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A Survey of Reinforcement Learning Algorithms for

Dynamically Varying Environments

SINDHU PADAKANDLA, Department of Computer Science and Automation, Indian Institute of Science

Reinforcement learning (RL) algorithms find applications in inventory control, recommender systems, vehic-

ular traffic management, cloud computing, and robotics. The real-world complications arising in these do-

mains makes them difficult to solve with the basic assumptions underlying classical RL algorithms. RL agents

in these applications often need to react and adapt to changing operating conditions. A significant part of re-

search on single-agent RL techniques focuses on developing algorithms when the underlying assumption of

stationary environment model is relaxed. This article provides a survey of RL methods developed for handling

dynamically varying environment models. The goal of methods not limited by the stationarity assumption is

to help autonomous agents adapt to varying operating conditions. This is possible either by minimizing the

rewards lost during learning by RL agent or by finding a suitable policy for the RL agent that leads to efficient

operation of the underlying system. A representative collection of these algorithms is discussed in detail in

this work along with their categorization and their relative merits and demerits. Additionally, we also review

works that are tailored to application domains. Finally, we discuss future enhancements for this field.
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1 INTRODUCTION

Resurgence of artificial intelligence (AI) and advancements in it has led to automation of phys-
ical and cyber-physical systems [45], cloud computing [75], communication networks [58], robot-
ics [42], and so on. Intelligent automation through AI requires that these systems be controlled
by smart autonomous agents with least manual intervention. Many of the tasks in the above listed
applications are of sequential decision-making nature, in the sense that the autonomous agent mon-
itors the state of the system and decides on an action for that state. This action when exercised
on the system changes the state of the system. Further, in the new state, the agent again needs

Author’s address: S. Padakandla, Dept. of Computer Science and Automation, Indian Institute of Science, Bangalore,

Karnataka, India, 560012; email: sindhupr@iisc.ac.in.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0360-0300/2021/07-ART127 $15.00

https://doi.org/10.1145/3459991

ACM Computing Surveys, Vol. 54, No. 6, Article 127. Publication date: July 2021.

https://doi.org/10.1145/3459991
mailto:permissions@acm.org
https://doi.org/10.1145/3459991


127:2 S. Padakandla

to choose an action (or control). This repeated interaction between the autonomous agent and
the system is sequential and the change in state of the system is dependent on the action chosen.
However, this change is uncertain and the future state of the system cannot be predicted. For ex-
ample, a recommender system [25] controlled by an autonomous agent seeks to predict “rating”
or “preference” of users for commercial items/movies. Based on the prediction, it recommends
items-to-buy/videos-to-watch to the user. Recommender systems are popular on online stores,
video-on-demand service providers, and so on. In a recommender application, the state is current
genre of videos watched or books purchased, and so on, and the agent decides on the set of items
to be recommended for the user. Based on this, the user chooses the recommended content or just
ignores it. After ignoring the recommendation, the user may go ahead and browse some more
content. In this manner, the state evolves and every action chosen by the agent captures additional
information about the user.

It is important to understand that there must be a feedback mechanism that recognizes when
the autonomous agent has chosen the right action. Only then can the autonomous agent learn to
select the right actions. This is achieved through a reward (or cost) function, which ranks an action
selected in a particular state of the system. Since the agent’s interaction with the system (or envi-

ronment) produces a sequence of actions, this sequence is also ranked by a pre-fixed performance

criterion. Such a criterion is usually a function of the rewards (or cost) obtained throughout the
interaction. The goal of the autonomous agent is to find a sequence of actions for every initial state
of the system such that this performance criterion is optimized in an average sense. Reinforce-

ment learning (RL) [68] algorithms provide a mathematical framework for sequential decision
making by autonomous agents.

In this article, we consider an important challenge for developing autonomous agents for
real-life applications [20]. This challenge is concerned with the scenario when the environment
undergoes changes. Such changes necessitate that the autonomous agent continually track the en-
vironment characteristics and adapt/change the learnt actions to ensure efficient system operation.
For example, consider a vehicular traffic signal junction managed by an autonomous agent. This is
an example of intelligent transportation system, wherein the agent selects the green signal dura-
tion for every lane. The traffic inflow rate on lanes varies according to time of day, special events
in a city, and so on. If we consider the lane occupation levels as the state, then the lane occupation
levels are influenced by traffic inflow rate as well as the number of vehicles allowed to clear the
junction based on the green signal duration. Thus, based on traffic inflow rate, some particular
lane occupation levels will be more probable. If this inflow rate varies, then some other set of lane
occupation levels will become more probable. Thus, as this rate varies, so does the state evolution
distribution. It is important that under such conditions, the agent select appropriate green signal
duration based on the traffic pattern and it must be adaptive enough to change the selection based
on varying traffic conditions.

Formally, the system or environment is characterized by a model or context. The model or con-
text comprises of the state evolution probability distribution and the reward function - the first
component models the uncertainty in state evolution, while the second component helps the agent
learn the right sequence of actions. The problem of varying environments implies that the envi-
ronment context changes with time. This is illustrated in Figure 1, where the environment model
chooses the reward and next state based on the current “active” context i , 1 ≤ i ≤ n. More formal
notation is described in Section 2.

1.1 Contributions

• Many streams of work in current RL literature attempt to solve a single underlying problem—
that of learning policies that ensure proper and efficient system operation in case of
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Fig. 1. Reinforcement learning with dynamically varying environments. The environment is modeled as a

set of contexts and evolution of these contexts is indicated by blue arrows. At time t , the current state is st

and RL agent’s action at changes the state to st+1 and reward rt is generated.

dynamically varying environments. In this work, we provide a general problem formulation
for this scenario, encompassing all cases of Markov decision process (MDP) problems.
• Further, this article provides a detailed discussion of the reinforcement learning techniques

for tackling dynamically changing environment contexts in a system. The focus is on a single
autonomous RL agent learning a sequence of actions for controlling such a system.
• Additionally, we provide an overview of challenges and benefits of developing new algo-

rithms for dynamically changing environments. The benefits of such an endeavour is high-
lighted in the application domains where the effect of varying environments is clearly
observed.

1.2 Overview

The remainder of the article is organized as follows. Section 2 presents the basic mathematical
foundation for modelling a sequential decision-making problem in the MDP framework. It also
briefly states the assumptions that are building blocks of RL algorithms. In Section 3, we for-
mally introduce the problem, provide a rigorous problem statement and the associated notation.
Section 4 describes the benefits of developing algorithms for dynamically varying environments.
It also identifies challenges that lie in this pursuit. Section 5 describes the solution approaches
proposed till now for the problem described in Section 3. This section discusses two prominent
categories of prior works. Section 6 discusses relevant works in continual and meta learning. In
both Sections 5 and 6, we identify the strengths of the different works as well as the aspects that
they do not address. Section 7 gives a brief overview of application domains that have been specif-
ically targeted by some authors. Section 8 concludes the work and elaborates on the possible fu-
ture enhancements with respect to the prior work. Additionally, it also describes challenges that
research in this area should address.

2 PRELIMINARIES

RL algorithms are based on a stochastic modelling framework known as MDP [9, 57]. In this section,
we describe in detail the MDP framework.
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2.1 Markov Decision Process : A Stochastic Model

A MDP is formally defined as a tuple M = 〈S,A, P ,R〉, where S is the set of states of the system,A is
the set of actions (or decisions). P : S ×A→ P (S ) is the conditional transition probability function.
Here, P (S ) is the set of probability distributions over the state space S . The transition function P
models the uncertainty in the evolution of states of the system based on the action exercised by the
agent. Given the current state s and the action a, the system evolves to the next state according to
the probability distribution P (·|s,a) over the set S . At every state, the agent selects a feasible action
for every decision epoch. The decision horizon is determined by the number of decision epochs. If
the number of decision epochs is finite (or infinite), then the stochastic process is referred to as a
finite (or infinite)-horizon MDP, respectively. R : S × A → R is the reward (or cost) function that
helps the agent learn. The environment context comprises of the transition probability and reward
functions. If environments vary, then they share the state and action spaces but differ only in these
functions.

2.2 Decision Rules and Policies

The evolution of states, based on actions selected by agent until time t , is captured by the “history"
variable ht . This is an element in the set Ht , which is the set of all plausible histories upto time t .
Thus, Ht = {ht = (s0,a0, s1,a1, . . . , st ) : si ∈ S,ai ∈ A, 0 ≤ i ≤ t }. The sequence of decisions taken
by agent is referred to as policy, wherein a policy is comprised of decision rules. A randomized,
history-dependent decision rule at time t is defined asut : Ht → P (A), where P (A) is the set of all
probability distributions on A. Given ut , the next action at current state st is picked by sampling
an action from the probability distribution ut (ht ). If this probability distribution is a degenerate
distribution, then the decision rule is called deterministic decision rule. Additionally, if the decision
rule does not vary with time t , then we refer to the rule as a stationary decision rule. A decision
rule at time t dependent only on the current state st is known as a state-dependent decision rule
and denoted as dt : S → P (A). A deterministic, state-dependent and stationary decision rule is
denoted as d : S → A. Such a rule maps a state to its feasible actions. When the agent learns to
make decisions, basically it learns the appropriate decision rule for every decision epoch. A policy
is formally defined as a sequence of decision rules. Type of policy depends on the common type
of its constituent decision rules.

2.3 Value Function : Performance Measure of a Policy

Each policy is assigned a “score” based on a pre-fixed performance criterion (as explained in
Section 1). For ease of exposition, we consider state-dependent deterministic decision rules only.
For a finite-horizon MDP with horizon T , the often used performance measure is the expected
total reward criterion. Let π : S → A be a deterministic policy such that for a state s , π (s ) =
(d1 (s ), . . . ,dT (s )), ∀s ∈ S . The value function of a state s with respect to this policy is defined as
follows:

V π (s ) = E
⎡⎢⎢⎢⎢⎣

T∑
t=0

R (st ,dt (st )) |s0 = s
⎤⎥⎥⎥⎥⎦
, (1)

where the expectation is w.r.t. all sample paths under policy π . A policy π ∗ is optimal w.r.t. the
expected total reward criterion if it maximizes Equation (1) for all states and over all policies.
A related criterion for finite-horizon MDP with horizon T is known as regret. This performance
criterion is directly concerned with the rewards gained during system evolution, i.e., its more
emphasis is on the rewards collected rather than on finding the policy that optimally controls a
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system. The regret is usually defined for a finite-horizon system as follows:

Regret = V ∗T (s0) −
T−1∑
t=0

R (st ,at ), (2)

where V ∗
T

(s0) is the optimal expected T -step reward that can be achieved by any policy when
system starts in state s0.

For infinite horizon MDP, the often used performance measures are the expected sum of dis-
counted rewards of a policy and the average reward per step for a given policy. Under the ex-
pected sum of discounted rewards criterion, the value function of a state s under a given policy
π = (d1,d2, . . .) is defined as follows:

V π (s ) = E
⎡⎢⎢⎢⎢⎣

∞∑
t=0

γ tR (st ,dt (st )) |s0 = s
⎤⎥⎥⎥⎥⎦
. (3)

Here, 0 ≤ γ < 1 is the discount factor and it measures the current value of a unit reward that
is received one epoch in the future. A policy π ∗ is optimal w.r.t. this criterion if it maximizes
Equation (3). Under the average reward per step criterion, the value function of a state s under a
given policy π = (d1,d2, . . .) is defined as follows (if it exists):

V π (s ) = lim
N→∞

1

N
E

⎡⎢⎢⎢⎢⎣

N−1∑
t=0

R (st ,dt (st )) |s0 = s
⎤⎥⎥⎥⎥⎦
. (4)

The goal of the autonomous agent (as explained in Section 1) is to find a policy π ∗ such that either
Equation (3) or Equation (4) is maximized in case of infinite horizon or Equation (1) in case of finite
horizon, for all s ∈ S .

2.4 Algorithms and their Assumptions

RL algorithms are developed with basic underlying assumptions on the transition probability and
reward functions. Such assumptions are necessary, since RL algorithms are examples of stochastic

approximation [11] algorithms. Convergence of the RL algorithms to the optimal value functions
hold when the following assumptions are satisfied.

Assumption 1. |R (s,a) | < B < ∞, ∀a ∈ A ∀s ∈ S .

Assumption 2. Stationary P and R, i.e., the functions P and R do not vary over time.

Assumption 1 states that the reward values are bounded. Assumption 2 implies that the transi-
tion probability and reward functions do not vary with time.

We focus on model-based and model-free RL algorithms in this survey. Model-based RL algo-
rithms are developed to learn optimal policies and optimal value functions by estimating P and
R from state and reward samples. Model-free algorithms do not estimate P and R functions. In-
stead these directly either find value function of a policy and improve or directly find the opti-
mal value function. RL algorithms utilize function approximation to approximate either the value
function of a policy or the optimal value function. Function approximation is also utilized in the
policy space. Deep neural network architectures are also a form of function approximation for RL
algorithms [22].

In this article, we use the terms “dynamically varying environments” and “non-stationary envi-
ronments” interchangeably. In the non-stationary environment scenario, Assumption 2 does not
hold true. Since previously proposed RL algorithms [10, 68] are mainly suited for stationary en-
vironments, we need to develop new methods that autonomous agents can utilize to handle non-
stationary environments. In the next section, we formally describe the problem of non-stationary
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environments using the notation defined in this section. Additionally, we also highlight the perfor-
mance criterion commonly used in prior works for addressing learning capabilities in dynamically
varying environments.

3 PROBLEM FORMULATION

In this section, we formulate the problem of learning optimal policies in non-stationary RL envi-
ronments and introduce the notation that will be used in the rest of the article. Since the basic
stochastic modeling framework of RL is MDP, we will describe the problem using notation intro-
duced in Section 2.

We define a family of MDPs as {Mk }k ∈N+ , where Mk = 〈S,A, Pk ,Rk 〉, where S andA are the state
and action spaces, while Pk is the conditional transition probability kernel and Rk is the reward
function of MDPMk . The autonomous RL agent observes a sequence of states {st }t ≥0, where st ∈ S .
For each state, an action at is chosen based on a policy. For each pair (st ,at ), the next state st+1 is
observed according to the distribution Pk (·|st ,at ) and rewardRk (st ,at ) is obtained. Here 0 < k ≤ t .
Note that, when Assumption 2 is true, Pk (·|st ,at ) = P (·|st ,at ), ∀k ∈ N+ (as in Section 2). The RL
agent must learn optimal behaviour when the system is modeled as a family of MDPs {Mk }k ∈N+ .

The decision epoch at which the environment model/context changes is known as changepoint,
and we denote the set of changepoints using the notation {Ti }i≥1, which is an increasing sequence
of random integers. Thus, for example, at time T1, the environment model will change from say
Mk0

toMk1
, atT2 it will change fromMk1

to sayMk2
and so on. With respect to these model changes,

the non-stationary dynamics for t ≥ 0 will be

P (st+1 = s
′|st = s,at = a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

Pk0
(s ′|s,a), t < T1

Pk1
(s ′|s,a), T1 ≤ t < T2

...

(5)

and the reward for (st ,at ) = (s,a) will be

R (s,a) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

Rk0
(s,a), t < T1

Rk1
(s,a), T1 ≤ t < T2

...

(6)

The extreme cases of the above formulation occur when either Ti+1 = Ti + 1, ∀i ≥ 1 or
T1 = ∞. The former represents a scenario where model dynamics change in every epoch. The
latter is the stationary case. Thus, the above formulation is a generalization of MDPs as defined in
Section 2. Depending on the decision making horizon, the number of such changes will be either
finite or infinite. With changes in context, the performance criterion differs, but Equations (1)–(4)
give away some hints as to what they can be. Additionally, since Assumption 2 does not hold true,
it is natural to expect that a stationary policy may not be optimal. Hence, it is important to expand
the policy search space to the set of all history-dependent, randomized time-varying policies.

Given the family of MDPs {Mk }k ∈N+ , one objective is to learn a policy π = (u1,u2, . . .) such that
the long-run expected sum of discounted rewards, i.e., E[

∑∞
t=0 γ

tR (st ,ut (Ht )) |H0 = h0] is maxi-
mized for all initial histories h0 ∈ H0. Here ut (Ht ) gives a probability distribution over actions and
R (st ,ut (Ht )) denotes the expected reward when an action is sampled from this distribution. For
finite horizon MDPs, the objective equivalent to Equation (1) can be stated in a similar fashion.
The same follows for Equations (2) and (4) for the infinite-horizon case as well, where the policy
search space will be randomized, history-dependent and time-varying.
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It should be noted that the space of history-dependent, randomized policies is a large intractable
space. Searching this space for a suitable policy is hard. Additionally, in the model-free RL case,
how do we learn value functions with only state and reward samples? In the next section, we
explore these issues and discuss prior approaches in connection with the problem of non-stationary
environments in RL. Some are methods designed for the case when model-information is known,
while others are based on model-free RL. All regret-based approaches usually are model-based
RL approaches, which work with finite-horizon systems. Approaches based on infinite-horizon
systems usually are control methods, i.e., the main aim in such works is to find an approximately
optimal policy for a system exposed to changing environment parameters.

4 BENEFITS AND CHALLENGES OF RL IN NON-STATIONARY ENVIRONMENTS

In this section, we will indicate what are the benefits of tackling non-stationary environments in
RL algorithms. These benefits straddle across single-agent and multi-agent scenarios.

4.1 Benefits

RL is a machine learning paradigm that is more similar to human intelligence, compared to super-
vised and unsupervised learning. This is because, unlike supervised learning, the RL autonomous
agent is not given samples indicating what classifies as good behaviour and what is not. Instead
the environment only gives a feedback recognizing when the action by the agent is good and when
it is not. Making RL algorithms efficient is the first step toward realizing general artificial intelli-
gence [73]. Dealing with ever-changing environment dynamics is the next step in this progression,
eliminating the drawback that RL algorithms are applicable only in domains with low risk, for
example, video games [65] and pricing [59].

Multi-agent RL [12] is concerned with learning in prescence of multiple agents. It can be consid-
ered as an extension of single-agent RL, but encompasses unique problem formulation that draws
from game theoretical concepts as well. When multiple agents learn, they can be either competi-
tive to achieve conflicting goals or cooperative to achieve a common goal. In either case, the agent
actions are no longer seen in isolation, when compared to single-agent RL. Instead the actions are
ranked based on what effect an individual agent’s action has on the collective decision making.
This implies that the dynamics observed by an individual agent changes based on other agents’
learning. So, as agents continually learn, they face dynamically varying environments, where the
environments are in this case dependent on joint actions of all agents. Unlike the change in transi-
tion probability and reward functions (Section 3), when multiple agents learn, the varying condi-
tions is a result of different regions of state-action space being explored. Thus, non-stationary RL
methods developed for single-agent RL can be extended to multi-agent RL as well.

4.2 Challenges

• Sample efficiency: Algorithms for handling varying environment conditions will definitely
have issues w.r.t. sample efficiency. When environment changes, then learning needs to be
quick, but the speed will depend on the state-reward samples obtained. Hence, if these sam-
ples are not informative of the change, then algorithms might take longer to learn new poli-
cies from these samples.
• Computation power: Single-agent RL algorithms face curse-of-dimensionality with increased

size of state-action spaces. Deep RL [22] use graphical processing units (GPU) hardware
for handling large problem size. Detecting changing operating conditions puts additional
burden on computation. Hence, this will present a formidable challenge.
• Theoretical results: As stated in Section 2, without Assumption 2, it is difficult to obtain

convergence results for model-free RL algorithms in non-stationary environments. Thus,
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providing any type of guarantees on their performance becomes hard. A step in this direction
is the work [17] that proves that if the accumulated changes in transition probability or
reward function remain bounded over time and such changes are insignificant, then value
functions of policies of all contexts are “close” enough. However, a more rigorous theoretical
pursuit is required.

5 CURRENT SOLUTION APPROACHES

Solution approaches proposed till now have looked at both finite horizon (see Section 5.1) as well
as infinite horizon (Section 5.2) cases. Prior approaches falling into these categories are described
in the following subsections.

5.1 Finite Horizon Approaches

Finite horizon approaches to dealing with non-stationary environment are References [19, 30, 32,
38, 51]. These study MDPs with varying transition probability and reward functions. The perfor-
mance criterion is the regret Equation (2) and the goal of these algorithms is to minimize the
regret over a finite horizon T . Since decision horizon is finite, the number of changes in the en-
vironment is utmost T − 1. Additionally, a stationary policy need not be optimal in this scenario.
So, regret needs to be measured with respect to the best time-dependent policy starting from a
state s0. Basically, regret measures the sum of missed rewards when compared to the best policy
(time-dependent) in hindsight.

5.1.1 Comparison of the works. How do References [19, 30, 32, 38, 51] compare with each other?

• All have similar objective—i.e., to minimize the regret during learning. Unlike infinite-
horizon results, which maximize the long-run objective and also provide methods to find op-
timal policy corresponding to this optimal objective value, regret-based learning approaches
minimize regret during learning phase only. There are no known theoretical results to obtain
a policy from this optimized regret value. Moreover, the regret value is based on the horizon
length T .
• References [19, 30, 32, 38, 51] slightly differ with regard to the assumptions on the pattern of

environment changes. Reference [32] assumes that the number of changes is known, while
References [38, 51] do not impose restrictions on it. The work on Contextual MDP [30]
assumes a finite, known number of environment contexts. Reference [19] assumes that only
the cost functions change and that they vary arbitrarily.
• Other than the mathematical tools used, the above works also differ with respect to the

optimal time-dependent policy used in the computation of the regret. The optimal policy is
average-reward optimal in Reference [32], while it is total-reward optimal in References [19,
30, 38, 51]. Reference [30] differs by letting the optimal policy to be a piecewise stationary
policy, where each stationary policy is total-reward optimal for a particular environmental
context.

5.1.2 Details. We now describe each of the above works in detail. Contextual MDP (CMDP)

is introduced by Reference [30]. A CMDP is a tuple 〈C, S,A,Y (C)〉, where C is the set of contexts
and c ∈ C is the context variable. Y (C) maps a context c to a MDP Mc = 〈S,A, Pc ,Rc , ξ

c
0 〉. Here, Pc

and Rc are same as Pk , Rk , respectively, as defined in Section 3. ξ c
0 is the distribution of the initial

state s0. The time horizon T is divided into H episodes, with an MDP context c ∈ C picked at the
start of each episode. This context chosen is latent information for the RL controller. After the
context is picked (probably by an adversary), a start state s0 is picked according to the distribution
ξ c

0 and episode sample path and rewards are obtained according to Pc , Rc . Suppose the episode

ACM Computing Surveys, Vol. 54, No. 6, Article 127. Publication date: July 2021.



A Survey of Reinforcement Learning Algorithms for Dynamically Varying Environments 127:9

variable is h and rht is the reward obtained in step t of episode h. LetTh , which is a stopping time,
be the episode horizon. The regret is defined as follows:

RegretCMDP =

H∑
h=1

J ∗h −
H∑

h=1

th∑
t=1

rht ,

where J ∗
h
= J

π ∗c
h
= E[

∑Th

t=0 rht |s0 ∼ ξ c
0 ,π

∗
c ] and π ∗c is the optimal policy for context c . Note that

c is hidden and hence the above regret notion cannot be computed, but can only be estimated
empirically. The CECE algorithm proposed by Reference [30] clusters each episode into one of the
contexts in C, based on the partial trajectory information. Depending on the cluster chosen, the
context is explored and rewards are obtained.

CMDP [30] necessitates the need to measure “closeness” between MDPs, which enables the pro-
posed CECE algorithm to cluster MDP models and classify any new model observed. The clustering
and classification of MDPs requires a distance metric for measuring how close are two trajectories
to each other. [30] defines this distance using the transition probabilities of the MDPs. Using this
distance metric and other theoretical assumptions, this work derives an upper bound on the regret,
which is linear inT . The mathematical machinery used to show this is complex. Moreover, the dis-
tance measure used considers only the distance between probability distributions. However, the
reward functions are important components of MDP and varies with the policy. It is imperative
that a distance measure is dependent on reward functions too.

The UCRL2 [32] and its improvement, variation-aware UCRL2 [51] are model-based regret min-
imization algorithms, which estimate the transition probability function as well as the reward
function for an environment. These algorithms are based on the diameter information of MDPs,
which is defined as follows:

DM = max
s�s ′

min
π :S→A

E[W (s ′|s,π )], (7)

where M is the environment context and W is the first time step in which s ′ is reached from the
initial state s . For a given pair of states (s, s ′) and a policy π , E[W (s ′|s,π )] gives the average time
the chain takes to move from state s to s ′. Note that this average time need not be symmetric
w.r.t. the states in the pair. The minimum of this average time w.r.t. all policies indicates how each
policy controls the movement between a given pair of states. This information is useful to know
when one state belongs to a sort of “good” region of the state space and the other belongs to a
“bad” region of the state space. These regions are dictated by the rewards obtained. It tells us how
fast does the chain move into or away from “bad” regions. By computing the maximum of this
transition time between all pairs of states, the agent can get an idea about the spread of the MDP
and which states are better reachable, and so on. This is the information captured in the diameter
D (M ) of MDP context M .

Both algorithms keep track of the number of visits as well as the empirical average of rewards
for all state-action pairs. Using a confidence parameter, confidence intervals for these estimates
are maintained and improved. The regret is defined as follows:

RegretUCRL2 = Tρ
∗ −

T∑
t=1

rt ,

where rt is the reward obtained at every step t and ρ∗ is the optimal average reward defined as
follows:

ρ∗ = lim
T→∞

1

T
E

⎡⎢⎢⎢⎢⎣

T∑
t=1

r ∗t

⎤⎥⎥⎥⎥⎦
,

r ∗t is he reward obtained at every step when optimal policy π ∗ is followed.
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UCRL2 learning proceeds in episodes, wherein the complete horizon T is divided into episodes.
For each episode i , based on the transition probability and reward estimates, a set of plausible

MDPsMi is defined in terms of a confidence parameter. From this set, an optimistic MDP M̃i and
the corresponding optimal policy π̃i are selected using value iteration. This policy is executed for
the episode i . Over iterations the set M is modified to reflect the actual underlying MDP. The
regret during learning is measured based on the policies π̃i chosen upto horizonT . When environ-
ment model changes utmost L times, then UCRL2 restarts learning with a confidence parameter
that is dependent on L. Variation-aware UCRL2 [51] proceeds in a similar fashion. However, in
Reference [51], the confidence sets used to determine the setMi in episode i is dependent on the
individual variations in reward and transition probabilities. In both versions of UCRL2, when the
environment changes, the estimation restarts leading to a loss in the information collected. Both
algorithms give sublinear regret upper bound dependent on the diameter of the MDP contexts.
The regret upper bound in Reference [51] is additionally dependent on the reward and transition
probability variation terms.

UCRL2 and variation-aware UCRL2 restart learning repetitively. This implies that in simple
cases where the environment model alternates between two contexts, these methods restart with
large confidence sets, leading to increased regret. Even if this information of alternating contexts
is provided, these algorithms will necessarily require a number of iterations to improve the confi-
dence sets for estimating transition probability and reward functions.

Online learning-based approaches [64] for non-stationary environments are proposed by Ref-
erences [19, 38]. MD2 [19] assumes that the transition probabilities are stationary and known to
the agent, while the cost functions vary (denoted Lt ) and are picked by an adversary. The goal of
the RL agent is to select a sequence of vectors wt ∈ CV , where CV ∈ Rd is a convex and compact
subset of Rd . The chosen vectors must reduce the regret, which is defined as follows:

RegretMD2 =

T∑
t=1

〈Lt ,wt 〉 − min
w ∈CV

T∑
t=1

〈Lt ,w〉,

where 〈· · · 〉 is the usual Euclidean inner product. Thus, without information ofLt ,wt can be chosen
only by observing the history of cost samples obtained. For this, the authors propose solution
methods based on Mirror Descent and Exponential Weights algorithms. Reference [38] considers
time-varying reward functions and develops a distance measure for reward functions, based on
total variation. Using this, regret upper bound is derived, which depends on this distance measure.
Further, Reference [38] adapts Follow the Leader algorithm for online learning in MDPs.

UCRL2, variation-aware UCRL2, and online learning approaches discussed here are model-based
approaches that do not scale well to large state-action space MDPs. The diameterDM (see (7)) varies
with the model and in many cases can be quite high, especially if the MDP problem size is huge.
In this case, the regret upper bound is destined to be very large.

5.2 Infinite Horizon Approaches

Works based on infinite-horizon are References [1, 6, 14, 15, 17, 18, 28, 37, 52, 77]. These are oriented
toward developing algorithms that learn a good control policy in non-stationary environment
models.

5.2.1 Details. [14] proposes a stochastic model for MDPs with non-stationary environments.
These are known as hidden-mode MDPs (HM-MDPs). Each mode corresponds to a MDP with
stationary environment model. When a system is modeled as HM-MDP, then the transitions be-
tween modes are hidden from the learning agent. State and action spaces are common to all modes
- but each mode differs from the other modes w.r.t. the transition probability and reward functions.
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Algorithm for solving [15] HM-MDP assumes that model information is known. It is based on a
Bellman equation developed for HM-MDP, which is further used to design a value iteration algo-
rithm based on dynamic programming principles for this model.

A model-based algorithm for non-stationary environments is proposed by Reference [18]. It is a
context detection-based method known as RLCD. Akin to UCRL2, RLCD estimates transition prob-
ability and reward functions from simulation samples. However, unlike UCRL2, it attempts to infer
whether underlying MDP environment parameters have changed or not. The active model/context
is tracked using a predictor function. This function utilizes an error score to rank the contexts that
are already observed. The error score dictates which context is designated as “active,” based on
the observed trajectory. At every decision epoch, the error score of all contexts is computed and
the one with the least error score is labeled as the current “active” model. A threshold value is
used for the error score to instantiate data structures for new context, i.e., a context that is not yet
observed by the learning agent. If all the contexts have an error score greater than this threshold
value, then data structures for a new context are initialized. This new context is then selected as
the active context model. Thus, new model estimates and the associated data structures are created
on-the-fly. This is the main contribution of RLCD. For every context, the action is picked using
either Prioritized sweeping or Dyna algorithm [68], which are well researched algorithms.

Change detection-based approaches for learning/planning in non-stationary RL is proposed by
References [6, 28, 52]. The identification of active context based on the error score is the crux of
RLCD method. Reference [28] improves RLCD by incorporating change detection techniques for
identification of active context. Similar to RLCD, this method estimates the transition and reward
functions for all contexts. Suppose the number of active context estimates maintained by Refer-

ence [28] is j. At time t , a number Si,t , ∀ i, 1 ≤ i ≤ j is computed. Let P̃i and R̃i be the transition
probability and reward function estimates of context i , where 1 ≤ i ≤ j. Si,t is updated as follows:

Si,t = max

(
0, Si,t−1 + ln

P̃i (st+1 |st ,at )R̃i (st ,at , st+1)

P0 (st+1 |st ,at )R0 (st ,at , st+1)

)
,

where P0 is the fixed transition function for a uniform model—one that gives equal probability of
transition between all states for all actions and R0 is set to 0 for all state-action pairs. A change

is detected if max
1≤i≤j

Si,t > c , where c is a threshold value. R̃i is updated as the moving average of

simulated reward samples. P̃i is updated based on maximum likelihood estimation. The updation

of P̃i and R̃i are same as in Reference [18]. Also, similar to References [18, 28] utilizes prioritized
sweeping algorithm for selecting policy of each context.

Reference [6] shows that in full information case, i.e., when complete model information is
known, the change detection approach of Reference [28] leads to loss in performance with de-
layed detection. Based on this observation, with the full information assumption, Reference [6]
designs a two-threshold policy switching method (denoted as TTS). Given the information
that the environment switches from context i to context j, TTS computes the Kullback-Leibler

(KL) divergence of two contexts Pπi

i and Pπi

j w.r.t. policy πi , even though the policy πi is optimal

for context i . When a sample tuple (st ,πi (at ), st+1) comprising of current state, current action and
next state is obtained at time t , the MDP controller computes the CUSUM [66] value SRt as follows:

SRt+1 = (1 + SRt )
Pπi

j (st+1 |st ,πi (at ))

Pπi

i (st+1 |st ,πi (at ))
, SR0 = 0. (8)

If SRt is higher than a threshold value c1, then it implies that the tuple (st ,πi (at ), st+1) is highly
likely to be originated in the context j, but it necessitates adequate exploration. Hence in every
state, the action that maximizes the KL divergence between Pπi

j and Pπi

i is fixed as the exploring
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action. This policy is denoted as πK L and sample tuples starting from time t + 1 are obtained using
πK L . Simultaneously SRt is also updated. When SRt crosses threshold c2, where c2 > c1, TTS
switches to πj , which is the optimal policy for MDP with Pj as the transition probability function.
The CUSUM statistic SRt helps in detecting changes in environment context.

Reference [52] proposes a model-free RL method for handling non-stationary environments
based on a novel change detection method for multivariate data [55]. Similar to Reference [6], this
work assumes that context change pattern is known. However, unlike Reference [6], Reference [52]
carries out change detection on state-reward samples obtained during simulation and not on the
transition probability functions. The Q-learning (QL) algorithm (see References [68, 74]) is used
for learning policies, but maintains a separate Q value table for each of the environment contexts.
During learning, the state-reward samples, known as experience tuples, are analyzed using the
multivariate change detection method known as ODCP. When a change is detected, based on
the known pattern of changes, the RL controller starts updating the Q values of the appropriate
context. This method is known as Context QL and is more efficient in learning in dynamically
varying environments, when compared to QL.

A variant of QL, called as Repeated Update QL (RUQL) is proposed in Reference [1]. This
adaptation of QL repeats the updates to the Q values of a state-action pair by altering the learning
rate sequence of QL. Though this variant is simple to implement, it has the same disadvantage as
QL, i.e., poor learning efficiency in non-stationary environments.

Online-learning-based variant of QL for arbitrarily varying reward and transition probability
functions in MDPs is proposed by Reference [77]. This algorithm, known as Q-FPL, is model-free
and requires the state-reward sample trajectories only. With this information, the objective of the
algorithm is to control the MDP in a manner such that regret is minimized. The regret is defined as
the difference between the average reward per step obtained by Q-FPL algorithm and the average
reward obtained by the best stationary, deterministic policy. Formally, we have

RegretQ-FPL = sup
σ :S→A

1

T

T∑
t=1

E[rt (st ,σ (st ))] − 1

T

T∑
t=1

E[rt (st ,at ))],

where r1, r2, . . . are the arbitrary time-varying reward functions and at is the action picked by Q-
FPL. σ is a stationary deterministic policy. Q-FPL partitions the learning iterations into intervals
and in each interval, the Q values are learnt from the reward samples of that interval. These Q
values are stored and are used to pick actions for the next interval by using the Follow the Perturbed

Leader strategy [64]. At the end of every interval, Q values are reset to zero and not updated during
the future intervals. The regret bounds for Q-FPL are derived by Reference [77].

The risk-averse-tree-search (RATS) algorithm [37] assumes minimal information regarding
the evolution of environment contexts. However, it is a model-based algorithm that is developed
for non-stationary MDP (NSMDP) as defined in Section 3. This algorithm assumes that the
transition probability and reward function changes slowly with time. This “slowness” is formalized
as a Lipschitz continuity requirement on these two functions, so that each of these two functions
is Lipschitz continuous w.r.t. time. This assumption implies that for small durations of time, the
transition probability and reward functions do not change drastically. This relaxation allows the
RL agent to work with a “snapshot” of the NSMDP model. The snapshot of the NSMDP model at
time t is nothing but the MDP context active at time t . Given this snapshot model and the current
state st0 , the RATS algorithm (a tree-search algorithm) builds a tree of reachable states from the
current state st0 . For building this tree, the algorithm utilizes the snapshot MDP model. However,
the action for the current epoch is chosen based on the best response to the worst-case snapshot
model at the next epoch. The snapshot model at the next epoch for the reachable states (s ′t+1)
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is estimated and then the appropriate action selected. Based on the maximum depth dmax of the
search tree, the learning agent has to estimate a snapshot model for each level (only for reachable
states) t0+1, . . . , t0+dmax and select the action a0 accordingly. The action selected a0 is then used to
perform a real transition. Since a search tree needs to be built and extensive information pertaining
to snapshot models is required, the RATS algorithm is not scalable to larger MDP problems.

5.2.2 Remarks.

• The algorithms for solving HM-MDPs [15] are computationally intensive and are not prac-
tically applicable. With advances in deep RL [22], there are better tools to make these com-
putationally more feasible. HM-MDPs are a special case of partially observable Markov

decision processes (POMDP) [68], wherein the state is not accessible to the learning agent.
In Equations (5) and (6), if along with state s the time of context change, i.e., ki is also
treated as a state variable, then because ki is not observable, we obtain a POMDP formu-
lation. Thus, the state of this new POMDP formulation, denoted as s̃ is composed of two
components. The first being the original state s and the other being the context change
epoch ki . Thus, s̃ = (s,ki ). Such a formulation requires that non-stationary environment
conditions be solved using POMDP solution tools. These solution tools are scarce, owing to
the complexity of the problem (see Reference [68] for details). However, recent advances in
POMDP solution techniques give promising directions for further research [29, 48].
• RLCD [18] does not require apriori knowledge about the number of environment contexts

and the context change pattern, but is highly memory intensive, since it stores and updates
estimates of transition probabilities and rewards corresponding to all detected contexts.
• Reference [6] is a model-based algorithm and hence it is impossible to use it when model

information cannot be obtained. However, this algorithm can be utilized in model-based RL.
But certain practical issues limit its use even in model-based RL. One is that pattern of model
changes needs to be known apriori. Additionally, its two-threshold switching strategy is
dependent on CUSUM statistic for change detection and more importantly on the threshold
values chosen. Since [6] does not provide a method to pre-fix suitable threshold values, it
needs to be always selected by trial and error. This is impossible to do, since it will depend
on the reward values, sample paths, and so on.
• Extensive experiments while assessing the two threshold switching strategy put forth the fol-

lowing issue. This issue is with reference to Equation (8), where the fraction
P

πi
j (st+1 |st ,πi (at ))

P
πi
i (st+1 |st ,πi (at ))

is computed. Suppose for the policy πi it so happens that Pπi

j (st+1 |st ,πi (at )) =

Pπi

i (st+1 |st ,πi (at )) and optimal policy of Pj is πj � πi , we will have
P

πi
j (st+1 |st ,πi (at ))

P
πi
i (st+1 |st ,πi (at ))

= 1

and SRt will grow uncontrollably and cross every pre-fixed threshold value. Thus, in this
normal case itself, the detection fails, unless threshold value if pre-fixed with knowledge of
the changepoint! Thus, Reference [6] is not practically applicable in many scenarios.
• RUQL [1] faces same issues as QL—it can learn optimal policies for only one environment

model at a time and cannot retain the policies learnt earlier. This is mainly because both QL
and RUQL update the same set of Q values, even if environment model changes. Further,
QL and RUQL cannot monitor changes in context—this will require some additional tools
as proposed by Reference [52]. The Context QL method retains the policies learnt earlier in
the form of Q values for all contexts observed. This eliminates the need to re-learn a policy
leading to better sample efficiency. This sample efficiency is however attained at the cost of
memory requirement—Q values need to be stored for every context and hence the method
is not scalable.
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Table 1. A Summary of Current Solution Approaches for Non-stationary Environments

Algorithm
Decision Model Information Mathematical Policy
Horizon Requirements Tool Used Retention

CECE [30] Finite Model-based
Clustering and

Classification
—

UCRL2 [32] Finite Model-based Confidence Sets —
Variation-aware UCRL2 [51] Finite Model-based Confidence Sets —

MD2 [19] Finite Partially Model-based Online learning —
FTL [38] Finite Model-based Online learning —

Hidden-mode MDP [14, 15] Infinite Model-based Multiple modes Yes
RLCD [18] Infinite Model-based Error score Yes

Extension of RLCD [28] Infinite Model-based Change detection Yes
TTS [6] Infinite Model-based Change detection —

Context QL [52] Infinite Model-free Change detection Yes
RUQL [1] Infinite Model-free Step-size manipulation No

Q-FPL [77] Infinite Model-free Online learning Yes
RATS [37] Infinite Model-free Decision tree search Yes

The prior approaches discussed in this section are summarized in Table 1. The columns assess
decision horizon, model information requirements, mathematical tools used and policy retaining
capability. A “-” indicates that the column heading is not applicable to the algorithm. In the next
section, we describe works in related areas that are focussed on learning across different tasks or
using experience gained in simple tasks to learn optimal control of more complex tasks. We also
discuss how these are related to the problem we focus on.

6 RELATED AREAS

6.1 Continual Learning

Continual learning algorithms [54] have been explored in the context of deep neural networks.
However, it is still in its nascent stage in RL. The goal in continual learning is to learn across
multiple tasks. The tasks can probably vary in difficulty, but mostly they are the same problem
domain. For example, consider a grid world task, wherein the RL agent must reach a goal position
from a starting position by learning the movements possible, any forbidden regions, and so on.
Note that the goal position matters in this task, since the agent learns to reach a given goal position.
If the goal position changes, then it is a completely new task for the RL agent, which now has to
find the path to the new goal position. Thus, both tasks though being in the same problem domain
are different. When the RL agent has to learn the optimal policy for the new grid world, it should
make sure to not forget the policy for the old task. Hence, continual learning places emphasis on
resisting forgetting [54].

An agent capable of continual, hierarchical, incremental learning and development

(CHILD) is proposed in Reference [60]. This work introduces continual learning by stating the
properties expected out of such a RL agent and combines temporal transition hierarchies

(TTH) algorithm with QL. The TTH method is a constructive neural network-based approach
that predicts probabilities of events and creates new neuronal units to predict these events and
their contexts. This method updates the weights, activations of the existing neuronal units and
also creates new ones. It takes as input the reward signal obtained in the sample path. The out-
put gives the Q values, which are further utilized to pick actions. This work provides extensive
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experimental results on grid world problems where learning from previous experience is seen to
outperform learning from scratch. The numerical experiments also analyze TTH’s capability of
acquiring new skills, as well as retaining learnt policies.

Reference [33] derives motivation from synaptic plasticity of human brain, which is the ability
of the neurons in the brain to strengthen their connections with other neurons. These connec-
tions (or synapses) and strengths form the basis of learning in brain. Further, each of the neurons
can simultaneously store multiple memories, which implies that synapses are capable of storing
connection strengths for multiple tasks! Reference [33] intends to replicate synaptic plasticity in
neural network architectures used as function approximators in RL. For this, the authors use a
biologically plausible synaptic model [8]. According to this model, the synaptic weight at time t is
dependent on a weighted average of the history of it’s modifications upto time t . This is continu-
ous in time, but can be approximated using a particular chain model of N communicating dynamic
variables denoted as {дi,i+1 : 1 ≤ i ≤ N }. Each of these variables is dependent on the values of
its immediate neighbouring values. Thus, дi is modified using values of дi+1 and дi−1. The actual
synaptic value is read off from the first variable (i.e., д1) in the chain.

This chain model, which gives the synaptic weight at current time by accounting for all previous
changes, is incorporated to tune the Q values and parameters of the neural networks. In case of Q-
learning, for each state-action pair, the dynamic variables in the chain are the multiple Q-values of
the pair. Thus, the chain model encodes Q-values at different time-scales. Similarly for large state-
action space, neural network architectures can be again encoded using the chain model. Here, each
of the parameters of the network is modeled using the chain. Thus, if the number of parameters is
M and a N -variable chain model is used, then the complexity of the network shoots up toO (MN ).
That is, the number of parameters to be tuned will be O (MN ). The advantage of using the chain
model is that when multiple tasks are to be learned, the neural networks modeled using the chain
model learn fast and reach optimal reward levels quite soon, when compared to vanilla deep Q-

networks (DQN) [46]. However, since a single network is used to learn, policy retention is not
possible and the RL agent equipped with the chain modeled network has to re-learn from scratch
everytime the environment changes.

Policy consolidation-based approach [34] is developed to tackle forgetting of policies. It op-
erates on the same synaptic model as Reference [33], but consolidates memory at the policy
level. Policy consolidation means that the current behavioural policy is distilled into a cascade of
hidden networks that record policies at multiple timescales. As seen in Reference [33], each neu-
ral network parameter is modeled using a N -variable chain model. If we take the kth variable of
all chains, then these parameters itself form a neural network. Hence, in this manner, the neural
network modeled using the chain model, gives rise to N policies. These recorded policies affect
the behavioural policy by feeding into the policy network. The distance between the parameters
of two such networks can be used as a substitute for the distance between policies (represented by
the networks). This substitute measure is also incorporated in the loss function used for training
the actual policy network. This is known as “policy consolidation.” Similar to Reference [33], the
complexity of Reference [34] is alsoO (MN ). Also, the smoothening of neural network parameters
achieved by multi-timescale recording helps in convergence of the policy network.

The CHILD [60] method is akin to RLCD [18] and Context QL [52], both of which also have sep-
arate data structures for each model. Thus, in combination with change detection, the CHILD algo-
rithm can be used for dynamically varying environments as well. Developing biologically inspired
algorithms [33, 34] is a novel idea. This has been also explored in many areas in supervised learn-
ing as well. However, to develop robust performance that is reliable, adequate experimentation
and theoretical justifications is needed. The above works lack this and at best can be considered
as just initial advancements in this stream of work.
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6.2 Learning to Learn: Meta-learning Approaches

Meta-learning as defined in Section 1 involves reusing experience and skills from earlier tasks to
learn new skills. If RL agents must meta-learn, then we need to define what constitutes experience
and what is the previous data that is useful in skill development. Thus, we need to understand
what constitutes meta-data and how to learn using meta-data. Most of the prior works are targeted
toward deep reinforcement learning (DRL), where only deep neural network architectures are
used for function approximation of value functions and policies.

A general model-agnostic meta-learning algorithm is proposed in Reference [21]. The algorithm
can be applied to any learning problem and model that is trained using a gradient-descent proce-
dure, but is mostly tested on deep neural architectures, since their parameters are trained by back
propagating the gradients. The main idea is to get hold of an internal representation in these ar-
chitectures that is suitable for a wide variety of tasks. Further, using samples from new tasks, this
internal representation (in terms of network parameters) is fine-tuned for each task. Thus, there is
no “learning from scratch,” but learning from a basic internal representation is the main idea. The
assumptions are that such representations are functions of some parameters and the loss function
is differentiable w.r.t. those parameters. The method is evaluated on classification, regression and
RL benchmark problems. However, it is observed by Reference [43] that the gradient estimates of
MAML have high variance. This is mitigated by introducing surrogate objective functions which
are unbiased.

A probabilistic view of MAML is given by Reference [2]. A fixed number of trajectories from
a task T and according to a policy parameterized by θ is obtained. The loss function defined on
these trajectories is then used to update the task-specific parameters ϕ. This is carried out using
the gradient of the loss function, which is obtained from either policy gradient [69] or TRPO [63].
The same formulation is extended to non-stationary settings where Reference [2] assumes that
tasks themselves evolve as a Markov chain.

Learning good directed exploration strategies via meta-learning is the focus in Reference [27].
The algorithm developed by the authors, known as MAESN, uses prior experience in related tasks
to initialize policies for new tasks and also to learn appropriate exploration strategies as well. This
is in comparison to Reference [21], where only policy is fine tuned. The method assumes that
neural network parameters are denoted θ and per-task variational parameters are denoted as ωi ,
1 ≤ i ≤ N , where N is the number of tasks. On every iteration through the task training set, N
tasks are sampled from this training set according to a distribution ρ. For a task, the RL agent gets
state and reward samples. These are used to update the variational parameters. Further, after the
iteration, θ is updated using TRPO [63] algorithm. Numerical experiments for MAESN are carried
out on robotic manipulation and locomotion tasks.

6.3 Remarks

The continual learning and meta-learning approaches discussed here are summarized in Table 2.
We make some additional remarks here.

• We would like to compare continual learning algorithms with approaches in Section 5. Algo-
rithms like References [1, 51] do not resist catastrophic forgetting, because training on new
data quickly erases knowledge acquired from older data. These algorithms restart with a
fixed confidence parameter schedule. In comparison to this, Reference [52] adapts Q-learning
for non-stationary environments. It resists catastrophic forgetting by maintaining separate
Q values for each model. This work provides empirical evidence that policies for all models
are retained. However, there are issues with computational efficiency and the method needs
to be adapted for function-approximation-based RL algorithms.
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Table 2. Continual Learning and Meta-learning Approaches

Genre Mathematical Tool Used Policy Retention

Continual Learning
Temporal Transition Hierarchies Yes
Benna-Fusi Plasticity Model [33] No

Policy consolidation [34] No

Meta-Learning
Shared neural network layers [21] Yes

Task distribution as Markov chain [2] No
Exploration strategy tuning [27] Yes

• Explainability of generalization power of deep neural network architectures is still an open
problem. The meta-RL approaches are all based on using these architectures. Thus, the per-
formance of these algorithms can only be validated empirically. Also, most of the works de-
scribed in this section lack theoretical justification. Only the problem formulation involves
some mathematical ideas, but none of the results are theoretical in nature. However, applied
works like Reference [31] can be encouraged, but only if such works provide some perfor-
mance analysis of meta-RL algorithms.

7 APPLICATION DOMAINS

Reinforcement learning finds its use in a number of domains—for example, in operations re-
search [62], games [65], robotics [35], and intelligent transportation and traffic systems [76]. How-
ever, in most of the prior works in these applications, the assumption is that the environment
characteristics and dynamics remain stationary. The number of prior works developing
application-specific non-stationary RL algorithms is limited. This is due to the fact that adapting
RL to problems with stationary environments is the first simple step toward more general RL con-
trollers, for which scalability is still an issue. Only recent advances in deep RL [22] has improved
their scalability to large state-action space MDPs. Improved computation power and hardware,
due to advances in high-performance computing, has led to better off-the-shelf software packages
for RL. Advancements in computing has led to better implementations of RL—these use deep neu-
ral architectures [22] and parallelization [39, 47] for making algorithms scalable to large problem
sizes. Single-agent RL algorithms are now being deployed in a variety of applications owing to the
improved computing infrastructure. One would also expect that easing of the stationary assump-
tions on RL environment models would also further increase the need for high computation power.
But, due to these advances in computing infrastructure, there is hope to extend RL to applications
where non-stationary settings can make the system inefficient (unless there is adaptation).

In this section, we survey the following representative application domains: transportation and
traffic systems, cyber-physical systems, digital marketing and inventory pricing, recommender
systems and robotics. In these representative domains, we cover works that propose algorithms to
specifically deal with dynamically varying environments. Most of these prior works are customized
to their respective applications.

7.1 Transportation and Traffic Systems

Traffic systems are either semi-automated or fully automated physical infrastructure systems that
manage the vehicular traffic in urban areas. These are installed to improve flow of vehicular traffic
and relieve congestion on urban roads. With the resurgence of AI, these systems are being fully
automated using AI techniques. AI-based autonomous traffic systems use computer vision, data
analytics and machine learning techniques for their operation. Improvement in computing power
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for RL has catapulted its use in traffic systems, and, RL-based traffic signal controllers are being
designed [52, 56, 61]. Non-stationary RL traffic controllers are proposed by References [52, 61].

Soilse [61] is a RL-based intelligent urban traffic signal controller (UTC) tailored to fluctuat-
ing vehicular traffic patterns. It is phase-based, wherein a phase is a set of traffic lanes on which
vehicles are allowed to proceed at any given time. Along with the reward feedback signal, the UTC
obtains a degree of pattern change signal from a pattern change detection (PCD) module. This
module tracks the incoming traffic count of lanes at a traffic junction. It detects a change in the
flow pattern using moving average filters and CUSUM [53] tool. When a significant change in traf-
fic density is detected, learning rates and exploration parameters are changed to facilitate learning.
Context QL [52], as described in Section 5, tackles non-stationary environments. This method is
evaluated in an autonomous UTC application. The difference in the performance of QL [74] and
Context QL is highlighted by numerical experiments [52]. This difference indicates that designing
new methods for varying operating conditions is indeed beneficial.

Intelligent transportation systems (ITS) employ information and communication technolo-
gies for road transport infrastructure, mobility management and for interfaces with other modes
of transport as well. This field of research also includes new business models for smart transporta-
tion. Urban aerial transport devices like unmanned aerial systems (UAS) are also part of ITS.
For urban services like package delivery, law enforcement and outdoor survey, an UAS is equipped
with cameras and other sensors. To carry out these tasks efficiently, UAS takes photos and videos
of densely human populated areas. Though information gathering is vital, there are high chances
that the UAS intrudes privacy. Reference [3] considers this conflicting privacy-information crite-
ria. The problem is that UAS may fly over areas that are densely populated and take pictures of
humans in various locations. Though the UAS can use human density datasets to avoid densely
populated locations, human concentration is still unpredictable and may change depending on
weather, time of day, events, and so on. Thus, the model of human population density tends to be
non-stationary. Reference [3] proposes a model-based RL path planning problem that maintains
and learns a separate model for each distribution of human density.

7.2 Cyber-Physical Systems and Wireless Networks

Cyber-physical systems (CPS) are integration of physical processes and their associated net-
working and computation systems. A physical process, for example, a manufacturing plant or
energy plant, is controlled by embedded computers and networks, using a closed feedback loop,
where physical processes affect computation and vice-versa. Thus, autonomous control forms an
innate part of CPS. Many prior works address anomaly detection in CPS [50], since abnormal
operation of CPS forces the controllers to deal with non-stationary environments.

CPS security [16] also arises from anomaly detection. The computation and networking systems
of CPS are liable to denial of service (DoS) and malware attacks. These attacks can be unearthed
only if sensors and/or CPS controller can detect anomalies in CPS operation. In this respect, [16]
proposes a statistical method for operational CPS security. A modification of the Shiryaev-Roberts-
Pollak procedure is used to detect changes in operation variables of CPS, which can detect DDoS
and malware attacks.

The data from urban infrastructure CCTV networks can be leveraged to monitor and detect
events like fire hazards in buildings, organized marathons on urban roads, crime hot-spots, and
so on. Reference [7] uses CCTV data along with social media posts data to detect events in an
urban environment. This multimodal dataset exhibits change in properties before, after and during
the event. Specifically, Reference [7] tracks the counts of social media posts from locations in the
vicinity of a geographical area, counts of persons and cars on the road. These counts are modeled as
Poisson random variables and it is assumed that before, after and during a running marathon event,

ACM Computing Surveys, Vol. 54, No. 6, Article 127. Publication date: July 2021.



A Survey of Reinforcement Learning Algorithms for Dynamically Varying Environments 127:19

the mean rates of the observed counts changes. A hidden Markov model (HMM) is proposed
with the mean count rates as the hidden states. This HMM is extended to stopping time POMDP
and structure of optimal policies for this event detection model is obtained.

[5] considers improving user experience in cellular wireless networks by minimizing Age of

Information metric (AoI). This metric measures the freshness of information that is transmitted
to end users (“user equipments”) in a wireless cellular network. A multi-user scheduling problem
is formulated that does not restrict the characteristics of the wireless channel model. Thus, a non-
stationary channel model is assumed for the multi-user scheduling problem and the objective is
to minimize transmission of stale information from the base stations to the user equipments. For
this, an infinite-state, average-reward MDP is formulated. Optimizing this MDP is infeasible and
hence this work finds a simple heuristic scheduling policy that is capable of achieving the lowest
AoI.

7.3 Digital Marketing and Inventory Pricing

Digital marketing and inventory pricing are connected strategies for improving sale of goods and
services. In current times, many online sites complement inventory pricing with digital marketing
to attract more buyers and hence improve sales. Digital marketing moves away from conventional
marketing strategies in the sense that it uses digital technologies like social media, websites, dis-
play advertising, and so on, to promote products and attract customers. Thus, it has more avenues
for an improved reach when compared to conventional marketing. Inventory pricing is concerned
with pricing the goods/services that are produced/developed to be sold. It is important that to
gain profits, the manufacturer prices products/services according to the uncertain demand for the
product, the production rate, and so on.

A pricing policy for maximizing revenue for a given inventory of items is the focus of Refer-
ence [59]. The objective of the automated pricing agent is to sell a given inventory before a fixed
time and maximize the total revenue from that inventory. This work assumes that the demand dis-
tribution is unknown and varies with time. Hence, this gives rise to non-stationary environment
dynamics. This work employs QL with eligibility traces [68] to learn a pricing policy.

Reference [70] studies off-policy policy evaluation method for digital marketing. The users
of an online product site are shown customized promotions. Every such marketing promotion
strategy uses the customer information to decide which promotions to display on the website.
Reference [70] proposes a MDP model with user information as the state and the promotions to be
displayed as the action. The reward gained from promotions is measured by tracking the number
of orders per visit of the customer. The proposed method is shown to reduce errors in policy
evaluation of the promotion strategy.

7.4 Recommender Systems

Recommender systems/platforms are information filtering systems that predicts the preferences
that a user would assign to a product/service. These systems have revolutionized online market-
ing, online shopping and online question-answer forums, and so on. Their predictions are further
aimed at suggesting relevant products, movies, books etc to online users. These systems now form
the backbone of digital marketing and promotion. Many content providers like Netflix, YouTube,
Spotify, Quora, and so on, use them as content recommenders/playlists.

A concept drift-based model management for recommender systems is proposed by Refer-
ence [40]. This work utilizes RL for handling concept drift in supervised learning tasks. Supervised
learning tasks see shifts in input-label correspondence, feature distribution due to ever changing
dynamics of data in real world. Each feature distribution and input-label correspondence is rep-
resented as a model and whenver there is a shift in the underlying data, this model needs to be
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retrained. A MDP is formulated for taking decisions about model retraining, which decides when
to update a model. This decision is necessary, because the model of a given system influences
the ability to act upon the current data and any change in it will affect its influence on current
as well as future data. If new models are learned quickly, then the learning agent may be sim-
ply underfitting data and wasting computational resources on training frequently. However, if the
agent delays model retraining, then the prediction performance of model might decrease drasti-
cally. Thus, given the current model, current data, the MDP-based RL agent decides when and how
to update the model. A similar work using variants of DQN [46] is proposed in Reference [13].

7.5 Robotics

Robotics is the design, development, testing, operation and the use of robots. Its objective is to build
machines that are intelligent, can assist humans in various tasks and also perform tasks that are
beyond human reach. Robots can also be designed to provide safety to human operations. Robots
are now being utilized in outer space missions, medical surgery, meal delivery in hospitals [49], and
so on. However, often robots need to adapt to non-stationary operating conditions—for example,
a ground robot/rover must adapt its walking gait to changing terrain conditions [44] or friction
coefficients of surface [41].

Robotic environments characterized by changing conditions and sparse rewards are particu-
larly hard to learn, because, often, the reinforcement to the RL agent is a small value and is also
obtained at the end of the task. Reference [41] focuses on learning in robotic arms where object
manipulation is characterized by sparse-reward environments. The robotic arm is tasked with
moving or manipulating objects that are placed at fixed positions on a table. In these tasks, often,
dynamic adaptation to the surface friction and changed placement of objects on the table is tough.
Reference [41] adapts the TRPO algorithm for dealing with these changing operating conditions.
The robotic arm RL agent is modeled as a continuous state-action space MDP. In a continuous state-
action space setting, the policy is parameterized by Gaussian distribution. Reference [41] proposes
a strategy to adjust the variance of this Gaussian policy to adapt to environment changes.

Hexapod locomotion in complex terrain is the focus of Reference [4]. This approach assumes
that the terrain is modeled using N discrete distributions and each such distribution captures
the difficulties of that terrain. For each such terrain, an expert policy is obtained using deep RL.
Conditioned on the state history, a policy from this set of expert policies is picked leading to an
adaptive gait of hexapod.

7.6 Remarks

All prior works discussed in this section are specifically designed for their respective applications.
For example, Soilse [61] predicts the change in lane inflow rates and uses this to infer whether
environment context has changes or not. This technique is limited to the traffic model and more
so if lane occupation levels are the states of the model. Similar is the case with a majority of
the other works as well. It is tough to extend the above works to more general settings. Some
works that are generalizable are References [3, 4, 41, 52, 70]. All these works are summarized in
Table 3. The methods suggested in these works can be adapted to other applications as well,
provided some changes are incorporated. For example, Reference [52] should be extended to
continuous state-action space settings by incorporating function approximation techniques. This
will improve its application to tougher problems. Reference [3] utilizes Gaussian process tool to
build a model-based RL path planner for UAS. This can be extended to model-free settings using
Reference [71] or other works on similar lines. Extending Reference [70] to policy improvement
techniques like actor-critic [36] and policy gradient [69] is also a good direction of future work.

ACM Computing Surveys, Vol. 54, No. 6, Article 127. Publication date: July 2021.



A Survey of Reinforcement Learning Algorithms for Dynamically Varying Environments 127:21

Table 3. Summary of Works Specific to Applications

Application Domain Specific Application RL Algorithm
Mathematical

Tool Used

Traffic Systems
Signal Control [61] QL CUSUM

UAS path planning [3] Model-based Confidence Sets

Cyber-Physical Systems
WSN [50] — Change Detection

CCTV Networks [7] POMDP Model-based HMM

Digital Marketing
Pricing [59] QL —

Ad placement [70] Model-based —

Robotics
Object manipulation [41] TRPO

Policy distribution

adjustment
Hexapod Locomotion [4] DQN Expert Policies

The RL algorithm used is indicated in the third column and the specific mathematical tool used for tackling changing

environments is indicated in the last column.

8 FUTURE DIRECTIONS

The previous sections of this survey introduced the problem, presented the benefits and challenges
of non-stationary RL algorithms, as well as introduced prior works. This survey article also cate-
gorized earlier works. In this section, we describe the possible directions in which the prior works
can be enhanced. Following this, we also enumerate challenges that are not addressed by the prior
works and that warrant our attention.

Prior approaches can be improved in the following manner:

• The regret-based approaches described in Section 5.1 are useful in multi-armed bandit-type
settings where efficient learning with minimal loss is the focus. Since these are not geared
toward finding good policies, these works do not prove to be directly useful in RL settings,
where control is the main focus. However, the ideas they propose can be incorporated to
guide initial exploration of actions in approaches like References [1, 52].
• Relaxing certain theoretical assumptions like non-communicating MDPs [23], multi-chain

MDPs [67], and so on, can further improve the applicability of regret-based approaches in
control-based approaches.
• Most of the model-based and model-free approaches in Section 5 are not scalable to large

problem sizes. This is because each of these methods either consume lot of memory for stor-
ing estimates of model information [14, 15, 17–19, 28, 30, 38, 51], or consume compute power
for detecting changes [6, 52]. Reference [37] uses compute power for building large decision
trees as well. These phenomenal compute power and memory requirements render these ap-
proaches to be non-applicable in practical applications that typically function with restricted
resources. An option is to offload the compute and memory power requirements onto a cen-
tral server. Another option is to incorporate function approximation in the representation
of value functions and policies.
• Tools from statistics—like, for example, quickest change detection [66], anomaly detection

can prove to be indispensable in the problem of non-stationary RL. Also introducing memory
retaining capacity in deep neural network architectures will can be a remedy for resisting
catastrophic forgetting.
• References [6, 52, 61] assume that the pattern of environment changes is known and can be

tracked. However, practically it is often difficult to track such changes. For this, tracking [26]
methods can be used.
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Next, we discuss additional challenges in this area.

• Need to develop algorithms that are sensitive to changes in environment dynamics and adapt
to changing operating conditions seamlessly. Such algorithms can be extended to continual
RL settings.
• In the literature, there is a lack of Deep RL approaches to handle non-stationary environ-

ments, which can scale with the problem size. Meta learning approaches [2, 21, 27, 43] exist,
but these are still in the initial research stages. These works are not sufficiently analyzed and
utilized. More importantly, these are not explainable algorithms.
• Some applications like robotics [35] create additional desired capabilities like for exam-

ple, sample efficiency. When dealing with non-stationary environment characteristics, the
number of samples the RL agent obtains for every environment model can be quite limited.
In the extreme case, the agent may obtain only one sample trajectory, which is observed in
robotics arm manipulation exercises. In such a case, we expect the learning algorithm to be
data efficient and utilize the available data for multiple purposes—like learn good policies as
well as detect changes in environment statistics.
• While encountering abnormal conditions, a RL autonomous agent might violate safety con-

straints, because the delay in efficiently controlling the system in abnormal conditions can
lead to some physical harm. For example, in self-driving cars, a sudden or abrupt change
in weather conditions can lead to impaired visual information from car sensors. Such sce-
narios mandate that the RL agent, though still learning new policies, must keep up with
some nominal safe bahaviour. Thus, this can lead to works that intersect safe RL [24] and
non-stationary RL algorithms.

9 CONCLUSIONS

RL in dynamically varying environments is a young, growing field with many research attempts
targeting specific applications like robotics, autonomous driving, and so on. It mainly integrates
results from basic Markov decision process theory, statistics, control, and (of late) neural networks.
The promise of this niche research area is to support seamless learning across various environment
models and also to build onto theory that will prove to be useful in multi-agent RL (MARL).
MARL is also dependent on the area we focus on in this work, because multiple RL agents interact
in MARL and non-stationarity occurs as a result of agents learning simultaneously.

In this survey, we have discussed in detail the problem definition for this niche area, problem
formulation, and many prior approaches to deal with the associated issues. Algorithms for finite
horizon, infinite horizon were discussed. This categorization was essential, because, as can be
observed clearly from Section 5, the objective of these categories are quite different from each
other. We also covered related areas like meta-learning and continual learning as these areas have
very similar problem definitions. Thus, it is worthwhile to explore related areas as well.

As discussed in Section 8, many avenues are open to advance the research in this area. Also, a
wide customization of algorithms to applications will be an important way forward as well.
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