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Abstract: In this paper we propose an improved vei^ion of
the test generation algorithm PODBM (Path Oriented DEcision
Making) incorporating adifTcrent technique for back tracing and
forward implication. We also propose a partial fault simulator
which is integrated into the improved PODEM algorithm. The
performance of this test generation package (wlieii partial fault
simulator is employed) is compared to that of a concurrent fault
simulator using deterministically generated test patterns. It is
shown that the runtime performance of our algorithm compares
favourably with that of the concurrent faul t simulator and is
less memory intensive. We also present effective heuristics to
determine some of the redundant faults and to derive the test
vectors for some PI faults, by the use of implication relations.
Experimental results on all tlie 10 ISCAS benchmark circuits
/Tjtlemonstrate that our algorithm is faster and more efficient
than the PODEM algorithm for tlicse circuits.

2 Improved PODEM

2.1 Modification 1

In the original paper on the PODEM algorithm XOR
and XNOR gates were not considered anywhere in the
flowcharts, although mentioned in an example given in
tlie paper. In this algorithm we have included XOR
and XNOR gates also.

2.2 Modification 2

If in tlie imply process, the faulty line is set to a logic
level which is the same as stuck at, level, then back-
tracking should be done immediately, w h i c h will lead
to faster execution. This point, which is missing in the
flowchart of tlie original PODEM description [2], has
been taken care of in our implimentation.

1 Introduction

Many test generation algorithms have been proposed
over the years. Recent algorithms such as PODEM [2],
FAN [3], SOCRATES [4]etc. have been sucessful in
generating test patterns with reasonable efficiency. We
assume that the reader is familiar with tlie PODEM
algorithm and we shall use some terminologies such
as D, D, PI, PO, backtracing, backtracking, forward
implication, etc. without definitions. In this paper, we
shall consider multi-input multi-output combinational
circuits composed of AND, OR, NAND, NOR, NOT,
BUFFER, XOR, and XNOR gates. The type of fault
model assumed here is the standard single stuck fault,
i.e., all faults can be modeled by lines which are stuck
at logical 0 (s-a-0) or stuck at logical 1 (s-a-1). Only
one line is assumed to be faulty at any given instant.
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2.3 Modification 3

PODEM algorithm uses heuristics to guide the back-
tracing and implication processes that rely on esti-
mates of the "ease1 of controlling" internal lines .of a
circuit to certain logic values, and on estimates of tlie
"ease'of observing" values on internal lines at primary
oulputs(POs) of the circuit. Since test for a stuck at
fault on a line requires both controlling tlie line to a
certain logic value and observing this value at a PO,
controllability and observability are usally combined
under the more geueral notion of testability. PODEM
algorithm seems to lack in the careful consideration of
the point of controllability. An example of such a case
is given in figure 1.

Consider the logic circuit of figure 1. Let 0 be the ob-
jective logic value at the output of tlie gate M. In this
example PODEM will choose tlie upper path in the
process of backtracing [2]. But actually, the lower path
is mucli more easier to control from tlie Pis, because to
set a 0 at the output of the gate K either (h ,!•>., h, I-i)
or (/3,/4,/5 ,7B) should be set to (1,1,1,1), while a 0 at
the ou tpu t of gate L can be obtained by setting only
either 1$ or 2\o to 0. This problem arises due to the
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Figure 1

fact that PODEM looks only at one level lower (at
the inputs only) in choosing a path, which may be a
non-optimal decision, as shown in the last example.

So, it will be better if all the paths from the objective
line to tlie Pis can be considered arid tlie appropriate
path chosen.

2.3.1 Algorithms For Testability Measures

There are a number of algorithms available for de-
teririning the controllability and observability for ev-
ery line of the circuit. Some of the algorithms are
CAMELOT, COMET, TMEAS, SCOAP, and VIC-
TOR [1], Tlie most popular among them is the
"SCOAP" algorithm [5]. In this paper, Testability
Measures have been used in order to speed up the
test generation algorithm. Controllabilities and ob-
servabilities are calculated before the start of tlie test
generation procedure. Controllability measures have
been used in "easiest" and "hardest" functions [2] of
PODEM and observability measures have been used
in order to determine the X - path after the imply
process [2]. We have introduced tlie SCOAP control-
lability measures to guide the backtracing process of
the test generation algorithm. Since SCOAP is fairly
well known; we do not discuss the details of how to
obtain tlie controllability measures.

In the example of figure 1, 0-controllabilities of
nodes 1C and L are calculated as S and 7 respectively,
so now our algorithm will choose tlie lower path.

It was found experimentally that introduction of ob-
servability measures did not yield any definite advan-
tage and hence it was abandoned. However a different
heuristic was developed to guide the forward implica-
tion process and is explained below.

2.4 Modification 4

A preprocessing was done before tlie begining of tlie
test generation procedure, which stores the informa-
tion at each line about the POs which are likely to be
affected by this line. So, when an X-path from a line
is to be found, first, tlie logic level of POs which arc
affected by this line are checked. If no PO is at X then
this implies that there exists no X-path from that line
to any PO of the circuit, and immediately backtrack-
ing is performed, wliicli will lead to considerable sav-
ings in computation time. The results obtained with
this modification (preprocessing for X-path) were very
effective. So, this modification was retained and the
modifications using obscrvnbility measures \ \err dis-
carded.

Tlie results obtained after combining preprocessing
for the X-path and modifications for the controllabilty
measures are shown in table 1 and table 2[9]. The test
vectors were minimised by a simple strategy and the i r
number is also reported in table 1.

3 Fault Simulator
Tlie fault coverage of a set of test vectors is measured
through fault simulation. A combination of test, gen-
eration and fault simulation is effective in speeding
up the test generation process. Hence a partial fault
simulator which will run along with the test genera-
tion algorithm was developed and integrated into our
algorithm. The basic strategy is to employ a partial
fault-simulation after each test vector (for a fault) is
generated, so as to eliminate the covered faults from
tlie fault list. Usually faults detected by a given test
are dropped from the fault list. This is known as fault
dropping. Note that a test vector can be a test for
more than one fault.

Parallel, Concurrent, and Deductive Fault simula-
tors[l] require excessive memory and CPU time as cir-
cuit size increases. The partial siinulator developed
and implemented by us is iiot based on any of tlie
above three. This partial fault simulation draws upon
and extends the ideas of TEST DETECT [S] developed
by tlie inventors of tlie D - algorithm.

An extended version of the partial fault simulator
was also developed in course of our work. A compari-
son was made between this one and tlie earlier partial
fault simulator. It was obsrrvctl tlint although tlie par-
tial one had to generate more number of test vectors
than the extended one , it was much more efficient in
terms of CPU time than the latter. However, tlie ex-
tended version is also supported by our package as a
user option and can be used if minimality of test set
is crucial.
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Table 1: Times and Test set size on SUN 3/60

Circuit

74181

C432

C499

C880
C1355
C1908
C2670
C3540
C531S
C62S8
C7552

Total
Faults
182
524
758
942
1574
1879

2747

3428
5350
7744
7550

Gates

86
160
202
383
546
880
1193
1669
2307
2406
3512

PI

14
32
41
60
41
33
233
50
178
32
207

PO

S
7
36
26
32
25
140
22
123
32
108

CPU time in Sec.
Methods

A
4
98
197
76
662
640
1091

2105
3068
8726
11148

B
4
92
183
62
590
620
1020
1668
2354
8081
8277

C
3
52
74
43
274
374
886
1276

1425

2515
4985

D
5.7
67
186
82
1785
1854

3238

4796

4742
>15 Hrs

20374

Minimal Test Size
Methods

B
37
122
358
101
315
435
206
439
400
1661
724

C
31
109
149
90
270
359
184
392
345
1074
558

D
31
99
126
90
176
271
146
307
261
-
353

A: Basic PODEM algorithm

B: New PODEM = PODEM + controlnbility + preprocessing

C: New PODEM + partial fault simulator

D: New PODEM + extended fault simulator

Timeout value per fault = 2sec

Take a PO gate with D or DDAR at the output
chooae an inpt of this gate which is at D or DEAR

If no input is at DEAR and not
more than 1 input is at 0 then
push all other inputs onto satck

If no input is at D and not
more than 1 input is at 1 then
push all other inputs onto stack

Push all other inputs
onto stack

Go to next lower leve

Repalce D(DBAR) by 1(0)

Pop a line from the stack, replace
1(0) by D(DPAR) on the popped line

Propagate this D or DBAK backwards till a
conflict occurs or levei<lastfaultlevel
or a stem line appears

I Faults SaO(Sal) on the lines
[_»"'"' D(DBAR) are detected

Figure 2: Flow chart of Partial Fault Sin-iulator
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3.1 Partial Fault Simulator

Tlie flowchart of the algorithm, developed for tlie par-
tial fault simulator is shown in figure 2. Tlie explana-
tion of every box is given below:
Box 1: A test vector is chosen, wliicli is just generated
by the PODEM algorithm.
Box 2: The test vector will be able to detect all tlie
saO(sal) faults on thejines, along asensitized path to a
PO and having a D(D) logic value. This is easily un-
derstood from the basic concept of path sensitization.
Box_5: Now a PO gate is taken which is having a D_
or D on its output. Beacuse the output is at D or D
at least one input will be at D or D. Choose such an
input.
Box 4: Depending upon the function of the gate, other
inputs of tlie gate are pushed onto the stack for the
purpose of backward implication of D or D. But, for
example, in tlie case of AND/NAND gate (box 4A),
if any input is at D then any other input, cannot be
pushed onto tlie stack, because D is being replaced by
a.O in tlie backward implication and in that case tlie
output value of Hie gate wil l not bo at D or D.
Boxes 5 and G: Tlie loop of the boxes 5,6, and 4 is
esecuted till all the posible lines for which backward
implication can be performed are over.
Boxes 7,8,9, and_ 10: A line is popped and a 1(0) is
replaced by D(D) on the popped line and this D or
D is propagated backward till a conflict occurs or the
current circuit level becomes less than tlie level of the
faulty line for which test vector was generated or a
fanout stein line appears. Stopping at fanout stem
line is one of tlie reasons, why this fault simulation is
partial. The backward implication is stopped at tlie
level less than the faulty line level because of tlie defi-
nite order of the faults in tlie fault list.

Tlie order of the faults in tlie fault list is giveii below:
1. All the faults of the Pis.

2. The output faults of the next higher level.

3. The input faults of this level.

4. The output faults of the nest higher level and so
on.

So, when current level has come down to less tlian
tlie faulty line level for which tlie test vector was gen-
erated, then there is no point in going further back
because tlie faults of the nest lower level would have
been considered earlier. This saves a lot of time.
Box 11: this box is similar to box 2.
Example: Tlie values at each line of the circuit after
generating the test vector (0x10) for the fault, 1 s-a-1
by PODEM is shown in figure 3. From box 2 of the
flowchart it is clear that 15s-a-0, 14s-a-0, G s-a-1, and
1 s-a-1 are testable by this test vector. According to

©

Figure 3:

box 4A, push line 12 and 13 onto the stack. Line 14
is at D; so according to box 4B push line 8 on to the
stack. Now replace all D(D) by 1(0) in the c i rcu i t . A
line is popped from the stack. This is line numbers
and having a logic: value of 0. Replace t h i s 0 by a I).
Line 4 is a fanout stem line so according to box 10 thi*
D can not be propagated to line 4. 8 s-a-1 is detected
by this test vector (box 11). Similar procedures result,
in delecting 12 s-a-0, 10 S-a-0, 13s-a-U, aiid 11 s-a-U.
Thus tlie test vector (0x10) could detect 9 faults.

3.2 Other Features Of The Package
3.2.1 Implication For PI Faults

If for a PI both stiick-at-0 and stuck-al-1 fau l t s are
included in tlie faul t list, then tlie test vector lor only
one type of fault needs to be generated. Test vector
for tlie other type of fault (opposite type) can be de-
termined just by complementing tlie bit (PI) for wliicli
the fault, is being considered. For example, in the last
example circuit, tlie test vector (1x10) for line 1 s-a-
0 can be generated just, by implication, if test vector
(0x10) for 1 s-a-1 has already been generated.

3.2.2 Implications For Uiitestable Faults

Three observations:
1. If a saO(sal) fault on a PI is untestable then

sal(saO) fault on that PI is also untestable.

2. If a fault / is untestable, all faults in its equiva-
lence class are also uiitcstable.

3. If a dominating fault is untestable, a l l faults dom-
inated by this untestable fault are also untestable.

The truth of these observations is obvious and hence
no formal proof is given.
Example: If stuck-at-0 fault, at the input of an AND
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Figure 4: Performance of different versions
GRTES -

Figure 5: Time comparison with CFS

gate is found untestable then the stuck-at-0 faults on
all other inputs and the output of that gate will be
untestable. These faults are declared untestable by
the property of fault equivalence.

This property can be propagated further forward
and backward until a fanout stem line appears. For
example, intlie last example circuit, faults 10 s-a-1 and
5 s-a-1 can be declared untestable by the implication
of 12 s-a-1 being untestable.

This particular feature of the pacltage is very impor-
tant since in general tlie untestable faults are hard to
prove redundant and PODEM will take a lot of time
to deal with these faults. So, without going into the
test generation program, many of these type of faults
are declared untestable just by implication.

3.2.3 Extended Version Of Partial Fault Sim-
ulation

Tlie difference in the partial fault simulation and tlie
extended partial fault simulation appears only in the
box 10 of the flowchart shown in figure 2. In partial
fault simulation the backward implication of D or D
stops at a fanout stem line, while in tlie extended par-
tial faul^simulation, after setting-the fanout stem line
to D or D (as may be the case), a forward implication
is performed and if the logic value of the PO which was
coiisiderd intlie begining of the simulation remains un-
changed at D or D then tlie backward implication is
continued from the fanout stem. The forward impli-
cation consumes a large amount of time making tlie
extended partial fault simulation inefficient. The re-
sults for both the versions are shown in table 1 and
table 2.

4 Results

Tlie improved PODEM algorithm along with the in-
tegrated fault simulator was coded in C and imple-
mented on a SUN 3/60 workstation. It, consists of
about 2000 lines of code. Tlie efficiency of our strat-
egy of integrating a partial fault simulator into an im-
proved version of PODEM algorithm is demonstrated
by comparing its performance to that of a Concurrent
fault simulator for all tlie 1SCAS benchmark circuits.
Fault simulation is generally known to be less expen-
sive compared to computation intensive test genera-
tion process, as we do not have baclitraclting in fault
simulation. Tlie test vectors derived by PODEM (em-
ploying Partial Fault Simulation) were given to CFS, a
concurrent fault simulator available in the CAD Lab.
at IISc. The simulator evaluated the coverage of the
deterministic test vectors generated by PODEM for
all the 10ISCAS benchmark circuits. Contrary to our
expectations it was found that in many cases the time
taken by CFS to evaluate the coverage of tlie test, vec-
tors was greater than tlie time taken by our package
to generate the same vectors. The results are shown in
table 3. CFS is memory intensive and hence it ran out
of virtual meniory for C6288 on a SUN 3/60 worksta-
tion with 4MB main memory, while our PODERI im-
plimentation could handle all tlie benchmark circuits.
Tlie results clearly demonstrate that a combination
of test generation and fault simulation can compare
favourably in performance to that of a stand alone
fault simulator, even though deterministic test gener-
ation is more compute intensive as it employs back-
tracking. The concurrent fault simulation naturally
reported a higher fault coverage than that determined
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Table 2: Fault covevatre with different versions on SUN 3/CO

A: Basic PC

C: New PO

Circuit

74181
C432
C499
C880
C1355
C1908
C2S70
C3540
C5315
C6288
C75S2

Total
Faults
182
524
758

942
1574
1879
2747

3428
5350
7744
7550

Faults Aborted
Methods

A
0
26
2G
0
8
28
118
384
200
111
2475

B
0
26
2G
0
16
57
147
301
127
111
1162

C
0
13
1G
0
8
41
138
229
98
12
949

D
0
13
20
0
8
37
103
181
97
-

, 7 7 1

Faults Redundant
Methods

A
1
0
0
0
0
4
27
15
36
32
48

B
1
0
0
0
0
5
29
31
36
32
52

C
1
0
0
0
0
5
29
31
38
32
52

D
1
0
0

0
0
5
29
31
36
-
52

•'an I t Coverage (%
Methods

A
99.50
95.04
9IS.57
100.00
99.49
98.30
94.70
88.4
95.60
98.20
66.60

B
99.50
95.04
9(5.57
100.00
98.98
93.60
93.60
90.3
97.00
08.80
83.90

c;
99.50
07.52
97.9
100.00
99.49
97.60
93.90
92.40
97.50
99.10
86.70

D
99.50

07.52

07 :M
100.00

99.49

97.80

95.20
93.80
97.50

89. JO
DEM algorithm D: New PODEM = PODEM + controlability + preprocessing

DEM + partial f au l t s imulator D: New PODEM + extended faul t simulator Timeout value per fault = 'Jsec

by PODEM and this is easily explained by Ihe fact
that the simulator we have integrated into PODEM is
a partial one.

5 Conclusions

The results indicate that our algorithm is better
than the basic PODEM algorithm. Tcslahillily mw-
sures are very effective. A partial fault simualtor is
more effective than a complete fault simulator. Some
more modifications can make this 'algorithm more ef-
ficient. Some of these modifications are multiple path
backtra.ciiig[3], unique sensitinatioii [3], identification
techniques for the redundant faults [6] and a better
fault simulator.
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