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Covering modules by proper submodules

Apoorva Kharea,b and Akaki Tikaradzec
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ABSTRACT
A classical problem in the literature seeks the minimal number of proper
subgroups whose union is a given finite group. A different question, with
applications to error-correcting codes and graph colorings, involves cover-
ing vector spaces over finite fields by (minimally many) proper subspaces.
In this note we cover R-modules by proper submodules for commutative
rings R, thereby subsuming and recovering both cases above. Specifically,
we study the smallest cardinal number @, possibly infinite, such that a
given R-module is a union of @-many proper submodules. (1) We com-
pletely characterize when @ is a finite cardinal; this parallels for modules a
1954 result of Neumann. (2) We also compute the covering (cardinal) num-
bers of finitely generated modules over quasi-local rings and PIDs, recover-
ing past results for vector spaces and abelian groups respectively. (3) As a
variant, we compute the covering number of an arbitrary direct sum of
cyclic monoids. Our proofs are self-contained.
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1. Introduction

The covering problem is a well-known and classical question in group theory:
Given a non-cyclic group G, find the minimal (cardinal) number of proper subgroups, termed

the covering number rðGÞ, whose union is G.
This problem has a long history in the literature. It is immediate that two proper subgroups

can never cover G; in 1926, Scorza [32] showed that rðGÞ ¼ 3 if and only if G has a quotient iso-

morphic to the Klein-4 group ðZ=2ZÞ2: This question and related variants have since been the
subject of a vast number of papers; a small sampling from the 20th century is [11, 12, 15, 20, 27,
30, 31, 36–38]. The subject also continues to attract much attention more recently, see e.g. [1–6,
8, 10, 17, 23, 25, 33–35] and the references therein.

One of the early results on (finite) coverings of groups is by Neumann (1954), who worked in
slightly greater generality—for unions of cosets of subgroups:

Theorem 1.1 (Neumann [27]). Suppose a group G is the union of finitely many cosets

g1G1, :::, gnGn, where gi 2 G,Gi � G,

where we write H � G to denote that H is a subgroup of G.

(1) Then the index ½G : Gi� is finite for some i.
(2) Now suppose no proper sub-union equals G. Then ½G : Gi� is finite for all i. In particular, if

moreover gi ¼ e8i, then ½G : G1 \ � � � \ Gn� is finite.
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(3) Consequently, G can be written as a union of (i.e., admits a covering by) finitely many proper
subgroups, if and only if G has a finite non-cyclic quotient.

On a tangential note, we remind the reader that covering the specific group G ¼ Z by
finitely many cosets (with distinct moduli) was a subject well-studied by Erd}os; for instance,
some of his conjectures (including with Graham) were settled in 2007—in a stronger form—
by Filaseta–Ford–Konyagin–Pomerance–Yu [18].

Returning to coverings of general groups, Rao–Reid used Neumann’s Theorem 1.1, together
with ideas of Rao–Rao [29], to prove:

Theorem 1.2 (Rao–Reid [30]). Suppose an abelian group G admits an irredundant covering by
finitely many (proper) subgroups.

(1) Every such covering is induced by lifting a covering of a finite quotient of G.
(2) The covering number rðGÞ ¼ pþ 1, where p � 2 is the smallest prime such that G/pG is

not cyclic.

It is natural to try and extend such results to other settings. For instance, coverings of rings
have been studied (including very recently) in [7, 9, 13, 24, 28, 39]. Yet another motivation comes
from the short note [22], where the first named author found a sharp bound for the number of
proper subspaces of a fixed codimension d � 1 needed to cover a vector space. We present here
the d¼ 1 result—which is folklore, and is all that is required for the purposes of this paper:

Proposition 1.3. Suppose V is a vector space of dimension at least 2 over a field F, and define
�ðF,VÞ to be the cardinal number

�ðF,VÞ :¼ jZj, if F, dimV are both infinite,

jFj þ 1, otherwise:

(
(1.4)

Now V can be written as a union of @-many proper vector subspaces, if and only if @ � �ðF,VÞ as
cardinal numbers. In other words, rðVÞ ¼ �ðF,VÞ:

(Here, rðVÞ of course denotes the covering number of V in the category of vector spaces.) As
we show in Corollary 3.5, the above result extends to cover free modules Rn, n � 2 over a local
ring ðR,mÞ : we prove rðRnÞ ¼ jR=mj þ 1 as cardinal numbers, irrespective of whether or not
R=m is finite. For now, we provide a quick proof of Proposition 1.3 when F is finite. That @ �
jFj þ 1 works, follows by lifting the cover by lines of the plane F2, i.e., projective space, to V.
Conversely, if fVi : i 2 Ig is a finite and minimal/irredundant cover of V, we may suppose each
Vi has codimension one, whence \iVi has finite codimension in V. Working modulo \iVi now
reduces the case to dimV < 1, so jVj < 1 and jVij ¼ jVj=jFj: It follows that jIj ¼ rðVÞ > jFj:

Covering vector spaces by proper subspaces, and variants of this problem, find applications to
error-correcting codes and block designs over finite fields (see the references in loc. cit.), as well
as to graph colorings (see e.g. [35]). Other variants involving covering a vector space by (trans-
lates/shifts) of subspaces can be found in [14, 21].

1.1. Contributions

The goal of this note is to unify and extend the study of coverings of abelian groups and of vec-
tor spaces by working with R-modules, where R will always denote a unital commutative ring.
We list here a few of the contributions.

(1) We completely characterize the modules over an arbitrary ring R, that admit a finite cover-
ing. For R ¼ Z, we recover the result for finite coverings of abelian groups; our proof is
self-contained and works for arbitrary R.
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(2) We next determine the covering number in a large number of cases, including: (a) all
finitely generated modules over quasi-local rings; (b) all divisible modules over a PID; (c)
direct sums of cyclic modules over a local ring (which subsumes the case of vector spaces).

2. Finite coverings of modules, and coverings of finitely generated modules

In this section, we extend the results for abelian groups above, first to finite coverings of (arbi-
trary) R-modules M for arbitrary unital commutative rings R. This is quickly followed by the case
of coverings of finitely generated modules over quasi-local rings (i.e., ones with only finitely
many maximal ideals). Our proofs are self-contained.

Our first result completely characterizes—for an arbitrary unital commutative ring R—when
an (arbitrary) R-module M admits a finite covering; note this extends Theorem 1.2. In particular,
our proof (of the nontrivial, second part) differs from that in [30], as this latter proof for groups
does not extend to R-modules.

We begin with two easy observations. First, if M is a finite set and an R-module, and mM(M
for a maximal ideal m � R, then R=m is a finite field (since M=mM is a finite-dimensional vector
space over R=m). From this it follows that m contains a (unique) prime integer pm 2 Z, i.e., m \
R0 ¼ pmR0, where R0 is the unital subring of R generated by 1R: Second, from this it follows that

M ¼ �p2Z primeMðpÞ (2.1)

as R-modules, where MðpÞ is the p-(torsion) subgroup of M under addition. We now have:

Theorem 2.2. Suppose R is a unital commutative ring and M an R module.

(1) Let S be the set of maximal ideals m for which dimR=mM=mM � 2, and define

�0ðR,MÞ :¼ min
m2S

jR=mj þ 1, (2.3)

as cardinal numbers. If S is nonempty, then rðMÞ � �0ðR,MÞ:
(2) M admits a finite covering by proper submodules, if and only if M has a finite non-cyclic

quotient R-module. Moreover, every such irredundant finite covering is induced by lifting a
covering of a finite quotient of M.

(3) If M admits a finite covering by proper R-submodules, then the covering number rðMÞ ¼ �0ðR,MÞ:
In other words, the definition of the cardinal number �ðF,VÞ ¼ �0ðF,VÞ in Equation (1.4) can

be extended from finite-dimensional F-vector spaces V, to R-modules that admit a finite covering:
rðMÞ < 1 ) rðMÞ ¼ �0ðR,MÞ: Note, this cardinal equals jR=m0j þ 1 with R=m0 a finite field.

To prove Theorem 2.2, we first provide a short proof—using amenability—of Neumann’s
Theorem 1.1 for abelian groups.

Proposition 2.4. Suppose an amenable group G is an irredundant union of finitely many proper
subgroups G1, :::,Gn. Then ½G : G1 \ � � � \ Gn� is finite (whence so is each ½G : Gi�).

Consequently, an abelian group G can be written as a union of (i.e., admits a covering by)
finitely many proper subgroups, if and only if G has a finite non-cyclic quotient.

Proof. Since G is amenable, denote the relevant finitely additive left-invariant probability measure
on G by l. By relabeling, there exists 0 � t � n such that G1, :::,Gt have finite index in G, while
Gtþ1, :::,Gn do not. Note that lðGiÞ ¼ 0 for i> t, so we must have t> 0, whence the index

m :¼ G : \t
i¼1Gi

� � 2 ð1,1Þ:
Now G n [t

i¼1Gi is a disjoint union of cosets of \t
i¼1Gi, so if t< n, then we compute:

1� 1
m

¼ l G n [t
i¼1Gi

� � � lðGtþ1 [ � � � [ GnÞ �
Xn
i¼tþ1

lðGiÞ ¼ 0:
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This contradiction shows the first part. The second part is standard: if G is abelian and admits a
finite covering, then so does its finite quotient G= \n

i¼1 Gi from above, whence this cannot be a
cyclic group. The converse is immediate by lifting a cover by the cyclic proper subgroups, of G/H
(a finite, non-cyclic quotient group). w

The next argument is useful in multiple situations, hence is isolated into a standalone result.
In it and in the sequel, rðMÞ will always denote the covering number of an R-module M by
proper R-submodules.

Proposition 2.5. Fix an integer n � 1, finitely many unital commutative rings R1, :::,Rn, and an
Rk-module MðkÞ for all k, such that Mðk0Þ admits a covering by proper Rk0-submodules for at least
one k0 2 ½1, n�. Letting K0 denote the set of all such k0, and setting R :¼ �n

k¼1Rk,M :¼ �n
k¼1M

ðkÞ,
we have rðMÞ ¼ mink02K0rðMðk0ÞÞ as cardinal numbers.

This minimum cardinal number exists (as do all such minima below) e.g. by [26].

Proof. That rðMÞ � mink02K0rðMðk0ÞÞ is immediate: let k0 2 K0 attain this minimum, and lift a
cover of Mðk0Þ to M.

Conversely, suppose M ¼ [i2IMi is a covering with jIj ¼ rðMÞ: We first get rid of the “cyclic”
factors. Namely, suppose without loss of generality that MðkÞ is cyclic as an Rk-module, say
MðkÞ ¼ Rkvk, for k ¼ 1, :::, t: Note that t< n since K0 is nonempty. Now given M ¼ [i2IMi, we
claim that the module M=ðMð1Þ � � � � �MðtÞÞ over the ring R0 :¼ 	k>tRk is covered by
Mi=ðMð1Þ � � � � �MðtÞÞ for all i 2 I such that v1, :::, vt 2 Mi: (Call this subset I0 � I:) Indeed,
given ðvkÞk>t 2 M=ðMð1Þ � � � � �MðtÞÞ, we must have v :¼ ðv1, :::, vt , ðvkÞk>tÞ 2 Mi for some i 2 I:

But then vk ¼ 1Rkv 2 Mi for 1 � k � t, whence i 2 I0; and �k>t1Rk � v ¼ ðvkÞk>t 2 Mi as well,
showing the claim.

Thus, we may assume now that every MðkÞ admits a covering by proper Rk-submodules. Given
a module N over R ¼ 	n

k¼1Rk, write N ¼ �n
k¼1N

ðkÞ, with NðkÞ ¼ RkN: Thus for each i, we have

Mi ¼ �n
k¼1M

ðkÞ
i is proper, whence there exists 1 � ki � n with MðkiÞ

i 6¼ MðkiÞ: We may then
replace Mi by

M0
i :¼ MðkiÞ

i ��k6¼kiM
ðkÞ,

and still obtain a covering of M by rðMÞ-many proper R-submodules M0
i:

Finally, let Ik :¼ fi 2 I : ki ¼ kg for 1 � k � n: We claim there exists 1 � k � n such that

fMðkÞ
i : i 2 Ikg is a covering of MðkÞ; notice that this would imply that rðMÞ � rðMðkÞÞ, and con-

clude the proof. This claim is shown by contradiction: if no such k exists, then for every k there

exists mk 2 MðkÞ that does not belong to MðkÞ
i for any i 2 Ik: But then �n

k¼1mk 62 M0
i for

all i 2 I: w

With these preliminary results at hand, we can now completely characterize when an R-mod-
ule M has a finite covering.

Proof of Theorem 2.2.

(1) This is immediate: if dimR=mM=mM � 2, then by Proposition 1.3, the quotient module
(over the field R=m)

M‡M=mM‡ðR=mÞ2

is a union of jR=mj þ 1 proper submodules, which can then be lifted to a covering of M.
Now take the minimum over m 2 S:

4 A. KHARE AND A. TIKARADZE



(2) First suppose M admits a finite covering, say a minimal/irredundant one, by proper sub-
modules M1, :::,Mn: Then M=\iMi is finite by Proposition 2.4, and is not cyclic, else the
cyclic generator would be contained in some Mi0=\iMi: Moreover, the covering of M by
the Mi0 is the lift of the covering of M=\iMi by the Mi0=\iMi: Conversely, if M/N is finite
and non-cyclic, then M/N is the union of its (finitely many) cyclic submodules, and this
lifts to a finite covering of M.

(3) One inequality follows from (2.3). To show the reverse inequality, given a module M admit-
ting a finite covering, we begin with two reductions. (a) From the preceding part, we may
assume M is finite. (b) We reduce to the case of finite rings, by working over R0 :¼
R=AnnRðMÞ instead of R. Indeed, R0 embeds into EndðMÞ (via r 7! ðm 7! rmÞ), which is a
finite set.

Now we proceed. Given an irredundant covering M ¼ M1 [ � � � [Mn, each Mi has a
nonzero simple quotient, say R0=mi, whence Mi=miMi 6¼ 0: Let the ideal I � R0 be the
product of the distinct ideals among m1, :::,mn, which we will index henceforth by m0

k:
Working over the quasi-local ring

R0=I ¼ R0=\km
0
k ’ 	kðR0=m

0
kÞ, (2.6)

the images Mi=ðIM \MiÞ are proper submodules of M/IM (by Nakayama’s lemma) which
also provide a covering. This shows that rðMÞ � rðM=IMÞ, and we are reduced to the case
where the ring R0 is a product of the fields FðkÞ :¼ R0=m0

k: Now write M ¼ �kMðkÞ with
MðkÞ :¼ FðkÞM; if dim

FðkÞMðkÞ � 18k, then M ¼ R0=I is cyclic and cannot be covered by
proper submodules, a contradiction. Thus there exists k such that dim

FðkÞMðkÞ � 2, whence
the vector space MðkÞ admits a covering by proper FðkÞ-subspaces. The proof is now com-
pleted by applying Proposition 2.5. w

2.1. Two settings involving covering finitely generated modules

We now come to the case of possibly infinite minimal/irredundant coverings of R-modules. Note
that this case does not arise when considering abelian groups, since in that case R ¼ Z has no
maximal ideal m with infinite residue field m: Thus, the results and methods in this section
necessarily lie outside the group covering setting.

Definition 2.7. Let R be a unital commutative ring, and M an R-module admitting a covering by
proper R-submodules. Define the covering number rðMÞ to be the smallest cardinal number @
such that M is covered by @-many proper submodules, but no fewer—where “fewer” means any
cardinal that injects into @ but is not in bijection with it. (We use here the trichotomy of cardinal
numbers, which is a consequence of the Axiom of Choice; also, rðMÞ exists e.g. by [26].)

In this subsection, we study coverings of finitely generated modules in two settings. The first
involves R being a quasi-local ring—i.e., a commutative unital ring with only finitely many max-
imal ideals. In this case, the same formula as in Theorem 2.2(2) applies:

Theorem 2.8. Let R denote a quasi-local ring, and M be a finitely generated R-module. Then

rðMÞ ¼ �0ðR,MÞ ¼ min
m2S

jR=mj þ 1

as cardinal numbers, where �0, S were defined in (2.3). (If S is empty, then M is cyclic.)

Thus, akin to Equation (1.4) and also the remarks following Theorem 2.2, once again the car-
dinal number �0ðR,MÞ turns out to be the covering number.

As the arguments were essentially written out above, we merely sketch this proof.

Proof. That rðMÞ � minm2SjR=mj þ 1 (when at least one such m exists) is as in the proof of
Theorem 2.2(2). To show the reverse inequality, let M ¼ [i2IMi be a covering by proper
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submodules, where jIj is in bijection with rðMÞ: If m0
k denote the finitely many maximal ideals

in R, let I ¼ \km
0
k and work modulo I. Now the arguments following (2.6) apply verbatim to

complete the proof. w

In our second setting here, the ring R no longer needs to be quasi-local, but contains a field F

(with unit 1R).

Theorem 2.9. Suppose R 
 F�1R ¼ 1F as above, and M is a finitely generated non-cyclic R-mod-
ule. Then rðMÞ � jFj þ 1. If moreover F is an infinite field and R is countably generated over F,
then rðMÞ ¼ jFj þ 1:

The point of interest here is that the (lower and upper) bounds are universal for all finitely
generated R-modules.

Proof. Take the smallest integer n � 2 such that M has n generators. Now Rn‡M, so any cover-
ing of M lifts to one of Rn, whence rðMÞ � rðRnÞ: Thus we reduce to M ¼ Rn with n � 2: Now
suppose Rn ¼ [i2IMi is an irredundant covering, so that each Mi 6¼ Rn and jIj ¼ rðRnÞ: Since R �
Fn ¼ Rn, it follows that Mi \ Fn is a proper vector subspace of Fn: But then,

jFj þ 1 ¼ rðFnÞ � jIj ¼ rðRnÞ � rðMÞ,
where the first equality is by Proposition 1.3. This shows the first assertion; the second will follow
from the claim that rðMÞ � jFj þ 1: To show the claim, first note that jRj ¼ jFj, since every
finitely generated F-algebra has size jFj: Now since M is finitely generated, jMj ¼ jFj; and since
M is not cyclic, it is the union of its cyclic submodules, whence rðMÞ � jFj: w

In the setting of the preceding result, notice that every maximal ideal m is an F-vector sub-
space of R, whence every residue field R=m has the same size as F: Given this and the earlier
results in this section, we end with the following natural question:

In what generality for the ring R, is it true that for all finitely generated non-cyclic R-modules
M, we have rðMÞ ¼ �0ðR,MÞ ¼ minm2SjR=mj þ 1 as in (2.3)?

3. Divisible groups and modules; direct sums of cyclic monoids

Having understood covering numbers of abelian groups with finite coverings, in particular finitely
generated abelian groups, it is natural to turn to other groups. In particular, every divisible abel-
ian group (such as Q) is not a finite union but is a countable union of proper subgroups. (The
more general result—over PIDs—is mentioned below.) The same result holds for groups of the
form �pðZ=pZÞ, whenever the sum runs over an infinite set of pairwise distinct prime integers.
Indeed, that it is a countable union of proper subgroups is as in the next paragraph, and it is not
a finite union by e.g. Theorem 1.2. This is an example of a Z-module which is not cyclic, but
whose quotient modulo every maximal ideal is.

In a similar vein, for a field F it is easy to see (the assertion in Proposition 1.3) that an infin-
ite-dimensional vector space over an infinite field is a countable but not finite union of proper
subspaces: simply write the basis as the union of a countable nested sequence of nonempty
proper subsets, and take their spans.

Remark 3.1. There are also negative examples—see e.g. [40, Example 2.7] for the example of a
local (in fact valuation) ring ðR,mÞ, with M ¼ m not a countable union of proper submodules.

Yet another setting (which subsumes the case of abelian groups but not vector spaces) is that
of modules over a PID R. The case of finitely generated torsion R-modules is easy to discuss (see
later in this section); for now, we mention the case of divisible modules.

6 A. KHARE AND A. TIKARADZE



Proposition 3.2. If M is a nonzero divisible module over a PID R (which is assumed to not be a
field), then rðMÞ ¼ jZj. More generally, rðMÞ � jZj whenever M is not reduced.

Proof. No divisible module M has a finite (in fact nonzero) quotient M=mM, hence is not a finite
union of proper submodules by Theorem 2.2. On the other hand, by standard results—see e.g.
[16, Exercises, §4.7] and [19]—every R-module is the direct sum of a divisible (equivalently,
injective) module and a reduced module; and every divisible R-module is the direct sum of copies
of its field of fractions F and the “Pr€ufer p-modules”

Mp ¼ R p1½ � :¼ R 1=p
� �

=R � F=R, p prime 2 SpecmðRÞ:
Now it is easy to show that the only R-submodules of Mp are R½1=pn�=R, whence the assertion
follows for M ¼ Mp. Similarly, for M ¼ F (the quotient field of R), F is the nested union of sub-
modules M0

n, where we fix a prime 0 6¼ p 2 R and let

M0
n :¼ fa=b : a, b 2 R, ða, bÞ ¼ 1, pn-bg, n � 1:

Since at least one module from among F,Mp occurs in M, we have rðMÞ ¼ jZj for M divisible. If
instead M is merely non-reduced, then M contains F or Mp as a direct summand,
whence rðMÞ � jZj: w

We conclude this part by discussing how far the above results take us, in a restricted setting—
which in the above special cases (abelian groups, vector spaces, or modules over PIDs) is a prom-
inent case already studied above. Namely, instead of working with finitely generated R-modules,
we instead consider direct sums of cyclic modules. In this case, the “stopping point” seems to be
the free module M ¼ R2 for general rings R.

We now make this more precise, by writing down a sequence of observations, and follow this
by deducing several corollaries for coverings of modules. We also apply these observations to
minimally cover direct sums of cyclic monoids. Begin with a nonempty direct sum of nonzero
cyclic modules

M ¼ �k2KMk

over an arbitrary commutative unital ring R.

(1) Define S and �0ðR,MÞ as in Theorem 2.2(1). Then S equals the collection of maximal ideals
m that contain the annihilators of Mk for at least two k 2 K:

(2) If S is empty and K is finite, then M is cyclic. Indeed, if Mk ffi R=Ik for all k, then each Ik
is contained in exactly one maximal ideal, so the Ik are coprime, and M ffi R=\k2KIk by the
Chinese remainder theorem.

(3) If S is empty and K is infinite, then M is covered by a countable sequence of nested sub-
modules (as discussed prior to Remark 3.1). Since M is not a finite union of proper sub-
modules by Theorem 2.2, we have rðMÞ ¼ jZj:

(4) Otherwise, S is nonempty. If �0ðR,MÞ < 1, then Theorem 2.2 applies, and rðMÞ ¼ �0ðR,MÞ:
(5) Otherwise, S is nonempty and �0ðR,MÞ is an infinite cardinal. If jKj ¼ 1, then rðMÞ is

not finite (by Theorem 2.2), so rðMÞ ¼ jZj (as discussed in a previous case).
(6) Otherwise, S is nonempty, jKj < 1, and �0ðR,MÞ is infinite. If R has finitely many max-

imal ideals—i.e., jSpecmðRÞj < 1, then rðMÞ ¼ �0ðR,MÞ by Theorem 2.8.
(7) (This is the “outstanding” case.) Otherwise, S is nonempty, jKj < 1, and �0ðR,MÞ and

jSpecmðRÞj are both infinite cardinals. As mentioned above, the torsion-free component of
M is the “stopping point” when one tries to understand minimal coverings.

As a consequence of the above discussion, several special cases of rings (and sums of cyclic
modules over them) fall out as immediate corollaries. We present here a sampling, starting with
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the final point above, where the “torsion-free component” of M is trivial, and we work over a
Dedekind domain:

Corollary 3.3. Suppose M is a finitely generated torsion module over a Dedekind domain. Then
rðMÞ ¼ �0ðR,MÞ if S is nonempty, where �0ðR,MÞ and S are as in Theorem 2.2(1); and if S is
empty then M is cyclic.

Proof. It is well-known here that M is a finite direct sum of cyclic torsion R-modules, say
M1, :::,Mn: Thus, we reduce the situation to covering the finitely generated module M/IM over
the quasi-local ring R/I, with I ¼ \n

k¼1AnnRðMkÞ: Now apply Theorem 2.8. w

The next corollary is immediate by Theorem 2.2, and resolves the above “outstanding” case
under alternate additional assumptions on R.

Corollary 3.4. Suppose the assumptions in the final, outstanding case in the preceding discussion
apply: M ¼ �k2KMk is a direct sum of nonzero cyclic R-modules, where S is nonempty, jKj < 1,
and �0ðR,MÞ and jSpecmðRÞj are both infinite cardinals. If moreover R is such that every residue
field of R=m is at most countable, then rðMÞ ¼ jZj, the smallest infinite cardinal.

As a third sample, we extend Proposition 1.3 to the case of local rings:

Corollary 3.5. Suppose ðR,mÞ is a local ring, and M ¼ �k2KMk is a direct sum of cyclic nonzero
R-modules, with jKj � 2. Then rðMÞ ¼ jZj if R=m and K are both infinite, else rðMÞ ¼
�0ðR,MÞ ¼ jR=mjþ 1:

This too is shown by following the steps in the above discussion. There is a similar result (and
proof) for R a direct product of finitely many local rings.

3.1. Covering sums of cyclic monoids

We end with a final result, which is an application of the discussion immediately above. We use
the above results to answer a related variant: that of covering monoids—specifically, direct sums
of cyclic monoids—in the spirit of finitely generated abelian groups or vector spaces. Namely:

Given a direct sum M of cyclic monoids, how many proper sub-monoids are required to
cover M?

Theorem 3.6 (Sums of cyclic monoids). Suppose M is a direct sum of cyclic monoids. Then exactly
one of the following holds:

(1) M is a cyclic monoid, in which case it has no covering by proper sub-monoids.
(2) M is an abelian group but not a cyclic monoid. In this case, either the set S defined in

Theorem 2.2(1) is empty and rðMÞ ¼ jZj; or S is nonempty, in which case 3 � rðMÞ < 1
and rðMÞ ¼ �0ðZ,MÞ is obtained from Theorem 2.2 (or Theorem 1.2).

(3) In all other cases, rðMÞ ¼ 2:
In contrast, recall that no group is a union of two proper subgroups.

Proof. Suppose M is not a cyclic monoid. If M is a group and a direct sum of cyclic monoids,
then each factor is of the form Z=nkZ with nk � 2, for k 2 K, say. Now the above discussion,
following the proof of Proposition 3.2, shows the assertion (2) in this corollary. Finally, if M is
not a group and not a cyclic monoid, then one can write M ¼ M1 �M2, with M1 ¼ hf1i a cyclic
monoid that is not a group, and M2 a nontrivial monoid. Then M is the union of M2 and the
monoid ðM nM2Þ t f0g; in fact this is a partition (in that the two sub-monoids intersect only
at 0).
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