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Abstract

In this paper we study a cellular mobile com-
munication system and address the problem of the
number of frequency channels required at each cell
in fixed channel assignment scheme in order to
keep the probability of call failures below accept-
able limits. The system considered here is more re-

alistic than those dealt with in the literature since
we consider more general motion of the mobiles

and also instead of considering each cell in isola-
tion we develop a queueing network model for this
system. We prove the stability of this network
and show the continuity of the stationary distri-
butions. We show that the network is not product
form and develop insensitive upper bounds on the
blocking probability at each cell.

1 Introduction

A major problem facing the radio communication indus-
try is the limitation of the available radio frequency spec-
trum. In setting allocation policy, we seek systems which
need low bandwidth but provide high usage. In order to
achieve spectrally efficient systems the ‘Cellular’ approach
is used. In a cellular radio system the geographical area
in which service is provided is divided into smaller regions
referred to as ‘cells’. Each cell site has a limited number of
frequency channels. The spectral efficiency of this system
stems from the fact that frequency channels used within a
site are reused in another site located sufficiently far from
the first one, so that the co-channel interference level is
small enough. Mobile units which initiate a call will be
allocated a frequency channel by the cell site in which the
mobile unit is located, if there is atleast one channel free.
When a mobile moves out of its cell to another cell, the

transferred to the base station of th 1l. Thi
o e e O AL R AR OFE " The handoff s said to
be successful if there is atleast one channe] free in the new
cell, when the handoff is attempted ; otherwise the call

dies before its service is complete. The period for which
the call uses the frequency channel in a cell is referred to
as the ‘channel holding time’ of the call. In general, the
channel holding time is not the same as the service time
of the call; it is a random variable which also depends on
the motion of the mobile initiating the call.

The main performance issue is the probability of call
failure. For this, various channel assignment schemes are
used to allocate frequencies to the base stations to be used
by the mobiles in its area. The important assignment
schemes are the fixed channel assignment schemes ,the dy-
namic channel assignment schemes and hybrid channel as-
signment schemes ([1], [3],[4], [5])-

In literature we find that cellular systems have been
studied widely. Some simulation studies are presented in
([3]) to assess the performance of the assignment schemes.
Guerin [7] shows by simulation that the channel occupancy
time distribution is best approximated by exponential dis-

tribution. An approximate analytical model and perfor-
mance characteristics for the cellular communication sys-
tem is developed by Hong et.al {2]. In all the above studies
simplifying assumptions are made on the motion of mo-
biles. In [2] the mobiles’ velocity is assumed to remain the
same throughout and each cell 1s studied in isolation. The
mobiles’ velocity in [7] is not only assumed to remain con-
stant but they are assumed to move only in one of the four
axes directions and the direction cannot change. But such
assumptions are totally unrealistic; infact the complexity
of analysing such systems arise mainly because of the feed-
back nature. Also because of the inter-connectivity of the
different cells it is not proper, as we show, to study each
cell in isolation. In contrast a natural model for studying
such svstems would be a queueing network.

We develop an analytical model for a cellular communi-
cation system in which the mobiles change direction at i.i.d
time intervals and for this model we obtain upper bounds
on the blocking probability in terms of the call arrival rate,
mean of the channel holding time and the number of fre-
quency channels in the cell, under the assumption that
the channel holding time has a general i.i.d distribution.
In section 2 we give the description of the communication
system and in section 3.1 present the analytical model.
We show the existence of and convergence to the station-
ary distributions for our queueing network starting from
any initial conditions in section 3.2 In section 3.3 we show
that the network is not product form even if the exter-
nal arrivals are Poisson and the channel holding times are
assumed exponential which implies that each cell cannot
be studied in isolation. When the network is not product
form, it is difficult to obtain the stationary distributions for
such a network. Therefore we obtain three upper bounds
on the time stationary distributions. We clarify the rela-
tionship between customer stationary and time stationary

distributions for, our network in section 3.4 and also ob-
tain some explicit bounds on the blocking probabilities in

terms of the mean channel holding time and mean total
arrival rate. In section 3.5 we obtain upper bounds on the
mean channel holding time and the total arrival rate to a
call in terms of the service requirement of a call, external
arrival rates and the motion of the mobiles. .
escription of the Communi-

cation System

We consider the following system. The mobiles move ran-
domly in a specified area. The entire area is divided into
identical cells. The mobiles move randomly with change of
direction occuring at {t;}%2, intervals. At each Ty = ZX ¢
instant the direction and the length of displacement is se-
lected according to the {V;}2, sequence.

The arrival of new calls to the system is assumed to be
a renewal process. The service time of a call is assumed to
have a general distribution independent of all other ran-
dom variables. The channel holding time has a general
i.i.d distribution. Each cell has a limited number of ( say
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k; at cell i ) frequency channels for the calls lying in its
area. We assume that fixed channel assignment scheme

is used for channel allocation. A call on its generation is
allotted a frequency channel by the base station in its cell,
if a channel is free; otherwise the call is lost. On the other
hand the call, on its generation, may be allotted a channel
but when the mobile moves from this cell to another cell,

the call has to be transfered from the base station of the
cell in which it was generated to the base station of the

new cell. The call transfer is successful if there is atleast
one channel free 1n the new cell when the call transfer 1s
attempted. If all the channels in the new cell are occu-

pied then the call can no longer be continued and it is lost
before its sevice is completed.

We use the following notation :

M = number of cells in the communication system.

M< oo

A(s) = arrival rate of new calls to the cell ‘s’.

1/p = mean channel holding time.

k; = number of frequency channels at the ith cell ; 1 <
i<M.

pi = probability that an external arrival (new arrival)
occurs at cell i. i .

pi; = probability of the call (mobile) moving from the
ith cell immediately to or through the jth cell; 1 < i,j <
M

pio = probability that the call terminates at the ith
celb 1 <i< M.

pi=0;1<i<M

TMpe=1;1<i<M

Ar(i) = total arrival rate (the arrival rate of new calls
along with the rate of calls handed off from other cells) of
calls at the ith cell. : Z, represents the system state at
arbitrary instant ‘t’.

Z, represents the system state at arrival epochs.

We define the state of the system in section 3.1 .

3 Analysis of the System

In this section we model the above system by a queue-
ing network and analyze it. We prove the existence of
a stationary distribution for the queue length vector (the
number of customers in each cell) of the queueing net-
work in 3.2. In the next subsection we obtain insensitive
upper bounds on the time stationary distributions of the
network. In section 3.4 we consider bounds on the cus-
tomer stationarv distributions (in particular on the block-
ing probability). In section 3.5 we relate these parameters
to the mobile communication system and get upper bounds
for that system.

3.1 Queueing Model for the Mobile Com-
munication System

The cellular communication system described above is mod-
elled as an open network of queues. Each cell in the system
corresponds to a node in the network ; thus the network

has M nodes. Customers which enter the network from
outside correspond to the new calls. We assume that the

total external arrival process is a renewal process. Ran-

dom variable ‘b’ denotes the inter arrival times for this
process. Probability that an external arrival arrives at the

ith queue first is denoted by p;. The services offered by
node i to the customers is a sequence of i.i.d. random vari-
ables. We denote by s; a random variable denoting service
at node i. The ith node in the network has k;, 1 <1< M,
servers. Each node in the network has no waiting places
and hence acts as a loss system. Customers who finish
service at one node go over to another node according to
the transition probabilities in the matrix P , ie; a customer

goes from node i to node j with probability p;; ( pi; may
be equal to 0) and leaves the system with probability p;q
(here again we assume that the probability of going from
a node to itself is zero ie. p; = 0). Thus the arrivals at
any node are the superposition of the external arrivals and

those routed from other nodes. A customer who arrives at
a node and finds all the servers at that node busy leaves

the system immediately. Thus each cell is modelled as
./G1/k;/0 queue. The system state at time t, denoted by
Zy = (Z,(1),...,Z,(M)) where Z,(i) is a vector representing
the service times already undergone by the customers at
node i. Similarly we define the Z, at the nth arrival epoch
to the system.
Remark 1 : The p;;s mentioned here would depend on
the motion of the mobiles. In section 3.5 we get some
bounds on p;;s . The mean service time at each node 1/u
, mentioned here corresponds to the mean channel holding
time. In section 3.5 we obtain an upper bound on this.
We now analyze this network to get expressions or
bounds for the stationary distributions and probability of
lost calls, the performance measure we are interested in.
But before we do this we prove the existence of a stationary
distribution for the queuelength at each node.

3.2 Stability and Continuity of the Queue
ing Network

In this section we prove the stability of the queueing net-
work described above and show the continuity of the sta-
tionary distributions.

Theorem 3.1 : Assume p; > 0 for all j. Let there be
constants A > 0 and €> 0 s.t.

P(s; > t+A) < (1 — €).P(s; >t)

(*)

Pb>A)>0
for all t > 0 and for all j=1,....M .

Also, let E(b) < oo and E(s;) < oo and either all b
and s; have lattice distribution with same span or atleast
one of them have nonlattice distribution. Then there are
stationary distributions s.t. starting from any initial distri-
butions, Z, and Z, converge to those distributions (these
may be different for Z, and Z;).

Proof : See ([8], [9]).

e assumptions made in the theorem are similar to
that of Borovkov [10]. In [9] we have also shown these
results without the assumptions in (*). For this, the proof
is somewhat similar to that of Sigman [11].

For the non lattice case, if the distributions of b is
spread out, then the convergence in theorem 3.1 is in total
variation. Also, for the lattice case, if the distribution of
b is aperiodic, then the limit is in total variation.

We shall also need the stationarity of the system state
process at the arrival epochs of custorners (external as well
as from other cells) to a particular cell. The arrival process
to a particular cell is determined by certain jumps.in the
time stationary process {Z;} (We denote by {Z;} here the
state process after it has reached time stationarity). We
can consider this process at times Z - where g, is the
arrival epoch to a cell (which is fixed in this paragraph).
Although this process is not stationary at the times a;,
from this we can form a process which is stationary at
these epochs and describes the behaviour of the system
(see Franken et al. [12]).

In ([8],[9]) we have also shown that under appropriate
conditions the prestationary and stationary distributions
of the queueing network are continuous functions of the
distributions of p;;, pi, b and s;.
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3.3 Upper Bounds on the Time Station-
ary Distributions

We have established, in the previous section, the station-
arity of the queue length process. Here we would be inter-
ested in obtaining some information about the stationary
probabilities of the system. Let us first notice that our
network does not have a product form solution. For this
we can take the example of two nodes, each with a single
server. The external arrival process is Poisson and the ser-
vice times at each node are exponential. Then it is easy to
calculate its stationary distributions (see[8},[9] for explicit
expressions) which turn out to be non product form unless
p12=p21=0. Since our system does not have a product form
solution, in general it will be difficult to get the stationary
probabilities. Also, since the queue length distributions at
different nodes are dependent, it is not "~ correct to con-
sider each cell in isolation as has been done in previous

studies. . -
We now develop several insensitive upper bounds on

the time stationary probabilities for our system when the
external arrival process is Poisson. The insensitive bounds
are particularly useful since the channel holding times may
not have simple distributions. To develop the upper bounds
we construct auxillary systems, which under the same ex-
ternal arrival rates A and service rate y form an upper
bound on the stationary distributions of our network. We
develop three such ‘upper bound systems’ and compare
their tightness under different conditions.

Jackson Network : The system is an open Jackson net-
work with M nodes, each node having infinite servers. Let

the external arrivals to each node be Poisson with the same
arrival rate as our original system, A and let the Pois-

son streams to the different nodes be independent of each
other. The service distributions at each node are general
with mean 1/u and are independent of all other r.v.’s. Let
the routing matrix P, be the same as in our original system

It is welfknown that this has a stationary queue length

distribution if the mean service times at each node are fi-
nite and further the stationary distribution has a product

form insensitive solution. In the following we write X <
Y, for random variables X and Y, to mean that for all non
negative non decreasing functions f for which E[f(X)] and
E[f[Y]] exist, E[f[X]] < E[f[Y]]
Proposition 3.2 :
g=(q(1),...,q(M)) <u (¢’(1),...,¢" (M) = ¢’

where q(i) represents the stationary number of cus-
tomers at node i in our system and ¢”(i) represents the
stationary number of customers at node 1 in the Jackson’s

network.
Proof: Trivial. .
Remark 2: This upper bound is applicable when the ser-

vice at a node (ie. the channel holding time) has a general
ii.d distribution. We can further strengthen the upper

bound if the service distribution at a node is assumed to
have an exponential distribution. In the following we de-

velop upper bounds when the service distribution can be
approximated by an exponential distribution.

We develop another auxillary system which has an
insensitive product form solution and which stochastically
upper bounds our system in terms of the queue length
vector. This system would be refered to as the ‘JUMP
OVER SYSTEM °’. The system is described as follows.
The number of nodes, the number of servers at each node,
external arrival processes, the routing matrix etc. are all
the same as in our system. The only difference is that when
a call arrives to a node which does not have any free server,
the call jumps over instantaneously to the next node on its
route. It has been shown in [17] that the jump over system
has product form solution. We show in ([8],[9]) that if our
system has channel holding time at each node exponential,
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then the stationary and prestationary distributions (for
same initial conditions) of the queue length vector for our
system is stochastically smaller than the jump over system
with same parameters.

We have developed another upper bound for the time
stationary distributions at each node in our network using
the technique given in [13].

3.4 Bounds on the Blocking Probabili-
ties

The bounds obtained in the section 3.3 are on time station-
ary distributions of our network while for blocking prob-
abilities we need the customer stationary distributions.
Thus we first clarify the relationship between the time
stationary and customer stationary distributions for our
system. These provide us bounds, in association with the
results in the last section on the stationary distributions
of queue lengths seen by arriving customers to a cell. Our
results in this regard are not complete. Therefore since
blocking probability is a major performance index for the
practical system, we also obtain some bounds in this sec-
tion on blocking probabilities alone by using the G/G/k;/0
systems (ie. systems with general arrivals, general service
distribution, k; servers and no waiting places).

By the well known PASTA property (see Melamed and
Whitt [14]) if we assume that the external arrival process
is a Poisson process, then the limiting distributions of Z,
and Z,; in theorem 3.1 are same. Also an external arrival
coming to a particular node will see in the steady state,
the limiting distribution of Z;. We present the bounds
on the blocking probabilities obtained from these systems
in figures (1),(2) and (3). These figures correspond to a
network with 2 nodes and 2 servers at each node. The ex-

ternal arrival process is Poisson, the service distributions
are exponential with mean 1 and pi; = pji = p, for i,j=1,2
and i#j. We notice from these figures that for different sys-
tem parameter values, different upper bounds are tighter
and in general atleast one of them gives a reasonably good
approximation.

Now let us consider the total arrival process to a partic-
ular cell. Since the conditional intensity of this arrival pro-
cess at time t is obviously dependent upon Z;, by theorem
4 in Melamed and Whitt [14], at these arrival epochs an
arriving customer does not see time stationary distribution
of Z,. In fact, by taking the example of M=2, one server at
each node and exponential service we can easily check that
the total arrival conditional intensity at a cell is an increas-
ing function of the queue length process g; in the system
but the joint  probability of both cells having a customer
is strictly less than the product of their marginals. There-
fore by corollary 2 in [14}, the time stationary distributions
of g; cannot be stochastically compared to the customer
stationary distributions at the total arrival epochs to a
cell. But if we consider the process of number of customers
(queue lengths) in the cell to which the total arrival pro-
cess is being considered, then we believe that at least for
the exnonential service distributions and Poisson external
arrivals assumed in this paragraph the customer stationary
process is stochastically smaller than the time stationary
process. This can be easily checked for the above example
of two cells. At the moment we do not have a proof for
the general case. If this is true then the upper bounds we
have obtained in the previous section will provide upper
bounds for the customer stationary process at each cell.
Now we obtain some bounds on the blocking probabili-
ties only using the results of Disney and Franken [15} on
G/G/k;/0 systems. For such a system if a is the expected
arrival time and b is expected service time, then denoting
p = b/kia and blocking probability by B, we obtain



B>1-1/ps
where p, = pfor G/GI/k;/0 system. Also,for GI/GI/k:[0
system with NBUE inter arrival distributions,

B <p/(1+p).

We will obtain upper bounds on a and b in the next
section in terms of the system input parameters : the ex-
ternal input arrival rate, the distribution of the velocity
and the service requirement of a mobile.

3.5 Bounds on the System Parameters

In this section we will obtain various bounds for the distri-
butions and the mean values of the channel holding time,

total arrival rate to a node and also p;;. For the mobiles in
a cellular system, the parameters that can be assumed to
be known in the beginning are the distributions of the ex-
ternal arrival process to a cell and of the sequence {(Vit:,
1)} where 7 is the time for which a call will last if it is al-
lowed to continue and {(V,t;); i > 0} is a sequence which
represents the motion of the vehicle. We will assume that
7 is independent of {(Vi,t;); i > 0}. The vehicle moves in
a particular direction for a time ; and then changes direc-
tion and speed independently of everything else. The total
dis;{}acement of the motion during time #; is represented
by V..

Y Now we obtain a simple bound on the channel holding
time of a call in a cell. Let us denote by T} the stopping
time which represents the first time, in terms of number of
direction changes at epochs t; that a call which originated
in a cell, exits the cell, if the random variable 7= co a.s. .
Define S, = B2, Vi and T, = E#;. Then Ty is a stopping
time w.r.t. the sequence S,. Also if r, denotes the radius
of a cell, then

P[Ty = n/S1,. ., Saz1] 2 PIVall > 2.7]
If P{||V,]| > 2.7] > 0, then we can easily show that
E[Tg,/So] < 1/P[”an| > 2.TC] < 00... (1)

where Sp is the position, of the vehicle, in the cell when
the call was initiated. The above bound is uniformly on all
So in the cell and hence is also an upper bound on E[Ty].
Now, the channel holding time T. < min|r, vh t]. If we
can assume that V; is independent of t; or that T} is a
stoppin%_ tine w.r.t. the sequence t; then

E[Z2.t] = E[T).E[ta] ... (2)

Thus, by (1) and (2)

E[T,] < min(E[r], E[T}]-Elta]) < min(E[r], B[]/ P([Valb

2.7¢))
oy
If we make some more assumptions on the distribution
of Vi, then we can get tighter upper bounds on the distri-
bution of Ty and the bound in (1) can be made dependent
upon Sp. This will provide us with better bounds than in

3).
( )In order to obtain other bounds on T, and the total
arrival rate to the cell, we first study the process Sy, T,
and 7. Let us assume 7 to be of the following type. Let X
be a r.v. with distribution F. Then define p = P{X > t,}.
At each epoch t;, with probability p the call continues tall
time instant t;,,. If the call terminates before ¢4, then it
has a distribution equal to that of r.v. X conditioned on
the event X < ¢;. Thus when the call is initiated at T,
then with probability p, independently of everything else,
the call will continue &ill time #;. If 7 is an exponentially
distributed r.v. then this assumption is satisfied but it is
strictly more general than exponential distribution. Then
of course
Elt)]-p/(1 - p) < E[r] < E[t]/(1 - p) _

Under the above assumptions, 1}, can be considered a
renewal process in which we are interested until the call

Jasts. The distribution of the renewal interval F' is given

in terms of the distribution of #; (denoted by F) by F' =
pFi+ (1 —p)beo
where 8., denotes a delta dirac measure concentrated at
oo. If Fy(z) — 1 as x — oo, then a renewal will not
take place with probability (1-p). If U(t) represents the
expected number of renewals till time t. then from stan-
dard results in renewal theory (see Asmussen [16]) if m
represents the time till the last renewal
P(m<t)=(1-p.U®¥)
Elm] = (f(1 - p - Fie))do)/(L - p),
while the total number of renewals N has distribution
P[N = k] = p*1.(1 - p)
and U(t) = 52,4(F) " (1),
where F'™" is n times convolution of F'. Also, if n(t)
represents the number of renewals till time t, then

Pln(t) <n]=1-F ).

In the following we use these results to find the proba-
bility that a call goes out of the cell in which it originated,
before dying.

Let us calculate the probability that a call before com-
pleting moves out of a circle of radius r from Sp. Now, (in
the following we take Sy = 0, we can take it at any other
point in the cell but then we would have to use S, — 5o in
the following)

P|[ vehicle does not go out of distance r when the call
ison | >

Plmaz,,  nl|Sal| < 7] = 252 Plmazy, il|Sal < r/N =
k—1).P[N =k~ 1].

If {V;} sequence is independent of {t;} then we can get
further explicit bounds, as the RHS reduces to

B2, Plmazy,.. kl|Sall < r].pF2(1 - p).

Also, if E[V4] = 0 and var[V4] is finite, we have
Plmazy,. i]|Sall > 7] £ kvar[Vy]/r?. Therefore,
Plmaz1, |||l < r] 21— kvar[Vi]/r?

Thus we obtain the lower bound as

222, (1 = kwarVi)/r?).pF 2. (1—p) ... (4)

The upper bound on the probability of call not going out
of circle with radius r is

%2 Plmazs, x||Sall < /N = kl.p*2.(1—p) ...(5)

These bounds can be used to obtain bounds on the
probability that a call which originated at some point in
a cell will not leave that cell. For example, if the distance
of S; from the nearest boundary of the cell is r, then the
probability that the call will never leave the cell will have
lower bound given by expression.(4). If we are given a
distribution of where in a cell the call originates then we
can get an overall lower bound on the probability of a call
generated in a cell not to go out. of the cell. Instead of using
N if we use n(t), then we obtain bounds on the probability
that a call generated in a cell will not leave the cell till
time t. Then the bounds can also be used to get bounds
on the channel holding time distribution.

Once a vehicle goes out of the cell, it will enter one of
the neighbouring cells. If the distributions of V; and the
call generation process in the cell is such that a call gener-
ated in the cell is equally likely to go out of the cell in all
directions, then conditioned on the event that a call goes
out of the cell, it will go with equal probability to the cells
on its boundaries. For example, if the cells are approx-
imately having a hexagonal shape, then with probability
1/6 the call will enter one of the neighbours. Actually
these probabilities can be very easily obtained explicitly
in terms of the distribution of V; and the call generation
process directly in the general case also. ) The upper
and lower bounds in expressions (4) and (5) can be used
to obtain bounds on_the total arrival rate to a cell. The
probability that a call which originates at a point (x,y) out-
side the cell and never reaches the cell is lower bounded
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by (4) if we take 1 to be the distance of (x,y) from the
cell boundary. We can tighten this bound by adding to it
the probability that it does go out of radius r but not in a
cone which encloses the cell. This probability can be eas-
ily lower bounded if we use the bound in (5) and if V; has
distribution which is direction homogeneous (even more
general case can be considered if we know the distribution
of V;). Explicitly, we get the lower bound

S (1=kvar (V1) /r?).p*=2.(1-p)+[1- T2, Plmazs, |5
/N = g1 = p)1 - 1./pr) =a(xy) ..(6)

Therefore, the upper bound on the probability that
a call generated at (x,y) will reach the cell is 1-a(x,y).
Then, if the rate of external arrivals in the neighbourhood
of point (x,y) is AM(x,y), the arrival rate of calls coming to
the cell for the first time is upperlbounded by

[ul1 - a(z,y) Mz y)dzdy = X .. (7

where A is the over all area of the cellular system. Once
a call enters the cell, then at a regeneration point ¢, inside
the cell, it will behave in the same way as the calls which
originated in the cell. Now we have to include in the arrival
rate, the calls which have once entered the cell and then
reenter after exiting the cell. But because of the memory-
less property in the continuation of a call, once a call exits
the cell and at the first regeneration time ¢; outside the
cell it is at point (x,y) then again the upper bound on the
probability that it reenters the cell is 1-a(x,y). Combining
it with the upper bounds and the probability, that a call
inside the cell will exit it at all we obtain the upper bound
(let us call it B) that a call entering a cell will exit and
enter again. Hence the upper bound on the total arrival
rate to the cell now becomes

Az = X + X8 where X' is defined in (7). In calculating
these upper bounds we have neglected the blocking prob-
abilities at intermediate cells, but these of course stay as
upper bounds. The effect of blocking probabilities can be
included by iteratively calculating these bounds.

The bounds shown in this section can be easily tight-
ened by taking into account boundary conditions etc. The
purpose of obtaining these bounds is basically to show that
it is possible to obtain the bounds that are needed to use
the analytical results obtained in earlier sections on the
queueing network model. Of course it is theoretically also
possible to get exact distributions once we are given the
distributions of V;,t;, 7.
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