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Abstract
Let H be a Hilbert space of distributions on Rd which contains at least one non-zero
element of the Feichtinger algebra S0 and is continuously embedded in D ′. If H is
translation and modulation invariant, also in the sense of its norm, then we prove that
H = L2, with the same norm apart from a multiplicative constant.
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Introduction

In the paper we show that any Hilbert space of distributions on Rd which is transla-
tion and modulation invariant with respect to the norms, agrees with L2(Rd). These
considerations are strongly linked with Feichtinger’s minimization property, which

Communicated by Adrian Constantin.

B Joachim Toft
joachim.toft@lnu.se

Anupam Gumber
anupamgumber@iisc.ac.in

Ramesh Manna
rameshmanna@niser.ac.in

P. K. Ratnakumar
ratnapk@hri.res.in

1 Department of Mathematics, Linnæus University, Växjö, Sweden

2 Department of Mathematics, Indian Institute of Science, Bangalore 560012, India

3 School of Mathematical Sciences, National Institute of Science Education and Research
Bhubaneswar, HBNI, Jatni 752050, India

4 Harish-Chandra Research Institute (HBNI), Chhatnag Road, Jhunsi, Allahabad, Uttar Pradesh
211019, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00605-021-01589-7&domain=pdf
http://orcid.org/0000-0003-1921-8168


390 J.Toft et al.

shows that the Feichtinger algebra S0(Rd), which is the same as the modulation space
M1,1(Rd), is the smallest non-trivial Banach space of tempered distributions which
is norm invariant under translations and modulations. Our investigations may there-
fore be considered as a Hilbert space analogue of those investigations which lead to
Feichtinger’s minimization property.

We remark that the search for the smallest Banach space possessing such norm
invariance properties, seems to be the main reason that Feichtinger led to introduce
and investigate S0(Rd) and in its prolongation the foundation of classical modulation
spaces (see [2]). The space S0(Rd) = M1,1(Rd) is small in the sense that it is contained
in every Lebesgue space L p(Rd) and its Fourier image, p ∈ [1,∞] (cf. [2,5,9] and
the references therein).

On the contrary, the modulation space M∞,∞(Rd), which is the dual of M1,1(Rd),
contains all these Lebesgue and Fourier Lebesgue spaces. By straight-forward argu-
ments (see Proposition A.1) it follows that for a translation and modulation invariant
Banach spaceB of tempered distributionswhich contains at least one non-zero element
in S0(Rd), we have

S0(Rd) = M1,1(Rd) ⊆ B ⊆ M∞,∞(Rd). (0.1)

Here the first inclusion is a reformulation of the Feichtinger’s minimization property
(in the unweighted case). We refer to Sect. 1 and [5,6] for notations and some facts on
distributions.

Feichtinger’s minimization property has been extended in different ways, e. g. to
weighted spaces (see e. g. [5, Chapter 12]), and to the quasi-Banach situation (see e. g.
[9]). At the same time minimization property has been applied e. g. in non-uniform
samplings, and for deducing sharp Schatten-von Neumann and nuclear results for
operators with kernels in modulation spaces (see e. g. [9]). Note also that transla-
tion and modulation invariant Banach spaces are important in Gabor analysis, e. g.
when searching for suitable windows for Gabor frames. It also seems necessary for a
Banach space to be translation and modulation invariant, if it should be conveniently
discretizable by Gabor expansions (see e. g. [5] and the references therein).

In our investigations we do not present any such weighted analogies in the Hilbert
space case.On the other hand,we consider translation andmodulation invariantBanach
spaces, B, which are continuously embedded in D ′(Rd), the set of all distributions
on Rd . As a first step we prove in Proposition 1.5 that any such B is continuously
embedded inS ′(Rd), the set of all tempered distributions onRd . Note that the original
approaches in [2,5] have the more restrictive assumption that these B are continuously
embedded in the subspace S ′(Rd) of D ′(Rd).

1 Translation andmodulation invariant Hilbert spaces

In this section we first recall the definition of translation and modulation invariant
spaces. Thereafter we consider such spaces which at the same time are Hilbert spaces
of distributions on Rd . We show some features on how differentiations and multipli-
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Translation and modulation invariant Hilbert spaces 391

cations by polynomials of such spaces behave in the inner product of such Hilbert
spaces. In the end we show that such Hilbert spaces agree with L2(Rd).

The definition of translation and modulation invariant Banach spaces is given in
the following (cf. [2,5]).

Definition 1.1 Let B be a Banach space which is continuously embedded in D ′(Rd).
ThenB is called translation and modulation invariant, if y �→ f (y−x)ei〈y,ξ〉 belongs
to B and

‖ f ( · − x)ei〈 · ,ξ〉‖B = ‖ f ‖B
for every f ∈ B and x, ξ ∈ Rd .

Remark 1.2 We identify S ′(Rd) as a subspace of D ′(Rd) in the same way as in [6].
In particular it follows that f ∈ D ′(Rd) belongs to S ′(Rd), if and only if there is a
constant C > 0 and semi-norm ‖ · ‖ on S (Rd) such that

|〈 f , ψ〉| ≤ C‖ψ‖,

for every ψ ∈ C∞
0 (Rd). For such f , there is a unique f0 ∈ S ′(Rd) such that

〈 f , ψ〉 = 〈 f0, ψ〉 for every ψ ∈ C∞
0 (Rd). (See [6][Chapter VII].) Then we identify

f with f0, and thereby consider f as an element inS ′(Rd).

Our main result is the following.

Theorem 1.3 LetH be a translation and modulation invariant Hilbert space, continu-
ously embedded inD ′(Rd) and contains at least one element of M1,1(Rd) \ {0}. Then
H = L2(Rd) with

‖ f ‖H = c · ‖ f ‖L2(Rd ), (1.1)

for some constant c > 0 which is independent of f ∈ H = L2(Rd).

We observe that L2(Rd) is the same as the modulation space M2,2(Rd) (see [2]).
Hence the analogy of (0.1) in the Hilbert space case is that for translation and modu-
lation invariant Hilbert spaces H one has

M2,2(Rd) = H. (1.2)

Remark 1.4 It is obvious that the constant c in (1.1) can be evaluated by

c = (‖ f ‖L2(Rd ))
−1‖ f ‖H

for any fixed f ∈ H \ {0}.
We need some preparations for the proof of Theorem 1.3. First we note that the

restriction of the L2 scalar product ( · , · )L2 onS (Rd) ×S (Rd) is uniquely extend-
able to a continuous sesqui-linear form on S (Rd) × S ′(Rd) and that the dual of
S (Rd) can be identified by S ′(Rd) through this extension.

As a consequence of the following proposition we have that any translation and
modulation invariant Banach space on Rd is continuously embedded inS ′(Rd).
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Proposition 1.5 Let B be a Banach space, continuously embedded in D ′(Rd) such
that y �→ f (y − x) belongs to B for every x ∈ Rd and

‖ f ( · − x)‖B ≤ C(1 + |x |)r‖ f ‖B,

for some constants C, r > 0 which are independent of f ∈ B and x ∈ Rd . Then B is
continuously embedded inS ′(Rd).

Proposition 1.5 follows by similar arguments as in the proof of Bochner-Schwartz
theorem for positive definite distributions (see e. g. [7] and the references therein). In
order to be self contained we give a proof in Appendix A.

Remark 1.6 By Proposition 1.5 it follows that results on Feichtinger’s minimization
property in e. g. [2,5,9], still hold true with relaxed assumptions that the involved
Banach spaces are embedded in D ′(Rd) instead of its subspace S ′(Rd).

For a translation and modulation invariant Banach space B in Definition 1.1,
there is also a maximization property, analogous to Feichtinger’s minimization prop-
erty (see Proposition A.1 in Appendix A). In the unweighted case, the largest
possible such B is given by S′

0(R
d) = M∞,∞(Rd) in the Banach-Gelfand triple

(S0(Rd), L2(Rd), S′
0(R

d)) studied in [4] (see Appendix A for the definition of
M∞,∞(Rd)).

As a consequence of Proposition 1.5 we have thatH in Theorem 1.3 is contained in
S ′(Rd). Since H contains at least one element in M1,1(Rd) we get the more refined

S (Rd) ⊆ M1,1(Rd) ⊆ H ⊆ M∞,∞(Rd), (1.3)

with continuous inclusions, by Proposition A.1 and Feichtinger’s minimization prop-

erty. In particular, the standard Gaussian h0(x) = π− d
4 e− 1

2 |x |2 belongs toH.
For the proof of Theorem 1.3, we also need some properties on Hermite functions.

Recall that the Hermite function hα of order α ∈ Nd on Rd is defined by

hα(x) = π− d
4 (−1)|α|(2|α|α!)− 1

2 e
1
2 |x |2(∂αe−|x |2), x ∈ Rd , α ∈ Nd .

It is well-known that {hα}α∈Nd is an orthonormal basis for L2(Rd), and a basis for
S (Rd) (see e. g. [7,8]).

We may pass from one Hermite function to another by successively applying the
annihilation and creation operators, which are given by

A j = 1√
2

(
x j + ∂

∂x j

)
and C j = 1√

2

(
x j − ∂

∂x j

)
,

respectively, j = 1, . . . , d. It is then well-known that if e j is the j th vector in the
standard basis in Rd , then

A j hα =
{√

α j hα−e j , α j ≥ 1,

0, α j = 0
(1.4)
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and

C j hα = √
α j + 1 hα+e j , α ∈ Nd . (1.5)

(Cf. e. g. [1].) This implies

Aα hα = α! 12 h0, and Cα h0 = α! 12 hα, (1.6)

where

Aα =
d∏
j=1

A
α j
j , and Cα =

d∏
j=1

C
α j
j , α = (α1, . . . , αd). (1.7)

Furthermore,

Aβ hα = 0 when α j < β j for some j ∈ {1, . . . , d}. (1.8)

We have now the following lemma.

Lemma 1.7 Let H be a translation and modulation invariant Hilbert space on Rd .
Then the following is true:

(1) for every f , g ∈ H and x, ξ ∈ Rd it holds

( f ( · − x), g)H = ( f , g( · + x))H (1.9)

and

( f · e−i〈 · ,ξ〉, g)H = ( f , g · ei〈 · ,ξ〉)H; (1.10)

(2) (∂α f , g)H = ( f , (−∂)αg)H and (xα f , g)H = ( f , xαg)H for every f , g ∈
S (Rd) and α ∈ Nd .

We observe that (2) in the previous lemma gives

( f ,C j g)H = (A j f , g)H, f , g ∈ S (Rd), j = 1, . . . , d. (1.11)

Proof We have by Definition 1.1

‖ f ( · − x)e−i〈 · ,ξ〉‖2H = ‖ f ‖2H,

which by polarization gives

( f ( · − x)e−i〈 · ,ξ〉, g( · − x)e−i〈 · ,ξ〉)H = ( f , g)H, (1.12)

when f , g ∈ H and x, ξ ∈ Rd . This gives (1).
The assertion (2) follows by applying ∂α

x and ∂α
ξ on (1.9) and (1.10) with f , g ∈

S (Rd), and then putting x = ξ = 0. ��
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Proof of Theorem 1.3 Suppose that α, β ∈ Nd are such that β j > α j for some j ∈
{1, . . . , d}. By (1.11), (1.6) and (1.8) we get

(hα, hβ)H = β!− 1
2 (hα,Cβ h0)H = β!− 1

2 (Aβ hα, h0)H = 0

and

‖hα‖2H = (hα, hα)H = α!− 1
2 (hα,Cα h0)H

= α!− 1
2 (Aα hα, h0)H = (h0, h0)H = ‖h0‖2H.

This implies that {‖h0‖−1
H hα}α∈Nd is an orthonormal system for H.

Hence, if f ∈ S (Rd), then

‖ f ‖2H =
∥∥∥∥∥∥

∑
α∈Nd

( f , hα)L2hα

∥∥∥∥∥∥
2

H
= ‖h0‖2H

∑
α∈Nd

|( f , hα)L2 |2 = ‖h0‖2H‖ f ‖2L2 .

(1.13)
Since the inclusions

S (Rd) ⊆ M1,1(Rd) ⊆ L2(Rd)

are continuous and dense (see e. g. [2,5]), it follows that L2(Rd) is continuously
embedded in H, and that (1.1) holds. Furthermore, let from now on the original H
norm be replaced by the equivalent Hilbert norm f �→ ‖h0‖−1

H ‖ f ‖H. Then it follows
that the inclusion i : L2(Rd) → H is an isometric injection.

We shall use Hahn-Banach’s theorem to prove that the latter map is in fact bijective.
Suppose that � is a linear continuous form on H which is zero on L2(Rd). Then
�( f ) = ( f , g0)H for some unique g0 ∈ H. We need to prove that g0 = 0.

Since the forms ( · , · )L2 and ( · , · )H agree on L2(Rd), which contains S (Rd),
and since H ⊆ S ′(Rd), the same extension and duality properties hold true with
( · , · )H in place of ( · , · )L2 (cf. the paragraph after Remark 1.4). In particular,

( f , g)L2 = ( f , g)H, f ∈ S (Rd), g ∈ S ′(Rd).

We have g0 ∈ H ⊆ S ′(Rd). Recall that any element in S ′(Rd) has a Hermite
series expansion converging inS ′(Rd), whose coefficients are polynomially bounded
with respect to their orders (see [7]). Consequently,

g0 =
∑
α∈Nd

c(α)hα,
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for some {c(α)}α∈Nd such that |c(α)| ≤ C(1 + |α|)N for some constants C, N > 0.
Since ( f , g0)H = 0 when f ∈ L2(Rd), and that hα ∈ S (Rd) we get

c(α) = (hα, g0)L2 = (hα, g0)H = 0,

giving that g0 = 0.
By Hahn-Banach’s theorem it follows that L2(Rd) is dense inH. Since L2(Rd) is

also a closed subset ofH in view of (1.13), it follows thatH = L2(Rd), and the result
follows.
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Appendix A. Some properties of translation invariant Banach spaces

In this appendix we give a proof of Proposition 1.5 and discuss maximality of trans-
lation and modulation invariant Banach spaces of distributions on Rd .

Proof of Proposition 1.5 Let 〈x〉 = 1 + |x |, ε > 0, Q be the cube [0, 1 + ε]d ⊆ Rd

and 0 ≤ ϕ ∈ C∞
0 (Rd) be such that

suppϕ ⊆ Q and
∑
j∈Zd

ϕ( · − j) = 1.

Since B is continuously embedded in D ′(Rd), it follows from Chapter II in [6] that
there exists a constant C > 0 and integer N ≥ 0 such that

|〈 f , ψ0〉| ≤ C‖ f ‖B
∑

|α|≤N

‖∂αψ0‖L∞(Q),

for every ψ0 ∈ C∞
0 (Q) and f ∈ B. Here we have also used the fact that a distribution

restricted to a compact set has finite order.
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Hence, if ψ ∈ C∞
0 (Rd), Leibniz’ rule gives

|〈 f , ψ〉)| =
∣∣∣∣∣∣
〈
f ,

∑
j∈Zd

ψ · ϕ( · − j)

〉∣∣∣∣∣∣
≤

∑
j∈Zd

|〈 f ( · + j), ψ( · + j)ϕ〉|

≤ C1

∑
j∈Zd

‖ f ( · + j)‖B
∑

|α|≤N

‖∂α(ψ( · + j)ϕ)‖L∞(Q)

≤ C2‖ f ‖B
∑
j∈Zd

∑
|α|≤N

〈 j〉r‖∂α(ψ( · + j)ϕ)‖L∞(Q)

≤ C3‖ f ‖B
∑
j∈Zd

∑
|α|,|β|≤N

〈 j〉r‖(∂αψ)( · + j)(∂βϕ)‖L∞(Q)

≤ C3‖ f ‖B
∑
j∈Zd

∑
|α|,|β|≤N

‖(〈 · + j〉r (∂αψ)( · + j))(〈 · 〉r∂βϕ)‖L∞(Q)

≤ C3 · Cϕ‖ f ‖B‖ψ‖,

for some semi-norm ‖ · ‖ in S (Rd), and some constants C1, C2 and C3 which are
independent of f ∈ B and ψ . Here Cϕ depends only on ϕ, and we have used

〈x + y〉 ≤ 〈x〉 · 〈y〉.

Hence,
|〈 f , ψ〉| ≤ C‖ f ‖B‖ψ‖ (A.1)

for some constant C which is independent of f ∈ B and ψ ∈ C∞
0 (Rd). By Remark

1.2 and (A.1) it follows that B is continuously embedded inS ′(Rd).

��
Next we prove the maximization property for translation and modulation invariant

Banach spaces. Let ω ∈ L∞
loc(R

2d ;R+) be such that

ω(x + y, ξ + η) ≤ Cω(x, ξ)(1 + |y| + |η|)r (A.2)

for some constants C, r > 0 which are independent of x, y, ξ, η ∈ Rd . Also let
φ ∈ S (Rd) \ {0}. Then the modulation space M∞,∞

(1/ω) (R
d) is given by

M∞,∞
(1/ω) (R

d) = { f ∈ S ′(Rd) ; ‖(Vφ f )/ω‖L∞ < ∞}.
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Here Vφ f is the short-time Fourier transform of f ∈ S ′(Rd), given by

Vφ f (x, ξ) ≡ (2π)−
d
2 ( f , φ( · − x)ei〈 · ,ξ〉)L2 .

The Banach space topology in M∞,∞
(1/ω) (R

d) is then given by the norm

‖ f ‖M∞,∞
(1/ω)

= ‖(Vφ f )/ω‖L∞ .

(Cf. [2,3,5].) We set M∞,∞ = M∞,∞
(ω) when ω = 1.

For other choices ofω satisfying (A.2), the L2 scalar product ( · , · )L2 onS (Rd)×
S (Rd) is uniquely extendable to a continuous sesqui-linear form on M1,1

(ω)(R
d) ×

M∞,∞
(1/ω) (R

d), where M1,1
(ω)(R

d) is the weighted version of M1,1(Rd) with respect to

ω. Furthermore, M∞,∞
(1/ω) (R

d) is the dual of M1,1
(ω)(R

d) with respect to this product (cf.
[2,5]).

Proposition A.1 Let ω ∈ L∞
loc(R

2d;R+) satisfies (A.2). Let B be a translation and
modulation invariant Banach space which is continuously embedded in D ′(Rd) and
contains at least one element of M1,1

(ω)(R
d)\{0}. Suppose that for some constant C > 0

it holds

‖ f ( · + x)e−i〈 · ,ξ〉‖B ≤ Cω(x, ξ)‖ f ‖B, f ∈ B, x, ξ ∈ Rd .

Then B is continuously embedded in M∞,∞
(1/ω) (R

d).

Proof By Proposition 1.5 it follows that B is continuously embedded in S ′(Rd).
Hence, for any fixed φ ∈ S (Rd)\0, the map

f �→ ( f , φ)L2

is linear and continuous fromB toC, becauseB is continuously embedded inS ′(Rd),
giving that

|( f , φ)L2 | ≤ Cφ‖ f ‖B, f ∈ B.

This gives

|Vφ f (x, ξ)| = |( f ( · + x)e−i〈 · ,ξ〉, φ)| ≤ Cφ‖ f ( · + x)e−i〈 · ,ξ〉‖B
≤ CφCω(x, ξ)‖ f ‖B,

which shows that

|Vφ f (x, ξ)/ω(x, ξ)| ≤ C‖ f ‖B (A.3)
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for some constant C > 0. Hence

|(Vφ f )/ω| ∈ L∞(R2d),

which implies f ∈ M∞,∞
(1/ω) (R

d). Furthermore, (A.3) shows that

‖ f ‖M∞,∞
(1/ω)

≤ C‖ f ‖B, f ∈ B.

Consequently, B is continuously embedded in M∞,∞
(1/ω) (R

d), and the assertion follows.

References

1. Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Pure Appl.
Math 14, 187–214 (1961)

2. Feichtinger, H.G.: Modulation spaces on locally compact abelian groups. Technical report, University
of Vienna, Vienna, 1983; also in: M. Krishna, R. Radha, S. Thangavelu (Eds) Wavelets and their appli-
cations, Allied Publishers Private Limited, NewDelhi Mumbai Kolkata Chennai Hagpur Ahmedabad
Bangalore Hyderbad Lucknow, 2003, pp. 99–140

3. Feichtinger, H.G.: Modulation spaces: Looking back and ahead. Theory Signal Image Process. 5, 109–
140 (2006)

4. Feichtinger, H., Luef, F., Cordero, E.: Banach Gelfand triples for Gabor analysis, in: L. Rodino, M.
W. Wong (Eds), Pseudo-Differential Operators, Quantization and Signals, Lecture notes in math. 1949,
Springer, Berlin Heidelberg, 2008, pp. 1–33

5. Gröchenig, K.: Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001
6. Hörmander,L.: The Analysis of Linear Partial Differential Operators, vol I, Springer-Verlag, Berlin

Heidelberg NewYork Tokyo, 1983
7. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Academic Press, London New York

(1979)
8. Thangavelu, S.: Lectures on Hermite and Laguerre expansions, Mathematical Notes 42, Princeton

University Press, Princeton, N.J., 1993
9. Toft, J.: Schatten properties, nuclearity andminimality of phase shift invariant spaces. Comput. Harmon.

46, 154–176 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Translation and modulation invariant Hilbert spaces
	Abstract
	Introduction
	1 Translation and modulation invariant Hilbert spaces
	Acknowledgements
	Appendix A. Some properties of translation invariant Banach spaces
	References




