Supplementary

In this supplementary, we perform a comprehensive
assessment of our proposed DL memory surface generation
network on event data. Experiments have been carried
out for self-analysis and a thorough comparison with the
existing state-of-the-art methods. In addition to this, we
have also provided a detailed analytical explanation of the
working of the networks proposed.

To substantiate the generality of our network, we have
run all these experiments via a different vision task known
as activity recognition. The complexity level of recognizing
the actions is a challenging task as it involves understanding
temporal context and spatial information. This mandates
better learning of spatial and temporal information. The
following experiments on DL memory surface as applied
to activity recognition showcases our network’s flexibility
to be readily extended to any vision task. We note that our
network exploits no domain knowledge of vision tasks.

1 SELF ANALYSIS

In this segment, we present the results of self-analysis of our
proposed DL memory surface generation network, which
enables us, i) To argue that the representation learned by the
DL memory surface can perform better than the discretized
event input volume, and ii) To validate the usage of sparsity
in the DL memory surface network. Towards this, the DL
memory surface network was trained on discretized event
volumes of the temporal classes present in our dataset.
Then, driven by the experiments conducted to mitigate the
inherent noisy nature of event data, the discretized event
volumes are formed by accumulating events over a AT
of 50ms. Subsequent to freezing the model, DL memory
surfaces are extracted from the network’s bottleneck layer
for different activities.

1.1 Qualitative Analysis

This section provides a qualitative analysis of the DL mem-
ory surface. Towards visual analysis, we provide the display
of the DL memory surface network’s input and output for
two different actions, bending and running (Fig. 1). The
DL memory surfaces are subjected to feature extraction
with MobileNet CNN feature extraction architecture [4]. For
visualization, the dimension of the features is reduced to
two using t-Distributed Stochastic Neighbor Embedding (t-
SNE). Fig. 2 shows the t-SNE plot of DL memory surface
features.
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Fig. 1: Visualization of discretized volumes of events (left)
and DL memory surface (Right). It could be visualized that
the DL memory surface captures the information regarding
the history of event data. The events and DL memory sur-
face are color-coded for better visualization. (c) Colormap
(0: Black, 255: Yellow)

1.2 Comparison with Input Event Volume on Activity
Recognition

These experiments evaluate the DL memory surface net-
work’s benefits quantitatively in encoding information into
bottleneck layer features over the input event volume. To
prove the proposed DL memory surface network’s gener-
alization, we have evaluated it on a completely different
vision task known as activity recognition.
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Fig. 2: MobileNet features are extracted for the DL memory
surface. The dimensionality of the features has been reduced
to two using t-SNE. The projected two-dimensional t-SNE
features of various activities are plotted. x and y axes repre-
sent two dimensional projection of MobileNet [4] features.
Color Legend: (T) Turning, (Wv) Waving, (G) GetUp, (Th)
Throw, (J) Jumping, (S) Sit, (A) ArmCross, (F) Falling, (Ty)
Tying, (K) Kicking, (P) Picking, (W) Walking.

In MS In MS

GetUp 0.81  0.96 Turning 079 0.81

Jumping 0.76 0.91 Waving 096 0.99

Sit 0.85 0.92 Throwing 095 0.97

Tying 081 092 ArmCross 097 0.99

Kicking  0.83 0.92 Falling 0.85 0.89
Picking 0.77 0.88

TABLE 1: MobileNet features [4] are extracted for In and MS
(DL memory surface). The features of various activities vs.
walking are clustered using the K-Means clustering algo-
rithm, and clustering accuracy is furnished. The clustering
accuracy of the DL memory surface is greater than that of
input event volume (especially on those activities given in
column 1).

Input event volume and DL memory surface are sub-
jected to feature extraction with MobileNet [4]. The ex-
tracted features are analyzed using the K-Means algorithm
to recognize two-class activity recognition tasks (walking vs.
other activity). The number of samples is carefully chosen
to balance the two classes. Table. 1 shows the clustering
accuracy of walking vs. various other activities. Given the
higher clustering accuracy of the DL memory surface than
raw event volume (especially on activities given in column
1), we prove that the proposed DL memory surface network
is a valuable framework for any vision task.

1.3 Analysis for Sparsity on Activity Recognition

By placing limitations in the activation of the bottleneck
layer in the DL memory surface network, we maintained
the sparsity of the input events, which is essential to the
application of sparse submanifold convolution in the cGAN
anomaly detection network. It has been observed that ex-
citing structures can be discovered by imposing sparsity
constraints on the network’s activations. In the DL memory
surface network, we could tune the sparsity level to the
desired level.

To compare the quality of features learned by the net-
work at different sparsity levels, we have extracted the DL
memory surface with many choices of activation regular-
izations. These sparse DL memory surfaces are tested for
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Fig. 3: MobileNet features are extracted for DL memory
surface generated with a wide range of sparsity ratios.
Activity recognition was tried on these features with SVM
as a classifier. The plot shows the classification metrics vs.
different sparsity ratio, optimum accuracy being achieved at
a sparsity ratio of 0.62

the general vision application, which is activity recognition.
Towards this, these sparse DL memory surfaces are sub-
jected to MobileNet feature extraction. The usefulness of the
features is evaluated by exploring the classification capabil-
ity of an SVM classifier on activities present in our dataset.
Fig. 3 shows the plots of different metrics such as accuracy,
recall, precision, and F1 measures of activity recognition for
various sparsity levels averaged across different activities.
The sparsity ratio is estimated as the ratio between the
sparsity of the output DL memory surface and the input
events. The DL memory surface generated with a sparsity
ratio of 0.62 performs well in various classification metrics.

2 PERFORMANCE COMPARISON WITH STATE-OF-
THE-ART

This section quantitatively assesses the performance of the
proposed DL memory surface compared to existing memory
surfaces. This is an interesting evaluation as this proves how
well our DL memory surface network learns the information
from the data in contrast to the conventional fixed encoding
of event memory surfaces. Furthermore, to confirm the
effectiveness of the information captured by the proposed
network irrespective of the vision task at hand, we con-
ducted comparison experiments on the activity recognition
task. As we have used a vision task different from anomaly
detection, it proves that the proposed representation is data
dependant, generic to any task, whereas [3] [1] is tailored to
the task at hand.

The different event representations (visualization pro-
vided in Fig. 4) that have been used for comparison are
Surface of Active Events (SAE) [5], Spiking Neural Network
(SNN) model based on Leaky Integrate-and-Fire neuron
model [5], frequency-based (Freq) [5], EvFlow [2]. Fig. 4
gives the visualization of different state-of-the-art conven-
tional hand-crafted event representations (EvSAE, EvSNN,
EvFreq, EvFlow, EvCount).



Fig. 4: Visualization of event data representations proposed in the literature.

MobileNet feature extraction has been applied to DL
memory surfaces and other conventional memory surfaces.
Support Vector Machine (SVM) has been trained for classi-
fying activities (walking vs. other activities) on these Mo-
bileNet features. Our method was performing better than
hand-crafted features across all the activities. However, to
emphasize that the features learned by the proposed DL
memory surface are superior to that of the hand-crafted
memory surfaces, we have given the comparison (Fig. 5)
in terms of different metrics such as recall, precision, and
F1 measure on the activities which showed substantial
improvement. This performance improvement is enabled
because the proposed method has more parameters to learn
during the training stage.

3 COMPUTATION TIME COMPARISON WITH STATE-
OF-THE-ART

An event camera’s main advantage is low latency, which
could be retained while processing if it involves asyn-
chronous processing. However, it results in reduced accu-
racy. To trade latency for accuracy, researchers have pro-
posed to accumulate events over a period of time. The
proposed approach is one such approach where we have
used a deep learning solution to learn representation from
the data. As we may be sacrificing speed for improved
accuracy, we also provide the computational complexity of
the proposed approach with respect to non-deep learning
approaches for a different number of input events. Table. 2
furnishes the computation time vs. the number of events,
which is performed on a CPU (Intel i7 CPU, 64bits, 2.3GHz,
and 64 GB of RAM) with GPU (GeForce RTX 1080 Ti). It can
be seen from Table. 2 that the proposed approach is still a
real-time solution because of the thin encoder network that
we have proposed for DL memory surface generation.
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Fig. 5. Comparison of the proposed DL memory surface
with hand-crafted memory surfaces in the context of activity
recognition.

Number of Events SAE SNN Freq EvOn EvOff DLmem
49806 0.008 2249 0.011 0.025  0.020 0.055
54698 0.008 20.77 0.010 0.023 0.019 0.055
52387 0.008 1871 0.013 0.030  0.023 0.055
50530 0.008 16.6 0.010 0.022 0.018 0.055
62310 0.011 149 0.013 0.028 0.024 0.055

TABLE 2: Comparison of run time (in ms) of the proposed
DL memory surface network with other hand crafted meth-
ods whose details are provided in the paper.
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4 APPENDIX

This section provides explainable Al for DL memory sur-
face, conditional GAN and sparse submanifold convolution.

4.1 Explainable Al for DL Memory Surface

This study performs an explainability-driven audit of our
DL memory surface network via an analytical analysis. As
Principal Component Analysis (PCA) has a strong theoreti-
cal background, we have attempted to demonstrate the re-
lation of sparse activation regularization auto-encoder with
PCA. For the purpose of this analytical proof, the notations
used are as follows: X = [x7,...x5)1, X = xF,...x)7
are the input and output N x d matrices of the network,
where x; is the i*" data point and N, d are the number of
data points and dimension of the data point respectively
and X = XW;Ws. Let Wy and Wobed x hand h x d
weight matrices of encoder and decoder respectively. The
loss term for a linear auto-encoder with a single hidden
layer can be written as follows,

) o2
min X — X[ + [ XW1 = S| ©)

The first term is the data term, and the second term is the
sparsity term. Let S be IV x h sparsity matrix, which defines
a randomly generated sparsity matrix with a given sparsity
factor. As analytical proof of the L; norm sparsity constraint
is intractable, we have formulated it to minimize the L,
norm between bottleneck layer activation and a generated
sparsity matrix S.

Let us consider the first term. The first term is minimized
when X = UTEer, where r is the rank of the matrix,
U,,V, are left singular vector and right singular vector
matrices of X respectively with r non-zero columns cor-
responding to non-zero singular values. 3, is the singular
value matrix of X. This implies that X = XW; W, =
U,«ZTV;F , which could be split as Wy = V,T and XW; =
U,.%,.. Pre-multiplying by X7 and assuming the features are
independent, which makes (XTX)~! invertible, W can be
written as

w, = (X'X)"'x'U,.%, )

Substituting SVD for X and using the fact that singular
vector matrices are orthogonal, could be simplified to

w, =vEIy)'sTulu,y, 3)

4

Splitting (X7%)~! and using the fact that UTU,. = I,
where I, is r x r identity matrix, we get W; = V. Now,
considering the second term || XW; — S||?, which is equiv-
alent of activation sparsity regularization term and pre and
post multiplying with U (Frobenius norm does not change
when mutiplied with orthogonal matrix), we get

2
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Where U,,, is the part of U matrix with columns from r
to IV corresponding to zero singular values. Substituting the
following SVD decomposition of X into the second term, we
get the Eq. 6,

T
G- e
3ol T [Uq ) o
vViw, — s)[ur uZl 6
||([0} 1= ot |S) | n®

This equation is minimized when the following equality
is satisfied.

T
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This implies >, Viw, = UfS and it leads to W; =
VX 1UTS. Now considering the data and sparsity term,
we have seen that they are minimized when W is V and
VX 1UTS respectively. The bottleneck layer output H =
XW, is given by XV and U, U’S, which is obtained by
substituting SVD decomposition of X. It can be seen that
the minimization of the data term leads to a solution similar
to the PCA of the covariance matrix. The minimization of
the sparsity term leads to a solution, which is the sparsity
matrix’s (S) projection onto the data matrix’s column space
(U,). The column space is constructed from left singular
vectors that correspond to non-zero singular values.

4.2 Explainable Al for conditional GAN

The derivations for the working of GAN have been pro-
vided in [?]. Here, we are extending it to conditional GAN.
Eq.?? can be expanded as

/z /y Pua(z, y) log[D(z, y)] (8)
+/z/yIPgd(x,y) log[1 — D(z,y)]

The optimal D* (x,y) is estimated by differentiating the
above equation with respect to D(z, y) and equating to zero,

* ]P)dd (l‘ ) y)
D* (z,y) = 9
) = Boaley) + Byl ) Y
Substituting the optimum value of D in the generator
equation, and multiplying and dividing the terms inside log
by 2 and using the fact log(AB) = log(A) +log(B), it yields




min  {~2log(2) + KL [Paa(x,y)|| 2 Feale) | (1)

+KL [Pgd(% y)]w}}

The second and third term together is nothing but
JSD(Pga(x,y)||Pga(z,y)), where JSD is Jensen-Shannon
Divergence. Thus, the objective function of G is minimized
when Pgq(x,y) = Pgq(z,y). This shows that cGAN learns
the joint distribution of input and output to which it is
exposed during training. Hence, it will not predict the
output sequence of anomalies as the probability distribution
of input-output pair of normal followed by anomaly or
anomaly followed by anomaly have not been learned by
cGAN.

4.3 Explainable Al for Submanifold Sparse Convolution

This section has tried to give an analytical analysis of the
difference between general convolution and submanifold
sparse convolution in 1d space.

Let x be a 1d signal, k be the 1d kernel and C = F'SF
(h denotes transpose of complex matrix) be the circu-
lant convolution matrix formed from the kernel such that
y = kex = Cx. F = [f1,f3,...] and ¥ are the Eigen
vector and Eigen value matrices of C respectively. As C is
circulant matrix, F is the Fourier matrix made up of Fourier
bases f; and X is the Fourier coefficients of C. Submanifold
sparse convolution can be written as ys = MCx, where
M is an Identity matrix with few of its rows (whose index
correspond to the zero element of ys) made zero. Ener%y
difference between the y and ys is given as [|[Cx — MCx|| 7.
Substituting C = FPEF and pre-multiplying by F (mul-
tiplication by unitary matrix does not change the Frobe-
nius norm), we obtain || XFx — FMFhZFXHi-,. Substituting
x¢ = Fx (Fourier transform of x) and kf = X (Fourier
transform of k), we obtain, ||keoxs — (FMF?) keoxe||%,
where © is element wise multiplication. When FMF" is
an identity matrix I, general and submanifold sparse con-
volution are same. Hence, we need to analyse the term
(FMF") k¢®xg. It can be written as follows,

1)

Here it is assumed that the third and fourth elements of
Yy, are zero. The above equation can be written as,

f1 ke
£/ ke
[fl f2 f3 N } 0 OxXf (12)
The above equation can  be simplified
as [(flhkf> f1 + (flhkf) f2 + (0) f3 + .. T OXg.
[(flhkf) f1 + (flhkf) f2 + (0) f3 + .. } is

[k1fy + kofy + 0f3 +...], where k; is i element of
the kernel k. This can be expanded as follows

kifin +kafor +0f31 + ...

kifiz +kafaa +0f32 4+ ... (13)

Where, f;; is k" element of i" bases. It could be seen
that based on the sparsity of the data, certain elements
of the Fourier bases are multiplied by 0. This will be the
loss incurred by employing submanifold sparse convolution
instead of general convolution.
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