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ABSTRACT
Group-fairness in classification aims for equality of a predictive

utility across different sensitive sub-populations, e.g., race or gen-

der. Equality or near-equality constraints in group-fairness often

worsen not only the aggregate utility but also the utility for the least

advantaged sub-population. In this paper, we apply the principles of

Pareto-efficiency and least-difference to the utility being accuracy,

as an illustrative example, and arrive at the Rawls classifier that
minimizes the error rate on the worst-off sensitive sub-population.

Our mathematical characterization shows that the Rawls classifier
uniformly applies a threshold to an ideal score of features, in the

spirit of fair equality of opportunity. In practice, such a score or

a feature representation is often computed by a black-box model

that has been useful but unfair. Our second contribution is practi-

cal Rawlsian fair adaptation of any given black-box deep learning

model, without changing the score or feature representation it

computes. Given any score function or feature representation and

only its second-order statistics on the sensitive sub-populations,

we seek a threshold classifier on the given score or a linear thresh-

old classifier on the given feature representation that achieves the

Rawls error rate restricted to this hypothesis class. Our technical

contribution is to formulate the above problems using ambiguous

chance constraints, and to provide efficient algorithms for Rawlsian

fair adaptation, along with provable upper bounds on the Rawls

error rate. Our empirical results show significant improvement over

state-of-the-art group-fair algorithms, even without retraining for

fairness.

CCS CONCEPTS
• Computing methodologies→ Supervised learning by clas-
sification; • Theory of computation→ Machine learning theory;
• Social and professional topics → Race and ethnicity; Gender.
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1 INTRODUCTION
Algorithmic decisions and risk assessment tools in real-world ap-

plications, e.g., recruitment, loan qualification, recidivism, have

several examples of effective and scalable black-box models, many

of which have received strong criticism for exhibiting racial or gen-

der bias [5, 6]. Anti-discrimination laws and official public policy

statements [1, 2, 25, 28] often explicitly demand that such black-box

models be fairness-compliant.

Fair classification is an important problem in fairness-aware

learning. Previous work on fair classification has largely focused on

group-fairness or classification parity, which means equal or near-

equal predictive performance on different sensitive sub-populations,

e.g., similar accuracy [9, 13, 29], statistical parity [15], equalized

odds [20], similar false positive rates [20]. A popular objective in

group-fair classification is accuracy maximization subject to equal

or near-equal predictive performance on different sensitive sub-

populations.

What makes any fairness objective well founded? In this pa-

per, we consider the basic principles of Pareto-efficiency and least-
difference, following the work of Rawls on distributive justice [31–

33]. A Pareto-efficient solution maximizes some aggregate utility

over the entire population. Thus, it is not possible to improve the

performance on any one sub-population without sacrificing perfor-

mance on another sub-population beyond what a Pareto-efficient

solution gives. The least-difference principle allows certain inequal-

ities as fair, if reducing these inequalities either adversely affects

the others or does not uplift the worst-off. For example, a group-

fair solution that equalizes utilities across different sensitive sub-

populations satisfies the least-difference principle vacuously be-

cause it has no inequality. Therefore, typical group-fair algorithms

maximize accuracy subject to group-fairness constraints ensuring

near-equal utilities for different sensitive sub-populations. However,

none of the above solutions satisfy both the Pareto-efficiency and
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least-difference principles simultaneously. Do there exist solutions

that satisfy both these principles simultaneously?

The most accurate classifier is the Bayes classifier that predicts

using a uniform threshold of 1/2 applied to the true outcome proba-

bility of every example. Previous work provides similar characteri-

zation of optimal group-fair classifiers as threshold classifiers on

some ideal score [9–11, 29]. Do such threshold-on-score characteri-

zations hold for Rawlsian fairness too?

Most black-box models in practice are often optimized for accu-

racy, and they output a risk score or a feature representation along

with their prediction. Even when an existing model is found to be

biased during a fairness audit, retraining a different fair model is

difficult on proprietary or private training data. Algorithmic ideas

to develop group-fair classifiers that maximize accuracy subject

to group-fairness constraints require estimates of true outcome

probability [9, 29], which are intractable with finite samples. Most

post-processing methods for group-fairness also require estimates

of the true outcome probabilities [20, 27, 30]. Secondly, existing

group-fairness toolkit [9] can use a given risk score as an input

feature and adapt for group-fairness but the resulting group-fair

classifier does not predict using a threshold on that same risk score.

Is fair adaptation possible without changing the risk scores or fea-

ture representations?

The cost or benefit of a decision for an individual depends on the

protected attribute (e.g., race, gender, age) as well as the true class

label. For example, an underprivileged person who qualifies for a

loan and successfully repays, has a greater utility than a privileged

person who qualifies for the same loan and repays, and also greater

utility than another underprivileged person who qualifies but does

not repay. Many group-fair classifiers with high and near-equal

accuracy on different races or genders can have poor accuracy on

either the positive or negative class therein. This typecasting is

exacerbated when there is class imbalance within a group. There-

fore, we consider the sensitive sub-populations defined by group

memberships (e.g., race, gender, age) as well as true class labels.

1.1 Our results
In Section 3, we define the Rawls classifier as an optimal solution to

an objective that simultaneously satisfies both the Pareto-efficiency
and least-difference principles in fair classification. When the classi-

fication utility is quantified by accuracy, the Rawls classifier mini-

mizes the error rate on the worst-off sensitive sub-population over

all classifiers; we call its optimal value as the Rawls error rate (see
Definition 3). The max-min objective is well-known in social choice

theory for equitable distribution of goods [19, 35]; we provide a for-

mulation so that it applies to fair classification. We mathematically

characterize the Rawls classifier and the Rawls error rate (Theorem
6). Moreover, our additional observations in Subsection 3.2 show

that the characterization of the Rawls classifier reveals interest-

ing, non-trivial properties about its most disadvantaged sensitive

sub-populations.

Our mathematical characterization of the Rawls classifier shows
that it uniformly applies a threshold to a certain ideal score of fea-
tures, whose description requires the underlying data distribution

explicitly. We give a description of the Rawls classifier as a threshold
on an ideal score function given by a convex combination of signed

unveil functions, which quantify the likelihood of an individual

belonging to a sensitive sub-population given only the unprotected

attributes. Computing these unveil functions from a finite sam-

ple drawn randomly from an arbitrary underlying distribution is

intractable, a familiar obstacle encountered for exact implementa-

tion of the accuracy maximizing Bayes classifier and the optimal

group-fair classifier characterized in previous work [9, 29].

For Rawlsian fair adaptation of deep learning classifiers in prac-

tice, we consider the following formulation. Given a non-ideal score

function or a feature map computed by a black-box model, and only

its second-order statistics on the sensitive sub-populations, we seek

a threshold classifier on the given non-ideal score or a linear thresh-

old classifier on the given feature map that achieves the Rawls error

rate in this restricted hypothesis class. In Section 4, we formulate

the above problems using ambiguous chance constraints, and pro-

vide efficient algorithms for fair adaptation, along with provable

upper bounds on the Rawls error rate in the restricted setting. In

Subsection 4.2, we show that, when the feature map distributions

conditioned on each sensitive sub-population are Gaussian and

we seek a linear threshold classifier, then we can provably and

efficiently achieve the restricted Rawls error rate (Theorem 13).

In Section 5, we show that our Rawlsian fair adaptation for-

mulation above is readily applicable to any black-box model that

computes a score function or a feature representation. For example,

we train a model to maximize classification accuracy on a standard

dataset used in text classification for toxicity. Our Rawlsian adap-

tation using its label-likelihood scores and feature representation

does not require retraining a different fair model, and shows a sig-

nificant improvement in the error rates on the worst-off sensitive

sub-populations. We also show a similar improvement over real-

world and synthetic data sets, when compared against best known

post-processing fairness methods [27] and group-fair classifiers [9]

as our baselines.

1.2 Related work
In the context of fair classification, recent work by Hashimoto et al.

[21] studies Rawlsian fairness for empirical risk minimization, and

observes that Rawlsian fairness prevents disparity amplification

over time, which may be unavoidable if we insist on near-equal

group-wise performance as a group-fairness constraint. Recent

work has also looked at Rawlsian theory to study the veil of ig-

norance and inequality measurements [18, 22, 23, 34], contextual

bandits [26], fair meta-learning [37], envy-free classification [24].

Recent work has also looked at Rawlsian theory to study fairness

in different settings of machine learning such as the veil of ignorance,
moral luck-vs-desert, difference principle etc. to study fair equality

of opportunity, inequality measurements, bandit problems [18, 22,

23, 34]. Our max-min objective is a prioritarian objective based only
on the Pareto-efficiency and the least-difference principles from

distributive justice.

Previous work has also proposed different approaches for post-

processing to achieve group-fairness on black-box models [3, 7, 16,

17, 20, 27]. However, they do not address fair adaptation of black-

box deep learning models without changing their scores or feature

representation similar to our work.
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2 NOTATION
LetX be the space of input features, {0, 1} be the binary class labels,
and [𝑝] = {1, 2, . . . , 𝑝} be the set of protected attributes, e.g., race,

gender, age. Any input data distribution corresponds to a joint

distribution D on X × {0, 1} × [𝑝]. Let (𝑋,𝑌, 𝑍 ) denote a random
element of X × {0, 1} × [𝑝] drawn from the joint distribution D.

Let 𝑝𝑖 𝑗 denote Pr (𝑌 = 𝑖, 𝑍 = 𝑗).

Definition 1. For any 𝑖 ∈ {0, 1}, 𝑗 ∈ [𝑝], define the sensitive
sub-population 𝑆𝑖 𝑗 ⊆ X × {0, 1} × [𝑝] as 𝑆𝑖 𝑗 = {(𝑥, 𝑖, 𝑗) : 𝑥 ∈ X}.

The utility of a decision often depends on the protected attribute

as well as the true label. This is implicitly considered in metrics

such as false positive rates over groups. Our definition of sensitive

sub-populations makes this more explicit.

Definition 2. For any 𝑖 ∈ {0, 1}, 𝑗 ∈ [𝑝], define the unveil
function [𝑖 𝑗 : X → R≥0 of the sensitive sub-population 𝑆𝑖 𝑗 as

[𝑖 𝑗 (𝑥) = Pr (𝑌 = 𝑖, 𝑍 = 𝑗 | 𝑋 = 𝑥) .

We define the normalized unveil function 𝑢𝑖 𝑗 : X → R≥0 as

𝑢𝑖 𝑗 (𝑥) = [𝑖 𝑗 (𝑥)/𝑝𝑖 𝑗 , where 𝑝𝑖 𝑗 = Pr (𝑌 = 𝑖, 𝑍 = 𝑗) .

We call 𝑢𝑖 𝑗 as the normalized unveil function because

E𝑋

[
[𝑖 𝑗 (𝑋 )
𝑝𝑖 𝑗

]
= 1, for all 𝑖 ∈ {0, 1}, 𝑗 ∈ [𝑝] .

Let D𝑖 𝑗 denote the conditional distribution for 𝑋 given the class

label 𝑌 = 𝑖 and the protected attribute 𝑍 = 𝑗 , and 𝑋𝑖 𝑗 denote a

random element of X drawn from D𝑖 𝑗 .

As is common in fairness literature, we denote a binary classifier

by a function 𝑓 : X → {0, 1}. Note that this subsumes both group-

aware as well as group-blind classifiers depending on whether the

protected attributes also appear in X or not.

3 THE RAWLS CLASSIFIER
A natural way to measure the cost of a binary classifier 𝑓 on the sen-

sitive sub-population 𝑆𝑖 𝑗 is by its error rate 𝑟𝑖 𝑗 (𝑓 ) = Pr (𝑓 (𝑋 ) ≠ 𝑌 | 𝑌 = 𝑖, 𝑍 = 𝑗).
Here are two well-known basic principles of efficiency and fair-

ness from distributive justice and social choice theory, when we

consider classification accuracy as utility.

(1) Pareto-efficiency principle:A classifier 𝑓 is Pareto-efficient,

if there exists some _ ∈ R2𝑝≥0 such that 𝑓 minimizes

∑
𝑖 𝑗 _𝑖 𝑗𝑟𝑖 𝑗 (𝑓 )

over all 𝑓 : X → {0, 1}. As a consequence, it is not possi-
ble to improve the performance on any one sub-population

without sacrificing performance on another sub-population.

(2) Least-difference principle: A classifier 𝑓 satisfies the least-

difference principle, if we have

��𝑟𝑖 𝑗 (𝑔) − 𝑟𝑘𝑙 (𝑔)
�� < ��𝑟𝑖 𝑗 (𝑓 ) − 𝑟𝑘𝑙 (𝑓 )

��
,

for any classifier 𝑔 and two sensitive sub-populations 𝑆𝑖 𝑗 and

𝑆𝑘𝑙 , then either 𝑟𝑎𝑏 (𝑔) > 𝑟𝑎𝑏 (𝑓 ), for some𝑎, 𝑏, ormax(𝑎,𝑏) 𝑟𝑎𝑏 (𝑔) ≥
max(𝑎,𝑏) 𝑟𝑎𝑏 (𝑓 ). In other words, we cannot uplift the worst-

off and reduce existing inequality without adversely affecting

others.

Let
ˆ𝑓 be the Bayes classifier that maximizes accuracy. Then

ˆ𝑓 mini-

mizes the total error

∑
𝑖 𝑗 𝑝𝑖 𝑗𝑟𝑖 𝑗 (𝑓 ) among all 𝑓 : X → {0, 1}, and

hence it is Pareto-efficient. However, the Bayes classifier
ˆ𝑓 can

violate the least-difference principle.

A group-fair classifier that equalizes false positive rates 𝑟0𝑗 (𝑓 )’s
for all 𝑗 , or false negative error rates 𝑟1𝑗 (𝑓 )’s for all 𝑗 , vacuously
satisfies the least-difference principle, assuming we restrict our-

selves to either only 𝑆0𝑗 ’s or only 𝑆1𝑗 ’s as sensitive sub-populations,

respectively. However, a group-fair solution or even a solution that

maximizes accuracy subject to near-equality group-fairness con-

straints is not necessarily Pareto-efficient. Insisting on equality

or near-equality often violates the principle of Pareto-efficiency

when the only way to achieve equality makes it worse but equal

for individual sensitive sub-populations.

Now we state our objective that defines the Rawls classifier, and

we will show later in this section that it satisfies both the Pareto-

efficiency and least-difference principles.

Definition 3. Given any joint distributionD onX× {0, 1} × [𝑝],
we define the Rawls classifier and the Rawls error rate, respectively, as

𝑓 ∗ = argmin

𝑓 :X→{0,1}
max

𝑖∈{0,1}, 𝑗 ∈[𝑝 ]
𝑟𝑖 𝑗 (𝑓 ),

𝑟∗ = min

𝑓 :X→{0,1}
max

𝑖∈{0,1}, 𝑗 ∈[𝑝 ]
𝑟𝑖 𝑗 (𝑓 ),

where 𝑟𝑖 𝑗 (𝑓 ) = Pr (𝑓 (𝑋 ) ≠ 𝑌 | 𝑌 = 𝑖, 𝑍 = 𝑗), which is the error rate
of 𝑓 on the sensitive sub-population 𝑆𝑖 𝑗 .

It is easy to see that the Rawls classifier satisfies the least-difference

principle. Any classifier 𝑔 that reduces existing inequalities from

𝑓 ∗ with adversely effects, i.e., keeping 𝑟𝑖 𝑗 (𝑔) ≤ 𝑟𝑖 𝑗 (𝑓 ), for all 𝑖, 𝑗 ,
must either leave the maximum error rate untouched. Otherwise,

it would contradict 𝑓 ∗ being the minimizer of max(𝑖, 𝑗) 𝑟𝑖 𝑗 (𝑓 ).
On the other hand, Pareto-efficiency of the Rawls classifier re-

quires a short proof (see Subsection 3.1). Interestingly, this also

helps in characterizing it as a threshold classifier on an ideal score
function.

Remark: Under reasonable assumptions on utility functions

and choice spaces in social choice theory, it is known that any

solution that satisfies Pareto-efficiency and least-difference prin-

ciples simultaneously must actually be a solution that maximizes

the minimum utility across participants [19, 35]. More specifically,

it is a lex-min solution, i.e., if there exist multiple solutions that

maximize the minimum utility across participants then a lex-min

solution maximizes the second minimum utility among them, and

then the third minimum utility and so on. However, in this paper,

we focus only on maximizing the minimum utility, or equivalently,

minimizing the maximum error rate.

We show that the error rate 𝑟𝑖 𝑗 (𝑓 ) of any binary classifier 𝑓

on its sensitive sub-population 𝑆𝑖 𝑗 can be expressed as a weighted

expectation of 𝑓 (𝑋 ), weighted by the normalized unveil function

𝑢𝑖 𝑗 (𝑋 ) of the sensitive sub-population 𝑆𝑖 𝑗 (see Definition 2). As a

consequence, each 𝑟𝑖 𝑗 (𝑓 ) is a linear function of 𝑓 , when the data

distribution D is fixed. This is a known observation already used

in previous work [9, 29].

Proposition 4. For any binary classifier 𝑓 : X → {0, 1}, its error
rate 𝑟𝑖 𝑗 (𝑓 ) on a sensitive sub-populations 𝑆𝑖 𝑗 equals

𝑟𝑖 𝑗 (𝑓 ) =
{
E𝑋

[
𝑓 (𝑋 ) 𝑢0𝑗 (𝑋 )

]
, for 𝑖 = 0,

1 − E𝑋
[
𝑓 (𝑋 ) 𝑢1𝑗 (𝑋 )

]
, for 𝑖 = 1,

where 𝑝𝑖 𝑗 = Pr (𝑌 = 𝑖, 𝑍 = 𝑗) and 𝑢𝑖 𝑗 (𝑥) the normalized unveil func-
tion of 𝑆𝑖 𝑗 (see Definition 2).
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For any binary classifier 𝑓 , we express its maximum error rate

𝑟𝑖 𝑗 (𝑓 ) over all sensitive sub-populations 𝑆𝑖 𝑗 as the maximum over

all possible convex combinations of 𝑟𝑖 𝑗 (𝑓 )’s. As a consequence,

max𝑖 𝑗 𝑟𝑖 𝑗 (𝑓 ) is also a linear function of 𝑓 , when the coefficients in

the optimal convex combination and the underlying data distribu-

tion D are fixed.

Proposition 5. For any binary classifier 𝑓 : X → {0, 1}, the
maximum error rate over all sensitive sub-populations 𝑆𝑖 𝑗 equals

max

𝑖∈{0,1}, 𝑗 ∈[𝑝 ]
𝑟𝑖 𝑗 (𝑓 )

= max∑
𝑖 𝑗 𝑐𝑖 𝑗 ≤1

𝑐𝑖 𝑗 ≥0, ∀𝑖 𝑗

E𝑋

𝑓 (𝑋 ) ©«
∑︁

𝑖∈{0,1}, 𝑗 ∈[𝑝 ]
(−1)𝑖𝑐𝑖 𝑗𝑢𝑖 𝑗 (𝑋 )ª®¬


+

∑︁
𝑗 ∈[𝑝 ]

𝑐1𝑗 .

3.1 Characterization of the Rawls classifier
Now we are ready to characterize the Rawls classifier. We char-

acterize the Rawls classifier as a threshold classifier on an ideal

score function that is expressed as a certain convex combination of

signed, normalized unveil functions 𝑢𝑖 𝑗 (𝑥)’s. Moreover, we show

that the non-zero coefficients in this convex combination actually

indicate the maximally disadvantaged or vulnerable sensitive sub-

populations 𝑆𝑖 𝑗 ’s.

Theorem 6. Given any data distribution D on X × {0, 1} × [𝑝],
there exist non-negative coefficients 𝑐∗

𝑖 𝑗
, for 𝑖 ∈ {0, 1} and 𝑗 ∈ [𝑝], sat-

isfying
∑
𝑖∈{0,1}, 𝑗 ∈[𝑝 ] 𝑐

∗
𝑖 𝑗

= 1, such that the Rawls classifier achieving
the Rawls error rate is given by

𝑓 ∗ (𝑥) = I ©«
∑︁
𝑗 ∈[𝑝 ]

𝑐∗
1𝑗𝑢1𝑗 (𝑥) −

∑︁
𝑗 ∈[𝑝 ]

𝑐∗
0𝑗𝑢0𝑗 (𝑥) ≥ 0

ª®¬ .
and the Rawls error rate is equal to 𝑟∗ =

∑
𝑖∈{0,1}, 𝑗 ∈[𝑝 ] 𝑐

∗
𝑖 𝑗
𝑟𝑖 𝑗 (𝑓 ∗).

As an immediate corollary, we get Pareto-efficiency of the Rawls

classifier because

𝑓 ∗ = argmin

𝑓 :X→{0,1}

∑︁
𝑖∈{0,1}, 𝑗 ∈[𝑝 ]

𝑐∗𝑖 𝑗𝑟𝑖 𝑗 (𝑓 ).

Our proof is inspired by [29], who introduced similar techniques in

the context of group-fairness. The main difference from previous

work that uses similar techniques [9, 29] is that the coefficients

are for each 𝑖 ∈ {0, 1} and 𝑗 ∈ [𝑝], instead of only 𝑗 ∈ [𝑝], and
moreover, they have a special meaning as we will show that the

non-zero coefficients 𝑐∗
𝑖 𝑗
indicate the most disadvantaged sensitive

sub-populations.

In Theorem 6, the indices of non-zero coefficients 𝑐∗
𝑖 𝑗
’s actually

correspond to the sensitive sub-populations that attain the Rawls

error rate 𝑟∗, and are therefore, the maximally disadvantaged or

vulnerable sensitive sub-populations.

3.2 Properties of the Rawls classifier
An interesting corollary of the above characterization theorem is

that for any Rawls classifier, the maximally disadvantaged sensitive

sub-population cannot be unique, unless the Rawls classifier is

trivial.

Corollary 7. For any Rawls classifier, the sensitive sub-population
𝑆𝑖 𝑗 that attains the Rawls error rate 𝑟𝑖 𝑗 (𝑓 ∗) = 𝑟∗ cannot be unique,
unless the Rawls classifier 𝑓 ∗ is trivial (i.e., all-zeroes or all-ones).

Another interesting corollary of Theorem 6 is that for any Rawls

classifier, there exist at least two sensitive sub-populations, one

from each class, that both attain the Rawls error rate.

Corollary 8. For any Rawls classifier 𝑓 ∗, there exist two sensitive
sub-populations 𝑆0𝑗 and 𝑆1𝑘 , one from each class, that both of them
attain the Rawls error rate of 𝑟0𝑗 (𝑓 ∗) = 𝑟

1𝑘 (𝑓 ∗) = 𝑟∗, unless the
Rawls classifier is trivial (i.e., all-zeroes or all-ones).
Remark: For the above sub-populations, 𝑗 and 𝑘 need not be equal.

It is interesting to study the Rawls classifier even in the casewhen

there are no protected attributes, and the sensitive sub-populations

are the positive and negative classes, respectively. This is not stan-

dard for group-fairness but nevertheless relevant from a broader

fairness perspective, i.e., when 𝑝 = 1, the Rawls classifier minimizes

the maximum of the false positive rate and the false negative rate.

As we shall see, in this special case, Theorem 6 implies that the

Rawls classifier applies a threshold to Pr (𝑌 = 1 | 𝑋 = 𝑥 |), similar

to but not the same as the well-known Bayes classifier.

Corollary 9. For 𝑝 = 1, the Rawls classifier 𝑓 ∗ is given by
⊮ ([ (𝑥) ≥ 𝑡), where [ (𝑥) = Pr (𝑌 = 1 | 𝑋 = 𝑥), and the threshold
𝑡 is equal to

𝑡 =
(𝑐01/𝑝01)

(𝑐11/𝑝11) + (𝑐01/𝑝01)
.

4 THE RESTRICTED RAWLS CLASSIFIER AND
FAIR ADAPTATION

Theorem 6 shows a characterization of the Rawls classifier as a

threshold classifier on an ideal score function, which can be defined

using the unveil functions [𝑖 𝑗 (𝑥) of the sensitive sub-populations
and the optimal coefficients 𝑐∗

𝑖 𝑗
’s. These require the knowledge of

the underlying distribution D explicitly, in addition to the optimal

coefficients 𝑐∗
𝑖 𝑗
’s that are not easy to compute. Moreover, in prac-

tice, computing the unveil functions [𝑖 𝑗 (𝑥)’s from a finite sample

drawn from the distributionD is intractable. This leads to a natural

question of whether there exists a more practical definition of the

Rawls classifier and the Rawls error rate, and efficient algorithms

to achieve these.

In practice, we often have a non-ideal score function or a feature

map, and the classifier we compute needs to be efficient, and comes

from a restricted hypothesis class, e.g., threshold classifier on a

score or linear threshold classifier on a feature map. However, we

do not know the underlying data distribution D explicitly but

only have access to certain statistics of the given score function or

feature map on each sensitive sub-population. For simplicity, we

assume that we are given reliable estimates of the second-order

statistics (i.e., means and second moments) of the score function or

feature map on all sensitive sub-populations. This is a reasonable

assumption because the second-order statistics can be estimated

efficiently from a small sample of points from the underlying data

distribution D. Assuming no additional knowledge of D beyond

the second-order statistics, leads to the following definitions of the

set of restricted score-distributions and the restricted Rawls classifier.
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Definition 10. For any set of means 𝑀 = {`𝑖 𝑗 }𝑖∈{0,1}, 𝑗 ∈[𝑝 ]
with `𝑖 𝑗 ’s in R𝑑 for all 𝑖 𝑗 , and any set of covariance matrices 𝑉 =

{Σ𝑖 𝑗 }𝑖∈{0,1}, 𝑗 ∈[𝑝 ] with Σ𝑖 𝑗 ∈ R𝑑×𝑑 for all 𝑖 𝑗 , define the set of re-
stricted score-distributions R𝑀𝑉 as all score-distribution pairs (𝑠,D)
such that 𝑠 : X → R𝑑 is any score function (for 𝑑 = 1) or any feature
map (for 𝑑 ≥ 2), and D is any distribution on some X × {0, 1} × [𝑝]
such that

E𝑋𝑖 𝑗

[
𝑠 (𝑋𝑖 𝑗 )

]
= `𝑖 𝑗 , and

E𝑋𝑖 𝑗

[ (
𝑠 (𝑋𝑖 𝑗 ) − `𝑖 𝑗

) (
𝑠 (𝑋𝑖 𝑗 ) − `𝑖 𝑗 )𝑇

)]
= Σ𝑖 𝑗 ,

∀𝑖 ∈ {0, 1}, 𝑗 ∈ [𝑝],

where (𝑋,𝑌, 𝑍 ) is a random sample from distribution D, and 𝑋𝑖 𝑗 is
a random sample 𝑋 conditioned on 𝑌 = 𝑖, 𝑍 = 𝑗 .

Definition 11. For any set of restricted score-distributions R𝑀𝑉

as in Definition 10, and any hypothesis class F of classifiers 𝑓 : R𝑑 →
{0, 1}, define the restricted Rawls classifier and the restricted Rawls
error rate, respectively, as

𝐹 ∗ = argmin

𝑓 ∈F
max

𝑖∈{0,1}, 𝑗 ∈[𝑝 ]
𝑅𝑖 𝑗 (𝑓 ),

𝑅∗ = min

𝑓 ∈F
max

𝑖∈{0,1}, 𝑗 ∈[𝑝 ]
𝑅𝑖 𝑗 (𝑓 ),

where 𝑅𝑖 𝑗 (𝑓 ) = sup

(𝑠,D)∈R𝑀𝑉

Pr (𝑓 (𝑠 (𝑋 )) ≠ 𝑌 | 𝑌 = 𝑖, 𝑍 = 𝑗)

= sup

(𝑠,D)∈R𝑀𝑉

Pr

(
𝑓 (𝑠 (𝑋𝑖 𝑗 )) ≠ 𝑌

)
.

Restricted Rawls setting described above restricts the classifier

𝑓 to be from a given hypothesis class but it is also relaxation in

the sense that the distribution D is allowed to vary as long as the

second-order statistics of 𝑠 (𝑋𝑖 𝑗 )’s are fixed.

4.1 Fair Adaptation of Threshold (FAT) in the
restricted Rawls setting

In Theorem 12, we characterize the restricted Rawls classifier and

give a constructive, algorithmic proof for finding it by formulating

the problem using ambiguous chance constraints. As a result, we

are able to take any existing threshold classifier on some score

function, collect the second-order statistics of its score function on

all sensitive sub-populations, and efficiently adapt it to a restricted

Rawls classifier that we call as Fair-Adapted Threshold (FAT) clas-

sifier. Note than many existing classifiers optimized for accuracy

and group-fairness come with their own score functions, and we

can efficiently adapt their thresholds.

Theorem 12. For any set of restricted score-distributions R𝑀𝑉

for 𝑑 = 1 given by means `𝑖 𝑗 ’s and variances 𝜎2
𝑖 𝑗
’s (as in Defini-

tion 10), and the hypothesis class F of threshold classifiers 𝑓𝑏 (𝑥) =
⊮ (𝑠 (𝑥) ≥ 𝑏), for the underlying score function, the corresponding re-
stricted Rawls classifier is given by 𝐹 ∗ (𝑥) = 𝑓𝑏∗ (𝑥) = ⊮ (𝑠 (𝑥) ≥ 𝑏∗)

where the threshold 𝑏∗ is equal to

𝑏∗ = `1𝑗∗ − 𝜎1𝑗∗

√︄
`1𝑗∗ − `0𝑗∗

𝜎1𝑗∗ + 𝜎0𝑗∗

= `0𝑗∗ + 𝜎0𝑗∗

√︄
`1𝑗∗ − `0𝑗∗

𝜎1𝑗∗ + 𝜎0𝑗∗
,

where 𝑗∗ = argmin
𝑗 ∈[𝑝 ]

`1𝑗 − `0𝑗

𝜎1𝑗 + 𝜎0𝑗
.

The algorithmic version of Theorem 12, that first estimates `𝑖 𝑗
and 𝜎𝑖 𝑗 using a finite sample from D and then computes 𝑏∗ is

what we call as Fair Adaptation of Threshold (FAT). We call the

corresponding classifier 𝑓𝑏∗ as the Fair-Adapted Threshold (FAT)
Classifier.

4.2 Fair Linear-Adaptation of Thresholds
(FLAT) in the restricted Rawls setting

In this section, we consider the problem of finding fair adaptation

in the restricted Rawls setting where we are a given score or feature

map 𝑠 : X → R𝑑 as a black box, and we have its second order

statistics of 𝑠 (𝑋𝑖 𝑗 ), where 𝑋𝑖 𝑗 is a random sample from the sensi-

tive sub-populations 𝑆𝑖 𝑗 . We seek a linear threshold classifier on

the feature map 𝑠 (𝑥), so as to achieve the restricted Rawls error

rate. Another simplifying assumption we make is to let the dis-

tributions 𝑠 (𝑋𝑖 𝑗 )’s be Gaussians with the given means `𝑖 𝑗 ’s and

covariance matrices Σ𝑖 𝑗 ’s. To compare with the remark made after

Definition 11, the Gaussian assumption means that the distribu-

tions 𝑠 (𝑋𝑖 𝑗 )’s are completely characterized once their means and

covariance matrices are known.

In absence of a given feature map, we can also use the basic

features, if X ⊆ R𝑑 . Also note that the even group-fair algorithms

that implement Gaussian Naive Bayes (e.g., Meta Fair by Celis et al.

[9]) also estimate second-order statistics of the data. The second-

order statistics can be efficiently estimated from a small sample,

in contrast with the unveil functions [𝑖 𝑗 (𝑋 ) that are known to be

intractable from a finite sample.

Theorem 13. Let R𝑀𝑉 be any restricted set of score-distributions
R𝑀𝑉 given by the means `𝑖 𝑗 ∈ R𝑑 and covariance matrices Σ𝑖 𝑗 ∈
R𝑑×𝑑 of 𝑠 (𝑋𝑖 𝑗 ), for a random sample 𝑋𝑖 𝑗 from the sensitive sub-
populations 𝑆𝑖 𝑗 , with an underlying score map 𝑠 : X → R𝑑 and
data distribution D. Let the restricted hypothesis class F be linear

threshold classifiers 𝑓𝑤,𝑏 (𝑥) = ⊮
(
𝑤𝑇 𝑠 (𝑥) ≥ 𝑏

)
. Assuming that the

distributions of 𝑠 (𝑋𝑖 𝑗 ) are Gaussians, the restricted Rawls classifier
𝑓𝑤,𝑏 is given by solving the following optimization problem.

𝑤∗ = argmin

𝑤
max

𝑗

Σ1/2
1𝑗

𝑤


2

+
Σ1/2

0𝑗
𝑤


2

subject to

𝑤𝑇 (`1𝑗 − `0𝑗 ) = 1, ∀𝑗 ∈ [𝑝] .

where the restricted Rawls error rate is given by

𝑟∗ = 1 − Φ
©«min

𝑗

(𝑤∗)𝑇 (`1𝑗 − `0𝑗 )Σ1/2
1𝑗

𝑤∗

2

+
Σ1/2

0𝑗
𝑤∗


2

ª®®¬ ,
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where Φ(·) is the CDF of the standard normal variable 𝑁 (0, 1). The
optimal threshold for the Rawls classifier is given by

𝑏∗ = 𝑤𝑇
∗ `0𝑗∗ + Φ−1 (1 − 𝑟∗)

Σ1/2
0𝑗∗𝑤∗


2

= (𝑤∗)𝑇 `1𝑗∗ − Φ−1 (1 − 𝑟∗)
Σ1/2

1𝑗∗𝑤∗

2

,

where 𝑗∗ = argmin

𝑗

(𝑤∗)𝑇 (`1𝑗 − `0𝑗 )Σ1/2
1𝑗

𝑤∗

2

+
Σ1/2

0𝑗
𝑤∗


2

We call the restricted Rawls classifier obtained by algorithmic

implementation of Theorem 13 as Fair Linear Adaptation of Thresh-

olds (FLAT) classifier. In the experiments section, we consider two

classifiers (1) FLAT-1, where we approximate 𝑠 (𝑋𝑖 𝑗 )’s by spheri-

cal Gaussians, and (2) FLAT-2, where we approximate 𝑠 (𝑋𝑖 𝑗 )’s by
non-spherical Gaussians.

5 EXPERIMENTS
5.1 Experimental setup
Our baselines for comparison include the given black-box model

(neural network trained for maximizing accuracy), meta-fair clas-

sifier [9], Reject Option Classifier (ROC) [27]. We use maximum

error rate across all sensitive sub-populations as the primary metric

for evaluation. We use the acronym FAT for Fair Adaptation of

Threshold. We use acronyms FLAT1 and FLAT2 to represent Fair

Linear Adaptation of Threshold using spherical covariance matrix

and complete covariance matrix, respectively.

In our experiments, we randomly split every dataset (except

wikipedia talk page dataset) into training set (80 %) and testing set

(20 %). We perform 10 repititions and report average statistics of all

algorithms. We used a multilayer perceptron with 2 hidden layers

to get the score for FAT algorithm or feature embedding for FLAT1

and FLAT2. We use 100 neurons in the first hidden layer and choose

it from the range of 20 to 100 for the second hidden layer using

accuracy. We used adam optimizer with batch size 128. We started

the training with 0.005 learning rate with the step decay learning

rate scheduler and optimized the parameters of the scheduler to

maximize the accuracy.

5.2 Fair adaptation on real world datasets
In this section, we illustrate our Rawlsian fair adaptation of any

given unfair classifier. We use three real world datasets to show

experimental results of our proposed algorithms. The details of

these datasets are given below.

• Wikipedia Talk Page Dataset [36]: In this dataset, the task

is to predict whether a comment is toxic. Previous work

has pointed out that training to maximize accuracy leads to

unintended bias for comments containing terms ‘gay’, ‘black’

etc. ([14], [8]). The dataset has total 95,691 training examples

and 31,867 test examples. We divide all the comments into

six groups, that define our protected attributes. First five

groups represent whether a comment contains the terms

‘gay’, ‘islam’, ‘muslim’, ‘male’, ‘black’, respectively, and the

sixth group contains comments that contain none of the

above. Note that a comment can be part of more than one

subgroup.

Figure 1: Comparison ofmaximum sub-population error rate
on text classification

Figure 2: Adaptation of scores or feature embeddings on adult
dataset

Figure 3: Adaptation of scores or feature embeddings on bank
dataset

• Adult Income Dataset [12]: In this dataset, the task is to

predict whether an individual has income more than $50K.

The dataset has total 48,842 examples. Protected attributes

in the dataset are gender and race.

• Bank Dataset [12]: In this dataset, the task is to predict

whether a client will subscribe to a term deposit. The dataset

has total 45,211 examples. Protected attribute in the dataset

is age.

We first show fair adaptation of non-linear feature embeddings

and scores on the above mentioned datasets in Figure 1, Figure 2

and Figure 3. On each dataset, we first train a feedforward neural

network to maximize overall accuracy. Then, we use second order

statistics of scores (for FAT) or feature embeddings (for FLAT1,

Poster Paper Presentation AIES ’21, May 19–21, 2021, Virtual Event, USA

941



Sub-population Mean Variance Number of Points

(0, 0) (0, -2.5) 2 1900

(0, 1) (5, 3) 1 100

(1, 0) (0, 3) 2 1900

(1, 1) (2, 5) 1 100

Table 1: Details of synthetic dataset 1. Sub-population (𝑖, 𝑗)
means population with label 𝑖 and protected attribute 𝑗 .

Sub-population Mean Variance Number of Points

(0, 0) (-5, 0) 2 1900

(0, 1) (-1, -1) 1 100

(1, 0) (5, 0) 2 1900

(1, 1) (1, 1) 1 100

Table 2: Details of synthetic dataset 2. Sub-population (𝑖, 𝑗)
means population with label 𝑖 and protected attribute 𝑗 .

FLAT2) on each sensitive sub-population for Rawlsian fair adapta-

tion. We use Reject Option Classifier (ROC) applied to the scores

(ROC-Score) and feature embeddings (ROC-Embedding) of the neu-

ral network for comparison. Please note that ROC-Score and ROC-

Embedding use the scores and feature embeddings for the entire

data whereas FAT, FLAT1 and FLAT2 only use their second-order

statistics on sensitive sub-populations.

In Figure 1, we see that FAT and FLAT1 give 10-15 % improvement

in the maximum error rate over all sensitive sub-populations when

compared to the baselines. However, FLAT2 has slightly higher max-

imum sensitive sub-population error rate than ROC-Score because

our fair adaptation only uses second-order statistics on sensitive

sub-populations. In Figure 2, we see that FAT, FLAT1 and FLAT2

achieve around 35-40 % improvement in the maximum error rate

over all sensitive sub-populations when compared to ROC and the

given neural network. On the bank dataset (figure 3), FAT and

FLAT2 achieve around 40-50 % improvement in the maximum er-

ror rate over all sensitive sub-populations when compared to the

baselines, whereas FLAT1 achieves around 20 % improvement over

ROC and the given neural network.

5.3 Fair adaptation on synthetic datasets
We show the effectiveness of fair adaptation by showing quantita-

tive and qualitative improvement on synthetic datasets. The syn-

thetic datasets we consider have a binary-valued protected attribute

(or two groups) and two classes. We use two-dimensional synthetic

datasets for visualization of the decision boundaries given by dif-

ferent classifiers. For each fixed class label and protected attribute

value, the features or examples are generated using a spherical

Gaussian distribution. The parameters of these Gaussians and num-

ber of data points generated are given in Table 1 and Table 2. We

compare the maximum error rate over all sensitive sub-populations

for FLAT1 andMeta-fair classifier, and also the upper bound guaran-

tee on this metric for FLAT1 computed by our algorithm in Figure 4.

We see that FLAT1 outperforms state-of-the-art Meta-fair classifier

and achieves around 70 % smaller value of the maximum error rate

over sensitive sub-populations in synthetic dataset 1, and around

Figure 4: Comparison of maximum sensitive sub-population
error rate for synthetic datasets

Figure 5: Decision boundary (black line) of FLAT1 on syn-
thetic dataset 1

15 % smaller value in synthetic dataset 2. Figure 5, Figure 6, Figure

7 and Figure 8 show the different decision boundaries learnt by our

fair adaptation and Meta-fair. As Meta-fair classifier defines sub-

population using only protected attribute and learns its decision

boundary to equalize error rate on each sub-population defined

only by the protected attribute, it almost ignores sub-population

with label 0 and protected attribute value 1 in synthetic dataset 1.

Moreover, Meta-fair classifier learns a non-linear complex classi-

fier and still performs poorly. Because of Rawlsian fairness in our

objective and defining the sub-population using class label and pro-

tected attribute, FLAT1 learns simple linear classifier and achieves

lower maximum error rate across sensitive sub-populations. Even

in synthetic dataset 2, FLAT1 learns a tilted decision boundary

but Meta-fair learns a vertical decision boundary by ignoring sub-

population with protected attribute value 1. Hence, we see that

Rawlsian fairness objective and the definition of a sub-population

using class label and protected attribute value helps us to do better

than group-fair classifiers by only using second order statistics, and

address typecasting of sub-populations caused by class imbalance.

5.4 Additional fair adaptation results
Here, we show additional fair adaptation results on two datasets.

The details of these datasets are given below.

• COMPAS dataset [4]: In this dataset, the task is to predict

recidivism from an individual’s previous history (e.g. previ-

ous criminal history, prison time, etc.). The dataset has total

5,278 examples. Protected attributes in the dataset is gender

and race.

• German dataset [12]: In this dataset, the task is to predict

whether an individual is a good credit risk. The dataset has
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Figure 6: Decision boundary (black line) of Meta-fair classi-
fier on synthetic dataset 1

Figure 7: Decision boundary (black line) of FLAT1 on syn-
thetic dataset 2

Figure 8: Decision boundary (black line) of Meta-fair classi-
fier on synthetic dataset 2

total 1,000 examples. Protected attributes in the dataset is

gender and age.

In Figure 9 and Figure 10, we compare range of FPR and FNR

of each group on Adult and Compas dataset. We use meta-fair

classifier optimized to get near-equal FNR on each group as our

baseline. As meta-fair classifier maximizes accuracy on combined

data, it ignores one or more sensitive sub-population and ends up

getting wide range of FPR and FNR values on each sensitive sub-

population. However, in the proposed approaches, even though

we are not directly optimizing FPR and FNR on each sensitive sub-

population, we get smaller range compared to meta-fair classifier.

We show the results of Fair Adaptation of Threshold (FAT)

algorithm in Figure 11 . We use second order statistics of each

sub-populations of scores of meta-fair classifier and optimize over

Figure 9: Comparison of range of FPR and FNR on Adult
dataset. The lowest and highest point in a line denotes mini-
mum andmaximum value of FPR and FNR among all groups,
respectively. The middle point among three points in a line
denotes error rate.

Figure 10: Comparison of range of FPR and FNR on Com-
pas dataset. The lowest and highest point in a line denotes
minimum and maximum value of FPR and FNR among all
groups, respectively. The middle point among three points
in a line denotes error rate.

threshold to get group fair classifier using FAT algorithm. In Fig-

ure 11, we see that FAT algorithm improves maximum sensitive

sub-population error rate by around 5-10 % in adult dataset and

COMPAS dataset but in german dataset, FAT improves maximum

sensitive sub-population error rate by around 40-50 % using only

second-order statistics of each sub-populations.

We show experimental results of FLAT1 and FLAT2 on Adult

dataset, COMPAS dataset and German Dataset in Figure 12. We use

second order statistics of features of each sub-population for all

the datasets and learn linear classifier on the features using FLAT1

and FLAT2. For comparison, we learn meta-fair classifier using the

entire data.

From figure 12, we see that FLAT1 and FLAT2 gets around 10-15

% lower maximum sensitive sub-population error rate on Adult

and COMPAS dataset. In German dataset, FLAT1 and FLAT2 gets

around 35-40 % lower maximum sensitive sub-population error

rate. Thus, FLAT1 and FLAT2 achieves lower maximum sensitive

sub-population error rate on all the datasets and all the protected
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Figure 11: Comparison of FAT algorithm with meta-fair clas-
sifier on different datasets and protected attributes

attributes using only second order statistics of features of each

sub-population.

Rawlsian fairness not only tries to minimize maximum sensitive

sub-population error rate but in the process, it also decrease gap

between error rate among all sensitive sub-populations. In figure

13, we show the comparison of error rate on each sub-population

for neural network, FAT and FLAT2. For the figure, it is clear that

the proposed algorithm achieves decreases the gap between error

rates of sensitive sub-populations.

In figure 14, we show experimental results using False Positive

Rate (FPR) and False Negative Rate (FNR) metric on Adult dataset.

We compare our algorithm with Meta-fair classifier. We see that

FLAT2 decreases gap in both metrics (FPR and FNR) between sensi-

tive sub-populations.

6 CONCLUSION
Starting from the basic principles of Pareto-efficiency and least-

difference in distributive justice, we characterize the Rawls classifier

for minimizing the maximum error rate across all sensitive sub-

populations. We also propose a principled approach for Rawlsian

fair adaptation of black-box deep learning models that does not

require retraining for fairness, while achieving significant improve-

ment over state of the art group-fair baselines.

Figure 12: Comparison of FLAT1, FLAT2 algorithmwithmeta-
fair classifier on different datasets and protected attributes

Figure 13: Group-wise class-wise error Rate on all sensitive
sub-populations
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Figure 14: Comparison of FPR and FNR of FLAT2 algorithm
with Meta-fair classifier on Adult dataset
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