. 

For problem (ii) we show that  when k = 1, the optimal 
policy is a threshold policy. There are, however, two thresholds 
mo 2 ml > 0,  such that mo is used when the previous action 
was to  reject, and mi is used when the previous action was to  
accept 

1 Introduction 
We consider discrete time and delayed queue-length information 
versions of two classical problems ([1],[6],[8],[9]), for which ex- 
plicit structural results have been obtained for the zero delay 
case in the above mentioned references. 

The first problem is that of optimally allocating arriving cus- 
tomers to one of two parallel queues so as to minimise the ex- 
pected total discounted number in the system. For exponen- 
tial service times the optimality of the Join the Shortest Queue 
(JSQ) policy is the well known result for this problem ([9], [SI, 
[l]). We consider geometric inter-arrival times and geometric 
service times. Further, we assume that the controller is located 
so that it can observe only queue lengths after a delay of k time 
steps. For k = 1, we show that the optimal policy is for the con- 
troller to calculate the expected queue lengths conditioned on 
the most recently known queue lengths and the controls applied 
since then, and then allocate an arrival to the queue with the 
smaller expected length, i.e., the policy is now JSEQ, Join the 
Shortest Expected Queue. We have also shown that for k 2 2, 
JSEQ is no longer optimal. 

The second problem is that of optimally accepting or reject- 
ing customers arriving to a single queue so as to minimise the 
expected total discounted cost, where there is a fixed cost per 
unit time for each queued customer and there is a reward for 
each accepted customer. For general i.i.d. arrivals and expo- 
nential service times it has been shown that the optimal policy 
is of threshold type ([SI). We consider geometric inter-arrival 
times and geometric service times. Further, we assume that the 
controller is so located that it can observe only the queue length 
after a delay of k units. For k = 1, we show that the opti- 
mal policy is again of threshold type. There are two thresholds 
mo 2 mi > 0 ; if the action one step back was to reject (resp. 
accept) then the optimal policy accepts if the queue length one 
step back was less than mo (resp. mi). 

2 Optimal Customer Allocation to Two Par- 
allel Queues 

We assume that time 1 is discrete. Let (ql(t),qz(t)) denote the 
discrete time queue len th  process, where by "queue length" 
we mean the total numger in the queue, including the service 
position. At time t ,  t E {0,1,2,. . .} the controller must decide 
on a control action ~ ( t )  E {1,2}, and is allowed to observe 
only the queue lengths till time t - k and, of course, knows all 
control actions till time t - 1. In particular, we assume that at 

time U the process has already been evolving since time -k and 
the controller is given (qi(-k),qz(-k)) and ( (u ( - k ) ,  U ( - k +  I), 
. . . , U ( - 1 ) ) .  The problem is to choose { ~ ( o ) ,  ~ ( l ) ,  . . . }  so as to 
optimise a cost function. 

The arrivals and departures occur as follows. An arrival oc- 
curs to the system with probability A at t = n+, n 2 -k, and 
a departure occurs from a non-empty queue with probability p 
at 1 = n--, n 2 -k + 1. The control action at t = n ,  n 2 -k, 
decides to which queue an arrival a t  n+ must be routed. If no 
customer arrives at n+ then the decision has no effect. 

The scheduler, at time t ,  has the information { { q ; ( t  - l)}fLk, 
i = 1,2} and { ~ ( t  - l)}fzf}. We need a policy 7r for choosing 
{;u(O), ~ ( 1 ) ~  ~ ( 2 )  . . . } so as to minimise the following cost func- 

i = 1 ,2 ,  { u ( - k ) ,  . . . , U(-1)}} and ,B E ( 0 , l )  is a discount fac- 
tor. It is clear that ( A  + ql(n) + qz(n)) is the expected holding 
cost of customers in the interval n E {0,1,2, . . . } if the holding 
cost per customer per time step is 1. 

The problem posed above can be formulated directly as a 
CO-CMC (Completely Observed-Controlled Markov Chain). 

We show the formulation here for k = 1. We list the elements 
of the CO-CMC for k = 1 as follows. 

a) State a t  time n : s (n )  = (ql(n - 1 ) , q ~ ( n  - I),.(. - 

1)) 
b) .4ction at time n : U(.) E {1,2} Vn E N .  
c) Transition probabilities : Let i = ( i i , iz ,v) ,  j = ( j t , j z , w ) ;  

il,Zz,jl,jz E N ,  U ,  w E {1,2}. Then Prob.(s(n + 1) = j l s ( n )  = 
;,U(.) = d )  = Z{w = d } x  Prob.(q,(n) = j i ,yz(n)  = jzlql(n - 
1) = i l ,  qz(n - 1) = iz, u ( n  - 1) = U ) .  

tlon: ~ ~ ~ o ) [ C ~ = P = o P " ( X + ~ l ( n ) + u Z ( ~ ~ ) ) l ,  where 4 0 )  = {{qt(-k)} ,  

Vn E N .  So the state space is N x N x {1,2}. 

We denote by P, theni"xAr2 matrix with elements Prob.(ql(ii) 

Consider a function f : NZ -+ !R and think of it as a column 
vector o n N 2 ,  whose (z1,zz)th element is f(z1,xz). Now for an 
N Z  x N Z  matrix (say Q ) ,  denote by Qf the column vector on 
N Z ,  whose (xi, xz)th element (i.e., ( Q f ) ( ~ 1 , x z ) )  is the product 
of the (x i ,  zz) th  row of Q and the column vector f. 

is the expected total population in the two queues given that the 
queue lengths one step back were (y1, yz) and the previous con- 
trol was v. 

Let a l ( c )  = ( 2 1  + 1,zZ), a ~ ( z )  = (XI,XZ + I), &(- .) = ((Xi - 
I)', Q), &(a) = (xi, (xz - l )+) ,  = 1 - A, p = 1 - p .  Defining 

we see that (Pvu)(y)  = A(Pu)(y) + A(Pa)(a,y). 

= j1,qz(n) = jz\q1(n - 1)  = i,,qz(n - 1) = Zz,u(n - 1) = U). 

Define U : N 2  + R, with u(z1,z2) = zl+xz. Then (P,u)(y,, yz) 

(PaNgr) = P F { 4 W ) f  4bz(gr))}  + P24%(6Z(Y))) + P'.(d? 

Ql(n)+qz(n)/s(n)l = X+(P"(,-i)u)(ql(n-l), qz(n-1)). c ( s ( n ) ,  4.1) 
d) One-step cost a t  the n-th step : c ( s (n ) ,u (n ) )  = E [ a ( n )  + 

does not depend on ~ ( n ) ,  since the arrival at n, if any, must be 
routed to one of the two queues. 

e )  Performance criterion : The discounted cost criterion: 
J p ( 7 r , s ( O ) )  = E,"(,)[Cr=P,, ,B"c(s(n),u(n))] We note that this cri- 
terion is easily seen to be equivalent to our original performance 
criterion. 

We have shown that the optimal value function (V;(xl, z2), 
V;(xl, z2)) has the following properties: 
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P1) V,.(ajz) 2 y*(+), i , j  E {1,2}, i.e., V;(.) and V;(.) are 

P2) V;(a) = V;(d), where (21, 12)' = (ZZ, XI ) ,  

P3) Vz with 21 < z2, V;(c) 5 V;(c) 
P4) V+ with z1 5 xz, V,'(61(a&))) 2 V;(z), i,j E {1,2}. 

co-ordinatewise increasing, 

T h e o r e m  2.1.1 v' = (V;,V;) has properties PI to P4. 

Proof: The proof relies on Lemma 8.4.2 of [3]: we omit the 

Let, for i = 1,2, s ( n ) = ( g , i ) ,  e;(c)=xi. Define the Join the 
details for lack of space. See also [2],[5],[7]. 0 

Shortest Expected Queue (JSEQ) policy as 

because E[qi(n)Is(n)] = (Pie1)(c) ,  and E[qz(n)ls(n)] = (Piez)(a). 

T h e o r e m  2.1.2 For k = 1, the JSEQ policy is optimal. 

Proof: See [4]. 0 
JSEQ can also be expressed as follows. Suppose s(n)  = (+, i), 

i E {1,2}. Then 

1 if ( 2 1  < 52) or (21 = zz,i = 2) 
2 if (21 > x2) or ( 2 1  = x z , i  = 1) (4) u'(n) = 

We have also shown, via a counter-example, that JSEQ is 

3 Optimal Customer Acceptance/Rejection 

not optimal for IC 2 2. See [4]. 

at a Single Queue 

In this section, we consider an extension of the classical problem 
of optimal acceptance/rejection of arrivals to a queue (see, for 
example, [SI), with the additional feature that the controller is 
permitted only to  observe queue length information delayed by 
k steps. Proceeding formally, let q( t )  denote the queue length 
process. At time t ,  t E {0,1,2, . . . }, the controller computes a 
control value ~ ( t )  E {O,l}, and is allowed only to  observe the 
queue lengths till time t - k, and all controls till time t - 1. In 
particular, at time 0, the controller knows q(-k), and {u(--k), 
U ( - k  + I), . . . , u(-l)}. The problem is for the controller to 
choose {u(O), u(l) ,  . . . } to  optimise a cost function. 

Arrivals and departures occur as follows. An arrival occurs to 
the system with probability X at t = n+, n 2 -k. The arrival 
is accepted if U(.) = 1, otherwise it is rejected. A departurc 
occurs from a non-empty queue with probability p at  t = n--, 
n ? - k + l .  

We need a policy ?r for choosing {u(O), u(1), . . . } so as to 
minimise the following cost function: E:(o)[Cr=o P"(bq(n)-X(l- 
b)u(n))]; 6q(n) - X ( l -  b)u(n) is the expected cost in the interval 
n if the holding cost per customer per time step is b, and the 
reward for customer acceptance is 1. 

As in Section 2, we formulate the problem as a CO-CMC for 
k = 1. The elements of the CO-CMC are as follows: 

a) State a t  time n : s(n) = (q (n  - l ) ,u(n - I)), n E N .  So 
the state space is N x {0,1). 

b) Action at time n : U(.) E (0 , l ) .  So the action space is 

c) Transition probabilities : Let y = ( y l , r ) ,  l = ( 1 1 ,  z), 
yl, II E N, r, z E {0,1}. Then, P(s (n  + 1) = +(n) = y , u ( n )  = 
6 )  = I{z = 6)P(q (n)  = Illq(n - 1) = y l , u ( n  - 1) = r). 

l l ls (n)  = ( y1 , r ) ) .  Define two column vectors on N as fol- 
lows: k = b(O,l, 2,3, . . . ) t ,  where (. . .)' denotes transpose, and 
bl = - X ( l  - b)l, where 1 is the column vector of all 1's. 

d) One step expected cost: let s (n)  = (2,r) and U(.) = U E 
{0,1}; then using the same notation as in Section 2, we define 

e) Performance criterion : we use the discounted cost cri- 
terion: JP(r ,  s(0)) = E:(.,[zm=o p"c(s(n),u(n))], which can be 
seen to be the same as that displayed earlier. 

{ O J I .  

We denote by P, t h e N x N  matrix with elements PrQb.(q(n) = 

~ ( ( 2 ,  r) ,  U) = (Pr4)(s) - X(1 - b)u 

3.1 

Let the initial state be s(0) = (2, r ) .  Define 

Op t ima l i ty  of a T w o  Thresho ld  Policy for k = I 

m 

v=(x) = m p ; , , , ) [ C  P"c(s(n),u(n))l 
n=O 

The Dynamic Programming Equations (DPE) are : 

1 V<(z) = (Pobo)(z) + P(PoV;)(z) + Pmin{O,(W': - V;))(z) - p 
(5) 

V;(z) = (Plbo)(z) + P(PlV;)(z) + Pmin{O9(4(V; - VO'))(Z) - - 
(6) 

We have shown that the optimal value function (V;(z), V;(x)) 

PI) For i = 0 , l  and Vx E N ,  v ( a ( z ) )  2 v ( x ) ,  i.e., V,(.) 

X ( l  - b )  

X ( l  - b) 
P )  

has the following properties: 

and v(.) are increasing with z 
P2) VZ E N ,  [V;(Z) - V ~ ( Z ) ]  2 0  
P3) Vx E N, [V;(a(z)) - V,(a(z))] 2 [V;(z) - v ( 2 ) ] ,  i.e., 

(V;(z) - V,'(z)) is increasing with z 
P4) VZ EN,  [V,(Z + 1) - V;(Z)] 2 0 

i.e., (V,"(z + 1) - V;(z)) is increasing with x. 

T h e o r e m  3.1.1 (V,.(x),V;(x)) has PI to P5. 

P5) vx E N- (01, [v;(a(x)) -Vl=b)I 2 [ W r )  - v;(6(2))1, 

Proob The proof relies on Lemma 8.4.2 of [3].0 

T h e o r e m  3.1.2 For a delay of 1 slot, the optimal policy has 
the following threshold structure: there exist mo, ml E N ,  mo 2 
ml > 0 such that 

i f u ( n  - 1) = 0 then U(.) = 

i f u ( n  - 1) = 1 then U(.) = 

1 i f  q ( n -  1) < mo 

1 zf q ( n -  1) < ml 
0 i f  q(n - 1) 2 ml 

Further, mo 2 ml. 

namic Programming Equations 5 and 6. 0 
Proofi This is immediate from Theorem 3.1.1, and the Dy- 
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