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1 INTRODUCTION

In Sec. 1.1 and 1.2, we describe our implementation and dif-
ferent metrics we have used to assess the proposed solution.
In Sec. 1.3, we provide additional empirical validation for
our dataset’s complexity. In Sec. 1.4, we present the results
of the experiments conducted to tackle the noise effects of
event camera. Section 1.5 analyses the performance of DL
memory surface network on two class activity recognition
task in terms of t-SNE plot. Section 1.6 presents a visual
display of a sample of state-of-the-art event representations
with which our DL memory surface has been compared
with. Sec. 1.7 provides experimental results to have insight
into the latency introduced by the proposed deep learn-
ing based event representation solution compared to that
of non-deep learning conventional solutions. Sec 1.8 and
Sec 1.9 furnishes the results of self-analysis of anomaly
detection network in terms of classification performance
and computational complexity. Sec 1.10 provides the details
of the conventional frame-based state-of-the-art anomaly
networks considered in this paper for comparative analysis.

1.1 Implementation Details

The input discretized event volume, formed by accumulat-
ing events as described in section 3 of the paper, is passed
through a 3D convolution layer, which has a receptive field
of 1 x1xC, where C'is the number of channels. DL memory
surface network, initialized with random weights sampled
from a standard normal distribution, is trained with these
input event volume to reconstruct its inputs. The activation
regularization of the DL memory surface network is fixed
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for anomaly detection network experiments. We extract the
DL memory surface from the bottleneck layer of the DL
memory surface network. We used 2¢ — 4 learning rate and
0.5 momentum.

Sparse convolutional cGAN anomaly detection network
is trained with the DL memory surface of normal events to
predict future normal events. The generator’s architecture
is a sparse convolutional encoder-decoder, and that of the
discriminator is a classifier architecture, the details of which
are provided in section 3 of the paper. DL memory surface is
fed to the generator network as a sparse tensor whose value
is defined only at discrete locations specified by the indices
matrix. Sparse tensor representation is crucial to saving
memory space and maintaining sparsity in the generator
network’s computation. The optimization technique used is
Stochastic Gradient Descent (SGD) with a learning rate of
0.1 and momentum of 0.9.

1.2 Evaluation Metrics

The various criteria used to evaluate the DL memory surface
network and anomaly detection network are recall, preci-
sion, F1 score, and accuracy. All these measures are based
on true-positive rates (TPR), false-positive Rates (FPR), true-
negative rates (TNR), and false-negative rates (FNR), where
positive and negative denote the presence and absence of
negative events.

The recall is the classifier’s ability to recall positive
classes (Eq. 1). Precision (Eq. 1) is the ratio between the true-
positive rate and the total number of retrieved images. F1-
measure (Eq. 1) indicates the balance between precision and
recall. Accuracy (Eq. 1) is the fraction of true predictions
of the model. In addition to this, the Equal Error Rate
(FER) is also used to summarize the anomaly detection
network’s performance. EER is the ratio of frames that are
misclassified at F'PR =1—TPR.

Recall = % D
Precision = %
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1.3 Dataset: Event Rate

To emphasize the complexity of the dataset considered,
we have estimated the event rates of various anomalous
activities vs. normal activity at various time instants for a
uniform time interval. Fig. 2 shows the histogram of event
rates (over a period of 10 ms) for normal and anomalous
activity, and Fig. 1 displays the number of events (over a
time period of 50 ms) vs. various time instants for normal
and anomalous activities. It could be seen that there is a
lot of overlap between normal and anomalous activities in
terms of event rate, which indicates that the rate of motion
of the normal and anomalous activities resemble each other.

1.4 DL Memory Surface Network: Input

Fig. 3 shows discretized event slices for various AT of
10ms, 30ms, 50ms. As the event camera data has noise
effects, we have done preprocessing to remove the same.
It could be visualized that no information is retained after
noise removal when AT = 10ms, 30ms. Hence we have
fixed the accumulation time of events to 50ms to have an
optimum trade-off between temporal latency and informa-
tion content.

1.5 DL Memory Surface Network: t-SNE Analysis on
Two Class Activity Recognition

These experiments evaluate the DL memory surface net-
work’s benefits quantitatively in encoding information into
bottleneck layer features. To prove the proposed DL mem-
ory surface network’s generalization, we have evaluated
it on a completely different vision task known as activity
recognition.

The DL memory surface network was trained on dis-
cretized event volumes. Subsequent to freezing the model,
DL memory surfaces are extracted from the network’s bot-
tleneck layer for different activities and subjected to feature
extraction with MobileNet. The extracted features are ana-
lyzed in terms of two class activity recognition task (normal
vs. anomaly). The number of samples is carefully chosen to
balance the two classes.

For the purpose of visualization, the dimension of the
features is reduced to two using t-SNE. Fig. 4 shows the
2D t-SNE embedding of MobileNet features of various
anomalous activities vs. normal activity. Better clustering
of DL memory surface features is evident, proving that the
network has learned the information which was encoded in
the events.

1.6 DL Memory Surface Network: Conventional Repre-
sentations of Event Data

Fig. 5 gives the visualization of different state-of-the-art
conventional hand-crafted event representations (EvSAE,
EvSNN, EvFreq, EvFlow, EvCount). The references and
comparison with the proposed approach are provided in
the paper.
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Number of Events SAE SNN Freq EvOn EvOff DLmem
49806 0.008 2249 0.011 0.025 0.020 0.055
54698 0.008 20.77 0.010 0.023 0.019 0.055
52387 0.008 1871 0.013 0.030  0.023 0.055
50530 0.008 16.6 0.010 0.022 0.018 0.055
62310 0.011 149 0.013 0.028 0.024 0.055

TABLE 1: Comparison of run time (in ms) of the proposed
DL memory surface network with other hand crafted meth-
ods whose details are provided in the paper.

Anomaly AUC EER Avg Precision F1 Score
Falling 96%  14% 94% 83%
GetUp 93% 18% 88% 75%

]umping 99% 1% 99% 80%

chkmg 83% 24% 82% 56%
Picking 82%  23% 78% 72%
Sit 82%  25% 74% 87%

TABLE 2: Quantitative analysis of proposed anomaly detec-
tion network in terms of AUC, EER, average precision, and
F1 score

1.7 DL Memory Surface Network: Computational Time
Analysis

An event camera’s main advantage is low latency, which
could be retained while processing if it involves asyn-
chronous processing. However, it results in reduced accu-
racy. To trade latency for accuracy, researchers have pro-
posed to accumulate events over a period of time. The pro-
posed approach is one such approach where we have used
a deep learning solution to learn representation from the
data. As we may be actually sacrificing speed for improved
accuracy, we also provide the computational complexity of
the proposed approach with respect to non-deep learning
approaches for a different number of input events. Table. 1
furnishes the computation time vs. the number of events,
which is performed on a CPU (Intel i7 CPU, 64bits, 2.3GHz
and 64 GB of RAM) with GPU (GeForce RTX 1080 Ti). It can
be seen from Table. 1 that the proposed approach is still a
real-time solution because of the thin encoder network that
we have proposed for DL memory surface generation.

1.8 Anomaly Detection Network: Quantitative Self
Analysis

In this section, we quantitatively assess the performance of
the proposed system as a whole. This is an analysis of the
network’s capability to predict abnormal pixels’ presence,
based on which abnormal label is given to that particular
set of events. Abnormality detection is evaluated over a
range of thresholds to construct different metrics such as
AUC, EER, average precision, and F1 score, etc., on different
anomalies. Quantitative analysis in terms of AUC, EER,
average precision, and F1 score is furnished in Table. 2. It
could be visualized that the proposed method performs well
even for anomalies that do not differ from normal activities
in terms of rate of motion (or events generated) such as
sitting, picking, and kicking. Table. 3 displays a detailed
analysis of FPR and precision at different TPR / recall on
a sub-set of proposed anomalies.
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Fig. 1: Display of event rate of normal vs. anomalous activity at differnt time instants for standard time interval of 50 ms.
Huge overlap in the event rate indicates that the anomalous activities considered does not differ from normal activity in
terms of rate of motion.



Falling GetUp Kicking Picking Sitting
TPR/R FPR Prec | TPR/R FPR Prec | TPR/R FPR Prec | TPR/R FPR Prec | TPR/R FPR Prec
1.0 1.0 0.33 1.0 1.0 028 | 1.0 1.0 029 | 1.0 1.0 047 | 1.0 1.0 0.46
0.92 029 060 | 0.95 0.4 048 | 0.8 056 037 | 0.98 079 052 | 0.98 0.9 0.49
0.89 0.18 070 | 0.77 0.10 0.73 | 0.76 0.16 0.65 | 0.93 031 072 | 0.8 0.4 0.68
0.86 0.07 084 | 0.72 005 0.84 | 0.64 0.02 094 | 0.28 005 08 0.50 026 0.73
0.78 0.02 093 | 0.68 0.0 1.0 0.48 0.0 1.0 0.2 0.0 1.0 0.14 0.02 0.85

TABLE 3: Quantitative analysis of anomaly network in terms of recall (R), precision (Prec), TPR and FPR for various

anomalous activities.
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Fig. 2: Display of histogram of event rate of normal vs
anomalous activity. The event rates are estimated for a
standard time interval of 10 ms. Huge overlap in the his-
togram of event rate indicates that the anomalous activities
considered does not differ from normal activity in terms of
rate of motion.

1.9 Anomaly Detection Network: Computation Analysis

Table. 4 gives the comparison of dense convolution and
Submanifold Sparse Convolution (SSC) layers at different
levels in terms of FLOPs. The terms inside the bracket
provide the ratio between the FLOPs of the corresponding
dense layer and the SSC layer. The higher the value, the
better the save in computation achieved with SSC layers. We
have provided the SSC layer’s computational complexity at
two different N? (notations explained in the main paper)
and two different sparsity levels. We have assumed N;, to
be constant over the given image/feature map. Compared
to dense layers, SSC layers requires far lesser computation,

especially when (% = 0.0625, N? = 1),

1.10 Anomaly Detection Network: Details of Conven-
tional Frame-based Anomaly Networks used for Com-
parison

AnoDet B (reference given in section 4.3.2 of paper) is a
Spatio-temporal auto-encoder architecture, which is made
up of spatial and temporal autoencoders to learn spatial
features and temporal patterns, respectively. The discretized
volume of events mentioned in section 3 of the paper is fed
as input to the architecture. The event frames are classified
as normal and anomalous based on the reconstruction error

of input event volume. We have adapted the code im-
plementation provided at https://github.com/harshtikuu/
Abnormal_Event_Detection

AnoDet C (reference given in section 4.3.2 of paper) uses
a fully convolutional autoencoder in addition to conven-
tional motion feature descriptors to learn low and high-
level features. The input is constructed as 1" event frames
of discretized event volume stacked together. The param-
eters are fixed as the implementation provided at https:
/ /github.com/NRauschmayr/Anomaly_Detection. The re-
construction error is estimated as the sum of per pixel error,
based on which an event frame is classified as normal or
anomaly.

AnoDet F (reference given in section 4.3.2 of paper) is
a deep recurrent convolutional neural network for future
frame prediction. The implementation we have used is the
architecture implemented as a custom layer in Keras https:
/ /github.com/coxlab/prednet. To predict future frame ac-
curately, it needs a sequence of event frames of discretized
event volume as input to learn the objects’ motion dynamics.
An event frame is classified as normal or anomaly based on
the prediction error.

AnoDet E and AnoDet A (reference given in section
4.3.2 of paper) are the two versions of an anomaly detec-
tion network, which utilizes predicted feature and image
respectively for anomaly detection. The architecture is made
up of deep convolutional GAN, and it works on static
images. The input is individual event frames formed by
discretizing the events. It provides an anomaly score as a
measure of fit of the event frame under consideration to
that of the normal image model that it has learned during
training. The TensorFlow implementation is available at
https:/ /github.com/tSchlegl/f- AnoGAN.

AnoDet D (reference given in section 4.3.2 of paper)
depends on the optical flow network to extract motion
information for anomaly detection. Hence, it has been
tested without training, which leads to deficient perfor-
mance. Implementation is available at https://github.com/
StevenLiuWen/ano_pred_cvpr2018
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Fig. 3: Visualization of discretized events (bottom) and noise filtered events (top) accumulated over different time periods
of 10ms (left), 30ms (middle) and 50ms (right)

Layer Cin Cout m,n D S1 S2 S3 S4 S5
Layer 1 1 16 256, 256 6684672 262144 65536 786432 196608 2359296
Layer2 16 32 128,128 150470656 4063232 1015808 8257536 2064384 20840448
Layer3 32 64 64,64 150732800 4128768 1032192 8323072 2080768 20905984
Layer 4 64 128 32,32 150863872 4161536 1040384 8355840 2088960 20938752
Layer5 128 256 16,16 150929408 4177920 1044480 8372224 2093056 20955136
Layer6 256 512 8,8 150962176 4186112 1046528 8380416 2095104 20963328

TABLE 4: Comparison of FLOPs of dense (D) and SSC layers S1 (N“ =0.25, N = 1), S2 (N" = 0.0625, N} = 1), S3

mn mn

(% =0.25, N = 2), S4 (% = 0.0625, N} = 2), S5 (& =0.25,N? = 5) at various layers. Maximum benefit in terms

mn

of computation is achieved when (% = 0.0625, N? = 1)
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Fig. 4: MobileNet features are extracted for DL memory surface. Dimensionality of the features has been reduced to two
using t-SNE. The projected two dimensional t-SNE features of various anomalous activities vs. normal activity (walking)
are plotted. x and y axis are t-SNE features along dimension 1 and 2 respectively.



Fig. 5: Visualization of different event data representations proposed in literature (reference given in paper)
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