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We offer a fractonic perspective on a familiar observation—a flat sheet of paper can be folded only along
a straight line if one wants to avoid the creation of additional creases or tears. Our core underlying technical
result is the establishment of a duality between the theory of elastic plates and a fractonic gauge theory with
a second rank symmetric electric field tensor, a scalar magnetic field, a vector charge, and a symmetric
tensor current. Bending moment and momentum of the plate are dual to the electric and magnetic fields,
respectively. While the flexural waves correspond to the quadratically dispersing photon of the gauge
theory, a fold defect is dual to its vector charge. Crucially, the fractonic condition constrains the latter to
move only along its direction, i.e., the fold’s growth direction. By contrast, fracton motion in the
perpendicular direction amounts to tearing the paper.
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Introduction.—Gauge theories play an eminent role in
physics, all the way from elementary particle theory at high
energies to the emergent descriptions of topological quan-
tum matter at low energies. The latter include instances
such as the toric code [1], which has an important role in the
context of topologically protected quantum computation.
It is thus natural to look for generalizations of the gauge

theories familiar from these settings. In this vein, fracton
phases [2–11] are perhaps the latest entrant. The most
salient of their novel properties is the appearance of the
eponymous fracton particles, which exhibit restricted, or
“fractional” mobility, see, e.g., the recent reviews in
Refs. [12,13]). It is those charges, but not their corre-
sponding point dipoles, which are subject to fractonic
mobility restrictions [14,15]. In addition, these tensor
gauge theories also support gapless “photons” much
like the usual electromagnetism. Such theories have also
found generalizations to include extended fractons (line,
surface like excitations) and varied dispersions of the
gapless modes [16,17].
Reference [18] demonstrated that a second rank tensor

scalar charge fractonic gauge theory is dual to the theory of
crystalline elastic solids in two spatial dimensions, with
fracton charges dual to immobile disclinations, while their
dipoles are dual to dislocations which are subject to lesser
mobility restrictions. The gauge structure, viewed from the
perspective of the elastic solid, arises from the fact the
dynamical equation of motion of the elastic solid written in
terms of the stress tensor and the momentum density can be
resolved by writing stress tensor and momentum density
using symmetric tensor gauge fields (similar ideas are also
found in earlier literature, cf. Refs. [19–22]). These devel-
opments have led to related explorations [16,23–29].

The present Letter likewise identifies a “real life”
example of a physical system that is dual to a fractonic
gauge theory with vector charges introduced in
Refs. [30,31] (see also Refs. [14,15]). This gauge theory
is formulated in terms of a symmetric second rank tensor
electric field and a scalar magnetic field. We show that such
a theory is dual to the theory of elastic plates [32,33].
Our duality, summarized in Table I, maps the plate bending
moment to the electric field of the gauge theory, the plate
momentum density to the magnetic field, and the flexural
wave in the plate to the photon of the gauge theory.
Crucially, “fold defects” of the plate are mapped to the
fractonic vector charges of the gauge theory. This provides
a fractonic perspective of the observation that a flat sheet of
paper can be folded only along a straight line keeping the
rest of the paper crease or tear free: the “end point of a fold”
is a vector fractonic charge that can move only along the
direction of the fold. Conversely, tearing of the paper can be
understood as motion of a fractonic vector charge that
violates the fractonic condition, that leaves behind a trail of
“tear defects.” The gauge theory supports a photon which

TABLE I. Duality correspondence.

Theory of plates with defects Fractonic vector charge theory

Bending moment (Mαβ) Electric field (ϵαγϵβδEγδ)
Momentum density (P) Magnetic field (B)
Fold density (ζα) Charge density (ϵβαρβ)
Velocity curvature − Curvature
velocity ½ϵαδϵβγðVd

γδ − ∂tRd
γδÞ�

Current density ðJαβÞ

Flexural wave Photon
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disperses as ωðfrequencyÞ ∼ jkj2ðwavevectorÞ. This corre-
sponds to the flexural wave of the elastic plate which—
unlike the phonon—has a quadratic dispersion.
Vector charge fracton theory.—Consider a symmetric

second rank electric field tensor Eαβ, and a scalar
magnetic field B in two dimensions, with position vector
x ¼ ðx1; x2Þ, and time t. Central to our discussion is a
vector charge ραðx; tÞ (α ¼ 1, 2) [14,15,30,31,34]. The
form of Gauss’s law which will endow the charge with
fractonic character reads ∂βEβα ¼ ρα (see below) where
repeated Greek (spatial) indices are summed over, and ∂α is
the derivative with respect to xα.
Electric and magnetic fields are encoded by a set of

gauge fields ðϕα; AαβÞ, with the vector field ϕαðx; tÞ the
analog of the scalar potential and the symmetric second
rank tensor Aαβðx; tÞ that of the vector potential of Maxwell
electromagnetism, via

Eαβ ¼ −
1

2
ð∂αϕβ þ ∂βϕαÞ − ∂tAαβ; B ¼ ϵαγϵβδ∂γ∂δAαβ;

ð1Þ

invariant under the gauge transformation induced by
fαðx; tÞ:

ϕα → ϕα þ ∂tfα; Aαβ → Aαβ −
1

2
ð∂αfβ þ ∂βfαÞ: ð2Þ

The complete theory is described by a Lagrangian density

L ¼ 1

2
καβγδEαβEγδ −

1

2μ
B2 − ραϕα þ JαβAαβ ð3Þ

with dielectric tensor καβγδ and magnetic permeability μ,
with καβγδ ¼ κβαγδ ¼ καβδγ ¼ κγδαβ. Jαβ is the symmetric
second rank current tensor. Gauge invariance under Eq. (2)
implies

∂tρβ þ ∂αJαβ ¼ 0: ð4Þ

The principle of least action provides two Maxwell
equations

∂ακαβγδEγδ ¼ ρβ ð5Þ

∂tκαβγδEγδ −
1

μ
ϵαγϵβδ∂γ∂δBþ Jαβ ¼ 0: ð6Þ

From Eq. (1), the vector charge version of Faraday law
reads

ϵαγϵβδ∂γ∂δEαβ þ ∂tB ¼ 0: ð7Þ

The fractonic character of the vector charge is revealed
as follows. For a system with area S, Eq. (4) implies

conservation of the total charge
R
S d

2xρα. Now, there is
an additional conserved quantity Σ the moment of the
vector charge

Σ ¼
Z
S
d2xϵαβxαρβ: ð8Þ

Indeed, the time derivative of Σ vanishes owing to the
divergence theorem and the symmetric nature of the current
Jαβ. The consequence of this conservation law is that an
isolated point charge has fractonic character—it is in fact a
lineon [35] as it can only move along its own vector Qα.
This can be illustrated by a point vector charge ραðxÞ ¼
Qαδ

ð2Þðx − x0Þ located at x0 (δð2Þ denotes the two dimen-
sional Dirac delta function). The conservation law Eq. (8)
imposes that any change of x0 must obey x0α → x0α þ sQα

with s ∈ R, to keep Σ constant.
The theory supports a scalar, quadratically dispersing

photon. For an isotropic system with (δαβ is the Kronecker
delta)

καβγδ ¼ κ1δαβδγδ þ
κ2
2
ðδαγδβδ þ δαδδβγÞ; ð9Þ

ωðkÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifðκ1þκ2Þ=½κ2ð2κ1þκ2Þμ�g
p jkj2 carrying fields Bðx;tÞ¼

B0eiðkx−ωðkÞtÞ and Eαβðx;tÞ¼ðB0=iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifðκ1þκ2Þ=½κ2ð2κ1þκ2Þμ�g

p
×

fδαβ−½ð2κ1þκ2Þ=ðκ1þκ2Þ�k̂αk̂βgei½kx−ωðkÞt� (with i ¼ ffiffiffiffiffiffi
−1

p
).

Elastic plates.—The physics of a three-dimensional
elastic solid [32] is described by a displacement field
uiðr; tÞ, a symmetric strain tensor field ϵijðr; tÞ and a
symmetric stress tensor field σijðr; tÞ, where r is a position
vector of a material particle in three dimensions (latin indices
i, j, etc., run over all spatial coordinates, i ¼ 1, 2, 3). The
strain tensor ϵij ¼ 1

2
ð∂iuj þ ∂juiÞ and the stress tensor are

related by an elastic constitutive relation σij ¼ Cijklϵkl,
where the elastic tensor Cijkl obeys Cijkl ¼ Cjikl ¼ Cijlk ¼
Cklij. For isotropic solids, which is our focus here, Cijkl¼
ðE=1þνÞf½ν=ð1−2νÞ�δijδklþ 1

2
ðδikδjlþδilδjkÞg, where E

and ν are, respectively, Young’s modulus and Poisson’s ratio.
The Lagrangian density of the system is given by

L ¼ 1

2
λ∂tui∂tui −

1

2
Cijklϵijϵkl ð10Þ

with λ the mass density of the solid. For a “slender” body
(see the plate in Fig. 1) with thickness h much smaller than
its lateral dimensions, Lα, an effective low energy theory—
plate theory—that becomes increasingly accurate as
h=Lα → 0 can be developed. This Ansatz uses a coordinate
system ðr1; r2; r3Þ ¼ ðx1; x2; zÞ≡ ðx; zÞ, where z is the
coordinate normal to the plane (henceforth called the
vertical). It uses the midplane displacement normal to itself,
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denoted by wðxÞ ¼ u3ðx; 0Þ to encode the full dynamics of
the three-dimensional plate via [32,33]

u1ðx; zÞ ¼ −z∂1w; u2ðx; zÞ ¼ −z∂2w: ð11Þ

In addition, the stress component σ33 vanishes everywhere.
With these given, we have σαβ ¼ C̄αβγδϵαβ, where C̄αβγδ ¼
½E=ð1 − ν2Þ�½ð1 − νÞδαβδγδ þ ðν=2Þðδαγδβδ þ δαδδβγÞ�. The
effective Lagrangian density on the midplane reads

L ¼ λp
2
∂tw∂tw −

1

2
Dαβγδð∂α∂βwÞð∂γ∂δwÞ; ð12Þ

where λp ¼ λh is the mass per unit area of the plate, and

Dαβγδ ¼ D

�
νδαβδγδ þ

ð1 − νÞ
2

ðδαγδβδ þ δαδδβγÞ
�
; ð13Þ

the bending modulus tensor, with D ¼ Eh3=½12ð1 − ν2Þ�
the bending modulus. The quantity ∂α∂βwð≡RαβÞ is the
curvature tensor induced by the deformation w. The
bending modulus obtains the bending moment from
the curvature via Mαβ ¼ Dαβγδ∂γ∂δw. The plate supports
“flexural waves,” wðx; tÞ ¼ w0eiðkx−ωðkÞtÞ which disperse as
ωðkÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi

D=λp
p jkj2.

The usual discussion of the theory of plates considers
smooth single valued displacement fields wðx; tÞ. Here we
discuss the types of defects that arise in the theory of plates.
For this, we introduce an additional quantity, θα ¼ ∂αw,
the “slope of the deformed midplane” (see Fig. 1), or
equivalently the rotation of material fiber vertical to the
midplane.
Tear defect.—First, a tear defect of strength a located at a

point x0, implies for a closed contour C (which avoids the
point x0),

I
C
dxαθα ¼

�
a if C encloses x0

0 if C does not enclose x0
: ð14Þ

Figure 2(a) shows an example of an isolated tear defect.
This illustrates the multivalued nature of the displacement
field w resulting in the tear of the plate. The multivalued
w field is such that both the slope field and the curvature
fields are smooth everywhere except at the location of the
defect where they diverge. We define a density of such tear
defects

Z
A
d2xτ ¼

I
C
dxαθα ¼ ⟦w⟧C ð15Þ

with A the area enclosed by C, and ⟦w⟧C the jump in the
displacement field obtained upon traversing the contour C
and

τ ¼ ϵαβ∂αθβ: ð16Þ

For the single tear defect located at x0 discussed above
τðxÞ ¼ aδð2Þðx − x0Þ [see Fig. 2(a) where a ¼ 1 and x0 is
the origin].
Fold defect.—Second, a fold defect [Fig. 2(b)] of

strength ψα located at x0 produces

FIG. 1. Schematic of an elastic plate of thickness h. The
deformation of the plate is described by the vertical (along the
z direction) displacement wðx1; x2Þ of the midplane [Eq. (11)].

FIG. 2. (a) Tear defect located at the origin with wðx1; w2Þ ¼ ð1=2πÞ arctanðx2=x1Þ and tear defect density (eqn. (16)) τ ¼ δð2ÞðxÞ that
satisfies Eq. (14) with a ¼ 1. (b) Fold defect located at the origin with wðx1; x2Þ ¼ ð1=2πÞ½x1 lnðjxjÞ − x2 arctan ðx2=x1Þ� and defect
density ζα ¼ −δα2δð2ÞðxÞ that satisfies Eq. (17) with ψα ¼ −δα2. For the tear defect (a) the slopes θα ¼ ∂αw and curvatures Rαβ ¼ ∂α∂βw
are smooth everywhere (except the origin), while for fold defect (b) only the latter applies. Function arctan returns a value in ½−π; π�,
with limε→0 arctanð−ϵ= − 1Þ ¼ −π.
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I
C
dxαRαβ ¼

�
ψβ if C encloses x0

0 if C does not enclose x0
: ð17Þ

Its curvature tensor is smooth everywhere except at the
location of the defect. Further, the defect goes along with a
fold in the plate, which terminates at the defect. For a
continuous distribution of fold defects, the fold density ζα
is given by

I
C
dxαRαβ ¼

Z
A
d2xζα ¼ ⟦θα⟧C; ð18Þ

where ⟦θα⟧C is the net jump in the slope when traversing
the closed contour C that encloses the area A. We thus get

ζα ¼ ϵβγ∂βRγα: ð19Þ

Again, for the fold defect shown in Fig. 2(b),
ζα ¼ −δα2δð2ÞðxÞ.
An important point to be noted is that for the given defect

configuration, there are many distinct displacement fields
wdðxÞ that will satisfy conditions of the type Eqs. (15)
and (18). For example, the tear defect τ ¼ aδð2ÞðxÞ is
equally well described by a different displacement field
than that shown in Fig. 2(a) by a different choice of the
branch of the arctan function. This situation is akin to the
description of a superfluid vortex, or a magnetic monopole,
and suggests the presence of an underlying gauge structure
in the theory [19].
We now write the displacement w as

wðx; tÞ ¼ wsðx; tÞ þ wdðx; tÞ; ð20Þ

where wsðx; tÞ is the smooth or single-valued part of
the deformation and wdðx; tÞ is a multivalued field that
describes the defects, and insert this into the Lagrangian
density [Eq. (12)].
Duality.—To establish the duality between plate and

fracton theories, we introduce two Hubbard-Stratonovich
fields Pðx; tÞ (momentum density) and Mαβðx; tÞ (bending
moment) to treat the kinetic and potential energy terms in
the Lagrangian Eq. (12):

S½w;P;Mαβ� ¼
Z

dtd2x

�
1

2
D−1

αβγδMαβMγδ −
1

2λp
P2

þ Pð∂tws þ ∂twdÞ

−Mαβð∂α∂βws þ ∂α∂βwdÞ
�

ð21Þ

Integrating out the smooth displacement field ws gives

∂tPþ ∂α∂βMαβ ¼ 0; ð22Þ

which embodies momentum conservation (perpendicular to
the mid-plane). We can now identify

Bðx; tÞ≡ Pðx; tÞ; ϵαγϵβδEγδðx; tÞ≡Mαβðx; tÞ: ð23Þ

This shows that Eq. (22) can be resolved (identically
satisfied) if B and Eαβ are expressed through the gauge
fields ϕα and Aαβ as in Eq. (1). Using Eq. (23) and Eq. (1),
the action Eq. (21) in terms of the gauge fields reads

S½wd;ϕα; Aαβ�

¼
Z

dtd2x

�
1

2
καβγδEαβEγδ −

1

2μ
B2 þ ðϵαδϵβγ∂α∂βAγδÞ∂twd

þ ϵαγϵβδ

�
1

2
ð∂γϕδ þ ∂δϕγÞ þ ∂tAγδ

�
∂α∂βwd

�
; ð24Þ

where, using Eq. (9), the following identifications are made
καβγδ ≡D−1

αβγδ, κ1 ≡ −½ν=Dð1 − ν2Þ�, κ2 ≡ ½1=Dð1 − νÞ�,
μ≡ λp. Finally, the action Eq. (24), after suitable integra-
tion by parts of the last two terms, reduces exactly to the
action governed by the Lagrangian density Eq. (3) of the
vector charge fracton theory. The dual charges and currents
of the fracton theory are

ρα ≡ ϵαδϵβγ∂βRd
γδ ¼ ϵαδζδ; ð25Þ

Jαβ ¼ ϵαδϵβγðVd
γδ − ∂tRd

γδÞ; ð26Þ

where we have used Eq. (19), and Rd
αβ ¼ ∂α∂βwd, Vd

αβ ¼
∂α∂βð∂twdÞ are, respectively, the defect curvature field and
defect “velocity curvature” field. The duality is summa-
rized in Table I. We note here the duality of the vector
charge gauge theory to a scalar field was noted in Ref. [30],
although the connection to the theory of plates was not
discussed.
Discussion.—We first address the connection between

the vector charges of the gauge theory and the fold
defects of plates. Consider a fold on a plate that lies long
the x1 axis terminating at the origin Fig. 2(b), such that the
normals to the plate just below and just above the negative
x1 axis are tilted by a small angle ψ , corresponding to
ζα ¼ ψδα2δ

ð2ÞðxÞ indicating a jump ψ in the 2-component
of the slope of the plate when traversing across the negative
x1 axis. This corresponds to a linenonic vector charge,
eqn. (25), of ρα ¼ ψδα1δ

ð2ÞðxÞ i.e., a “charge along the x1
direction” located at the origin. Following the discussion
near Eq. (8) we see that this charge is allowed to move only
along the x1 axis. Viewed, again, from the perspective of
plates, we see that a point fold defect can only move—and
the fold extended—in a direction perpendicular to its
strength (which is a vector). We thus obtain a fractonic
perspective on the observation that a flat sheet of paper can
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be folded smoothly (without the creation of additional
creases or tears) only along a straight line.
Then, what about the tear and lineons? The connection

can be seen by noting two points: First, note that the
tear defect, Eq. (16) in fact is a dipole of fold defects.
For instance, the tear defect τðxÞ ¼ aδð2ÞðxÞ arises from a
fold pair with ζαðxÞ ¼ ψδα2½δð2Þðxþ εê2Þ − δð2ÞðxÞ�,
where ê2 is the unit vector along the x2 direction,
such that limε→0 ψϵ ¼ a. More generally, a dipole of
fold defects located at a point x0 has ζαðxÞ ¼
limε→0ψαεn̂β∂βδ

ð2Þðx − x0Þ ¼ aαn̂β∂βδ
ð2Þðx − x0Þ, where

n̂β is a unit vector. This results in ðlimε→0ψβε ¼ aβÞ,
ραðxÞ ¼ ϵαβaβn̂γ∂γδ

ð2Þðx − x0Þ which is a tear defect of
strength of aγn̂γ . From Eq. (8), Σdipole ¼ aγn̂γ ≈ εψαn̂γ ,
independent of x0.
Second, consider the displacement of a fold defect

ζα ¼ ψαδ
ð2Þðx − x0Þ from x0 to x0 þ εn̂ along the unit

vector n̂. Using Eq. (8) we see that the moment Σ changes
by an amount εψαn̂α. The moment Σ can be conserved by
creating an additional defect whose moment is −εψαn̂α,
which we see immediately is a dipole or tear defect.
A fold defect thus sheds tear defects to compensate its

moment change when displaced in the “wrong” direction.
Figure 3 shows the configuration of the plate obtained
by transporting a fold defect with strength −δα2 from
x2 ¼ −∞ along the x2 axis to the origin, shedding a
uniform density of tear defects along its path: the lineon
tears the plate in the process. (This configuration satisfies
Eq. (17) precisely as the fold defect shown in Fig. 2(b) and
both have identical curvature distributions.)
We hasten to point out that, while the duality provides

insights into commonly observed phenomena related to
folding and tearing, it does not take into account the
“nonlinear” irreversible or plastic processes that accom-
pany the motion of defects (treatment similar to Ref. [24]).
Indeed, the crumpling of paper [36–38], governed by the

interplay of out of plane deformation and in-plane stretch-
ing, is not considered at all in the linear theory presented

here. The structures that arise in crumpled paper attempt to
minimize the in-plane stretching energy maximizing regions
where Gaussian curvature vanishes. It will be interesting to
explore generalizations of our formulation to situations
where in plane deformation and out of plane deformation
are coupled (Flöppl-von Karman theory [32,33]).
We conclude by noting that our work provides an

example of a physical system with a dual embodiment
of fractonic physics, adding to a growing list [24,39–43]. It
will be interesting to explore other systems to find further
examples. The general structure of fracton theories dis-
cussed in Ref. [17] might provide clues to look for the dual
physical realizations.
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