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Abstract: Inthis paper we propose an improved version Of
the test generation algorithm PODEM (Path Oriented DEcision
Making) incorporating a difTerent technique for back tracing and
forward implication. We also propose apartia fault simulator
whichisintegrated into the improved PODEM algorithm. The
performance of this test generation package (wlien partial fault
simulator is employed) is compared to that of a concurrent fault
simulator using deterministically generated test patterns. It is
shown that the runtime performance of our algorithm compares
favourably with that of the concurrent fault simulator and is
less memory intensive. We a0 present effective heuristics to
determine some of the redundant faults and to derive the test
vectors for some Pl faults, by the use of implication relations.
Experimental results on dl tlie 10 ISCAS benchmark circuits
[7Kemonstrate that our agorithm is faster and more eflicient
thanthe PODEM algorithm for tlicsecircuits.

1 Introduction

Many test generation algorithms have been proposed
over theyears. Recent algorithms such as PODEM {2],
FAN [3], SOCRATES [4]etc. have been sucessful in
generatingtest patternswithreasonabl eefficiency. We
assume that the reader is familiar with tlie PODEM
algorithm and we shall use some terminologies such
as D, D, Pl, PO, backtraci ng, backtracking, forward
implication, etc. without definitions. In this paper, we
shall consider multi-input multi-output combinational
circuits composed of AND, OR, NAND, NOR, NOT,
BUFFER, XOR, and XNOR gates. The type of fault
model assumed here isthe standard single stuck fault,
i.e., all faults can be modeled by lines which are stuck
at logica 0 (s-a-0) or stuck at logical 1 (s-a-1). Only
one line is assumed to be faulty at any given instant.
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2 Improved PODEM

2.1 Modification 1

Inthe origina paper onthe PODEM algorithm XOR
and XNOR gates were not considered anywherein the
flowcharts, althoughmentioned in an examplegivenin
tlie paper. In this algorithm we have included XOR
and XNOR gates also.

2.2 Modification 2

Ifin tlie imply process, the faulty lineis set to alogic
level which is the same as stuck at, level, then back-
tracking should be done immediately, which will lead
to faster exccution. This point, which ismissing in the
flowchart of tlie original PODEM description [2], has
been taken care of in our implimentation.

2.3 Modification 3

PODEM algorithm uses heuristics to guide the back-
tracing and implication processes that rely on esti-
mates of the "ease of controlling" internal lines.ofa
circuit to certain logic values, and on estimates of tlie
”ease"of observing” vaues on internal linesat primary
outputs(POs) of the circuit. Since test for astuck at
fault on aline requires both controlling tlie line to a
certain logic value and observing this value at a PO,
controllability and observability are usally combined
under the more geueral notion of testability. PODEM
algorithm seems to lack in the careful consideration of
the point of controllability. An example of such a case
is given in figure 1.

Consider the logic circuit of figure 1.Let 0 be the ob-
jective logic value at the output of tlie gate M. I this
example PODEM will choose tlie upper path in the
process of backtracing [2]. But actually, the lower path
ismucli more easier to control from tlie PIs, because to
set a0 at the output of the gate K either (I, Iz, Is, I4)
or (I3, I, I, Is) should be set to (1,1,1,1), while a0 at
the output of gate I. can be obtained by setting only
either I or 1o to 0. This problem arises due to the




Figure 1

fact that PODEM looks only at one level lower (at
the inputs only) in choosing a path, which may be a
non-optimal decision, asshown in the last example.

So, it will be better if al the paths fromthe objective
line to tlie PIs can be considered arid tlie appropriate
path chosen.

231 Algorithms For Testability Measures

There are a number of algorithms available for de-
terrrining the controllability and observability for ev-
ery line of the circuit. Some of the algorithms are
CAMELOT, COMET, TMEAS, SCOAP, and VIC-
TOR [1]. Tlie most popular among them is the
"SCOAP" algorithm [5). In this paper, Testability
Measures have been used in order to speed up the
test generation algorithm. Controllabilities and ob-
servabilities are calculated before the start of tlie test
generation procedure. Controllability measures have
been used in "easiest" and "hardest" functions [2] of
PODEM and observability measures have been used
in order to determine the X - path after the imply
process [2]. We have introduced tlie SCOAP control-
lability measures to guide the backtracing process of
the test generation algorithm. Since SCOAP is fairly
well known; we do not discuss the details of how to
obtain tlie controllability measures.

In the example of figure 1, O-controllabilities of
nodes K and L are calculated as S and 7 respectively,
sonoew our algorithm will choose tlie lower path.

It was found experimentally that introduction of ob-
servability measures did not yield any definite advan-
tage and hence it was abandoned. Mowever a different
heuristic was developed to guide the forward implica
tion process and is explained below.

2.4 Modification 4

A preprocessing was done before tlie begining of tlie
test generation procedure, which stores the informa-
tion at each line about the POs which are likely to be
affected by this line. So, when an X-path from a line
is to be found, first, tlie logic level of POs which arc
affected by this line are checked. Ifno PO isat X then
this implies that there exists no X-path from that line
to any PO of the circuit, and immediately backtrack-
ing is performed, wliicli will lead to considerable sav-
ings in computation time. The results obtained with
this modification (preprocessing for X-path) were very
effective. So, this modification was retained and the
modifications using obscrvnbility mecasures were dis-
carded.

Tlie results obtained after combining preprocessing
for the X-path and modifications for the controllabilty
measures are shown in table 1 and table 2{9]. The test
vectors were minimised by a simple strategy and their
number is aso reported in table 1.

3 Fault Smulator

Tlie fault coverage of a set of test vectors ismeasured
through fault simulation. A combination of test gen-
eration and fault simulation is effective in speeding
up the test generation process. Hence apartial fault
simulator which will run aong with the test genera-
tion algorithm was developed and integrated into our
algorithm. The basic strategy is to employ a partial
fault-simulation after each test vector (for afault) is
generated, so as to eliminate the covered faults from
tlie fault list. Usualy faults detected by agiven test
are dropped fromthe fault list. Thisisknown asfault
dropping. Note that a test vector can be a test for
more than one fault.

Parallel, Concurrent, and Deductive Fault simula-
torg[1] require excessive memory and CPU time ascir-
cuit sze increases. The partial siinulator developed
and implemented by us is iiot based on any of tlie
above three. Thispartial fault simulation draws upon
and extendstheideas of TEST DETECT [ developed
by tlie inventors of tlie D - agorithm.

An extended version of the partial fault simulator
was aso developed in course of our work. A compari-
son was made between this one and tlie earlier partial
fault simulator. 1t was obsrrvetl tlint although the par-
tial one had to generate more number of test vectors
than the extended one , it was much more efficient in
terms of CPU time than the latter. However, the ex-
tended version is also supported by our package as a
user option and can be used if minimality of test set
is crucial.




Table 1: Times and Test s&t sizeon SUN 3/60

CPU tine in Sec. M ni mal Test Size

Circuit | Total Gates | Pl PO Met hods Met hods

Faul ts A B C D B C D
74181 182 86 14 S 4 4 3 57 37 31 31
432 524 160 32 7 98 92 52 67 122 109 99
199 758 202 41 36 197 183 4 186 358 149 126
380 942 383 60 26 76 62 43 82 101 90 90
C1355 1574 546 41 32 662 590 274 1785 315 270 176
C1908 | 1879 880 33 25 640 620 374 1854 435 359 271
670 2747 1193 233 140 1091 1020 886 3238 206 184 146
3540 | 3428 1669 50 22 2105 1668 | 1276 | 4796 439 392 307
(531S | 5350 2307 178 | 123 | 3068 2354 | 1425 | 4742 400 345 261
(523 | 7744 2406 32 32 8726 8081 | 2515 | >15 Hrs | 1661 | 1074 | -
C7552 | 7550 3512 207 | 108 | 11148 | 8277 | 4985 { 20374 724 558 353

A: Basic PODEM algorithm Timeout value per fault = 2sec
B: New PODEM = PODEM + controlnbility + preprocessing

C: New PODEM + partial fault simulator

D: New PODEM + extended fault simulator
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3.1 Partia Fault Simulator

Tlie flowchart of the algorithm, developed for tlie par-
tial fault simulator isshown in figure 2. Tlie explana-
tion of every box is given below:
Box 1: A test vector is chosen, wliicli isjust generated
by tlie PODEM algorithm.
Box 2: The test vector will be able to detect dl tlie
saO(sal) faults on the lines, along asensitized path to a
PO and having a (D) logic value. Thisis easily un-
derstood from the basic concept of path sensitization.
Box 3: Now a PO gate is taken which is having aD
or D on its output. Beacuse the output isat D or D
at least one input will be at D or D. Choose such an
input.
Box 4: Depending upon the function of the gate, other
inputs of tlie gate are pushed onto the stack for the
purpose of backward implication of D or D. But, for
example, in tlie case of AND/NAND gate (box 4A),
if any input is at D then any other input, cannot be
pushed onto tlie stack, because D isbeing replaced by
a0 in tlie backward implication and in that case tlie
output value of the gate will not bo at D or D.
Boxes 5 and G: Tlie loop of the boxes 5,6, and 4 is
esecuted till al the posible lines for which backward
implication can be performed are over.
Boxes 7,8,9, and 10: A line is popped and a 1(0) is
replaced by D(D) on the popped line and this D or
D is propagated backward till a conflict occurs or the
current circuit level becomes less than tlie level of the
faulty line for which test vector was generated or a
fanout stein line appears. Stopping at fanout stem
line is one of tlie reasons, why this fault simulation is
partial. The backward implication is stopped at tlie
level less than the faulty line level because of tlie defi-
nite order of the faults in tlie fault list.

Tlie order of the faultsintlie fault list is giveii below:

1. All the faults of the Pls.

2. The output faults of the next higher levdl.
3. The input faults of this levd.
4.

The output faults of the nest higher level and so
on.

So, when current level has come down to less tlian
tlie faulty line level for which tlie test vector was gen-
erated, then there is no point in going further back
because tlie faults of the nest lower level would have
been considered earlier. This saves alot of time.

Box 11:thisbox issimilar to box 2.

Example: Tlie vaues at each line of the circuit after
generating the test vector (0x10) for the fault, 1 s-a-1
by PODEM is shown in figure 3. From box 2 of the
flowchart it isclear that 15s-a-0, 14s-2-0, G sa1, and
1sal aretestable by this test vector. According to
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box 4A, push line 12 and 13 onto the stack. Linc 14
is a D; so according to box 4B push line § on to the
stack. Now replace all D(D) by 1(0) in the circuit. A
line is popped from the stack. This is line number §
and having a logic. value of 0. Replace this 0 by a l).
Line 4 is a fanout stem line SO according to box 10 this
D can not be propagated to line 4. 8 s-a-1 is detected
by this test vector (box 11).Similar procedures result.
in delecting 12 s-a0, 10 Sa0, 13s- a-0, aiid 11 s-a-0.
Thustlie test vector (0x10) could detect 9 faults.

3.2 Other Features Of The Package

321 Implication For Pl Faults

If for a Pl both stuck-at-0 and stuck-at-1 faults are
included in tlie fault list, then tlie test vector lor only
one type of fault needs to be generated. Test vector
for tlie other type of fault (opposite type) can be de-
terminedjust by complementingtliebit (PI) for wliicli
the fault, is being considered. For example, in the last
example circuit, tlie test vector (1x10) for line 1 s-a
0 can be generated just. by implication, if test vector
(0x10) for 1 s-a1 has aready been generated.

322 Implications For Untestable Faults

Three observations:
1. If a saO(sal) fault on a Pl is untestable then
sal(sa0) fault on that Pl is also untestable.

2. If afault / is untestable, al faultsin its equiva-
lence dass are dso uiitcstable.

3. If adominating fault is untestable, all faults dom-
inated by thisuntestable fault areaso untestabl e.
Thetruth of theseobservationsisobviousand hence
no formal proof is given.
Example: If stuck-at-0 fault, at the input of an AND
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Figure 4: Performance of different versons

gate is found untestable then the stuck-at-0 faults on
al other inputs and the output of that gate will be
untestable. These faults are declared untestable by
the property of fault equivalence.

This property can be propagated further forward
and backward until afanout stem line appears. For
example, in tlie last examplecircuit, faults 10 s-a-1 and
5 sal can be declared untestable by the implication
of 12 s-a1 being untestable.

This particular feature of the pacltage is very impor-
tant since in general tlie untestable faults are hard to
prove redundant and PODEM will take a lot of time
to deal with these faults. So, without going into the
test generation program, many of these type of faults
are declared untestablejust by implication.

3.2.3 Extended Version Of Partial Fault Sim-
ulation

Tlie difference in the partial fault simulation and tlie
extended partial fault simulation appears only in the
box 10 of the flowchart shown in figure 2. In partial
fault simulation the backward implication of D or D
stops at afanout stem line, while in tlie extended par-
tial fault simulation, after setting the fanout stem line
toD or D (asmay be the case), aforward implication
isperformed and if the logic value of the PO which was
coiisiderd in tlie begining of the simulationremains un-
changed at D or D then tlie backward implication is
continued from the fanout stem. The forward impli-
cation consumes a large amount of time making tlie
extended partial fault simulation inefficient. The re-
sults for both the versions are shown in table 1 and
table 2.

LO%(TIP’S! —

PO T COOASNT FALT SIHLMR

a.'a::

N {

Pt

LR J ,1/

:::|j_ e """f M OPOOOF 4 PERTIL FILLT e sy
e

[ Ir_

EN BT

AN

3. B

bk

33 HH—g—p—] H I -

smi: § 8 3 3]
GATES.
Figure 5: Time comparison with CFS
4 Results

Tlie improved PODEM algorithm along with the in-
tegrated fault simulator wes coded in C and imple-
mented on a SUN 3/60 workstation. It, consists of
about 2000 lines of code. Tlie efficiency of our strat-
egy of integrating apartial fault simulator into an im-
proved version of PODEM algorithm is demonstrated
by comparing its performance to that of a Concurrent
fault simulator for al tlie ISCAS benchmark circuits.
Fault simulation is generally known to be less expen-
sive compared to computation intensive test genera-
tion process, as we do not have baclitraclting in fault
simulation. Tlie test vectors derived by PODEM (em-
ploying Partial Fault Simulation) were given to CFS, a
concurrent fault simulator available in the CAD Lab.
at 1ISc. The simulator evaluated the coverage of the
deterministic test vectors generated by PODEM for
al the 10ISCAS benchmark circuits. Contrary to our
expectations it was found that in many cases the time
taken by CFS to evaluate the coverage of tlie test. vec-
tors was greater than tlie time taken by our package
to generate the same vectors. The results are shown in
table 3. CFS ismemory intensive and hence it ran out
of virtual meniory for C6288 on a SUN 3/60 worksta-
tion with 4MB main memory, while our PODERI im-
plimentation could handle al tlie benchmark circuits.
Tlie results clearly demonstrate that a combination
of test generation and fault simulation can compare
favourably in performance to that of a stand alone
fault simulator, even though deterministic test gener-
ation is more compute intensive as it employs back-
tracking. The concurrent fault simulation naturally
reported ahigher fault coverage than that determined




Table 2: Fault coverage with different versions on SUN 3/G0

Faults Aborted Faults Redundant I'ault Coverage (%)

Circuit | Total Methods Nethods Methods

Faults | A B C |bD |A|BJ]C]|D]A B G D
74181 182 0 0 0 0 T 11 |1 |1 |950 | 9950 | 9950 | 99.50 |
C432 524 26 26 B |13 |0 10 |0 [0 | 9501 | 9504 [ 9752 | 9752
C499 758 2G 26 G |20 |0 |0 |0 |0 | 95657 | 96.567 | 979 9780
C830 | 942 0 0 0 0 0 |O {0 | O | 100,00 | 10000 | 10000 | 100.00
C1355 | 1574 | 8 16 3 8 |0 |0 |0 |0 | 9949 | 9808 | 9949 | 99.40
C1908 | 1879 28 57 41 |37 |4 |5 |5 |5 | 9830 | 9360 | 97.60 | 97.80
C2S70 | 2747 | 118 | 147 | 138 | 103 | 27 | 29 | 29 | 29 | 94.70 | 93.60 | 93.90 | 95.20
C3540 | 3428 | 384 | 301 | 229 | 181 | 15| 31 | 31 | 31 | 88.4 0.3 92.40 | 9380
C5315 | 5350 | 200 | 127 | 98 | 97 | 36| 36 | 38 | 36 | 9560 | 97.00 | 9750 | 9750
C6288 | 7744 | 1L | 111 | 12z | - 32 32| 32| - | 9820 | 9580 | 9v.10 | -
C7552 | 7550 | 2475 | 1162 | 949 | 771 | 48 | 52 | 52 | 52 | 66.60 | 83.90 | 86.70 | 8900

A:BascPODEM algorithm D: New PODEM

C: New PODEM * partial fault simulator D:

by PODEM and this is easly explained by the fact
that the simulator we have integrated into PODEM is
apartial one.

5 Conclusions

The results indicate that our algorithm is better
than the basic PODEM algorithm. ‘Festabillity mw-
sures are very effective. A partial fault simualtor is
more effective than a complete fault simulator. Some
more modifications can make this algorithm more ef-
ficient. Some of these modifications are multiple path
backtracing[3], unique sensitization [3], identification
technigques for the redundant faults [6] and a better
fault simulator.
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