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Topological quantum phase transitions and criticality in a longer-range Kitaev chain
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In an attempt to theoretically investigate the quantum phase transition and criticality in topological models,
we study a Kitaev chain with longer-range couplings (finite number of neighbors) as well as truly long-range
couplings (infinite number of neighbors). We carry out an extensive topological characterization of the momen-
tum space to explore the possibility of obtaining higher order winding numbers and analyze the nature of their
stability in the model. The occurrences of phase transitions from even-to-even and odd-to-odd winding numbers
are observed with decreasing longer-rangeness in the system. We derive topological quantum critical lines and
study them to understand the behavior of criticality. A suppression of higher order winding numbers is observed
with decreasing longer-rangeness in the model. We show that the mechanism behind such phenomena is due
to the superposition and vanishing of the topological quantum critical lines associated with the higher winding
number. Through the study of the Berry connection, we show the possible different behaviors of critical lines
when they undergo superposition along with the corresponding critical exponents. We analyze the behavior of
the long-range models through the momentum space characterization. We also provide the exact solution for the
problem and discuss the experimental aspects of the work.
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I. INTRODUCTION

Topological states of matter are considered as novel phases
of matter in modern physics. The concept started as a theoreti-
cal prediction and expanded towards experimental realizations
[1,2]. For almost a century, Landau theory of spontaneous
symmetry breaking explained almost all the phases of matter
except topological phases [3–5]. Landau theory relies on the
existence of the local order parameter, which is absent in
topological state of matter [6]. This created a need for some al-
ternate way to establish topological characterization. Topolog-
ical invariant is a promising quantity, which explains gapped
topological phases in a very accurate way, but it fails when
comes to topological quantum phase transition (TQPT) [7].

TQPT is basically quantum phase transition at quantum
critical points (QCP), since they occur at zero temperature
[8–10]. At QCP, instead of vanishing local order parameter,
topological system has a special kind of diverging topolog-
ical correlation factor in its electronic band structure [11].
This topological correlation factor is directly associated with
topological invariant. Hence topological invariants are well
quantized at the gapped phases and ill-defined at QCP. So far
for a 1D system, winding number (WN) is the most accepted
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form of topological invariant which is the integration of Berry
connection (vector potential) over the Brillouin zone. Hence
considering this form of the correlation factor, it is possible
to extract the information around the QCP [12]. This insight
helped scientific community to think about topological state
of matter from the perspective of criticality. Even earlier there
were many attempts like renormalization group [13–15], cur-
vature function renormalization group [16] and other scaling
approaches to explain TQPT [17,18]. But now it is evident
that there is a possibility to explain criticality through correla-
tion function, curvature function [16], critical exponents, and
universality class of TQPT [11,12].

Topological states of matter are the area of curiosity
because of the emergence of exotic quasiparticles unlike
fermions and bosons [19]. The area became more prominent
with its real life applications [20]. It is possible to generate
higher order localized edge modes through periodic driving
and longer-range couplings, where the previous method yields
dynamical localized modes and the later yields static modes
[21,22]. Higher order localized modes have their own interests
in topological state of matter. On the other hand, long-range
topological models are the more generalized version of novel
phases of matter [23]. This includes realization of new phases
like edge insulating topological phases [24,25] with fractional
topological invariants [26] and quasiparticles like Majorana
zero modes (MZM), massive majorana modes [27]. In this
work, we carry out a theoretical study of a topological longer-
range as well as truly long-range model. Our motivation is two
folded: topological characterization of the momentum space
and study of the quantum criticality for the long-range models.
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We theoretically study the topological quantum phase tran-
sition and criticality in Kitaev chain with “longer-range”
couplings which are finite-ranged but more than nearest-
neighbors. Here we stick to the terminology used in the
existing literature [26,28]. We derive topological quantum
critical lines and find a suppression of higher order winding
numbers with decreasing longer-rangeness in the model. As
a reason behind this we argue for the superposition of two
critical lines with different winding numbers followed by
vanishing of the critical line with higher winding number. We
analyze the possibilities of obtaining higher order winding
numbers and study their stability in the model. Our analysis
shows the phase transition from even-to-even and odd-to-odd
winding numbers with decreasing longer-rangeness in the
system. We also provide a few exact solutions for winding
number.

This paper is organized as follows. In Sec. II, we explain
our model Hamiltonian and aim of the study. In Sec. III, we
carry out the topological characterization of momentum space
by calculating winding number. We also obtain the phase
diagram with a detailed study of the critical lines. In Sec. IV,
We elaborate on the topological quantum criticality of our
longer-range system and extend it with respect to stability of
higher order winding numbers. We perform momentum space
characterization to explain the behavior of long-range models.
In Sec. V, we study the parameter space in order to understand
critical phases with a few relevant exact solutions. In Sec. VI,
we provide the outlook and experimental aspects of the work.
Then we conclude in Section VII.

II. THE MODEL AND AIM OF THE STUDY

We consider 1D Kitaev model with r neighboring inter-
actions (both hopping and pairing) [26]. This kind of model
for infinitely long-range model was studied in Ref. [23] and
for longer-range Kitaev chain was studied in Ref. [26]. This
model helps to understand the emergence and behavior of
Majorana modes and topological invariant in the longer-range
as well as in the truly long-range systems. We define our
model Hamiltonian as

H = −
L∑

j=1

μ(c†
j c j − 1/2)

−
L−l∑
j=1

r∑
l=1

(Jlc
†
j c j+l + �l c

†
j c

†
j+l + H.c.), (1)

where μ is the chemical potential, L is the number of lattice
sites, Jl and �l are the strengths of hopping and pairing terms
respectively with long-range interactions of the form

Jl = J0

dα
l

,�l = �0

dβ

l

.

These hopping and pairing terms couple the lattice site
j with j + l . For a system with open boundary condition,
the distance dl = l . For closed boundary, dl = min(l, L − l ).
α and β are the non-negative parameters which represent
the power-law decay of hopping and pairing terms, respec-
tively. When α → ∞, system behaves as a Kitaev chain with
only long-range pairing and when β → ∞, system behaves

as a Kitaev chain with only long- range hopping. When
both α, β → ∞ system behaves as original Kitaev chain
[19,23,26].

After a Fourier transformation, one can write the model in
the momentum space as

H =
∑
k>0

(
−μ − 2J0

r∑
l=1

cos[kl]

lα

)
(ψk

†ψk + ψ−k
†ψ−k )

+2i�0

∑
k>0

r∑
l=1

(
sin[kl]

lβ

)
(ψk

†ψ−k
† + ψkψ−k ), (2)

where ψ†(k) (ψ (k)) is the creation (annihilation) operator of
the spinless fermion of momentum k. We can write the BdG
Hamiltonian as

HBdG(k) =
(

χz(k) iχy(k)
−iχy(k) −χz(k)

)
. (3)

We can express the Hamiltonian by Anderson pseudospin
approach [29,30]. One can write the BdG Hamiltonian in the
pseudospin basis as

HBdG(k) = χx(k) �τ1 + χy(k) �τ2 + χz(k) �τ3, (4)

where τi = (τ1, τ2, τ3) are the Pauli matrices in particle-hole
space and the coefficients are

χx(k) = 0,

χy(k) = 2�0

r∑
l=1

sin[kl]

lβ
,

χz(k) =
(

− μ − 2J0

r∑
l=1

cos[kl]

lα

)
. (5)

It is to be noted that for r → ∞ the series involving cos(kl )
lα

and sin(kl )
lβ terms give rise to polylogarithmic functions [23,26].

The quasiparticle excitation energy is given by

Ek = ±
√

(χz(k))2 + (χy(k))2. (6)

In the current work, our interest is to analyze the Kitaev model
with finite number of interacting neighbors. We consider the
Hamiltonian with longer-range hopping and pairing up to
finite r neighbors with α = β and J0 = �0 = λ, so that within
this regime the system resembles isotropic Kitaev chain with
r neighboring interactions. Hence as one varies the value of
r, it is possible to generate Kitaev chain whose neighboring
terms have a power law decay in the associated couplings.

Here we explain the aim of our work. (i) For a longer-
range Kitaev model with r nearest neighbors, there exists
r topological phases [21,26] and one can recover original
Kitaev chain when α, β → ∞, [19,23]. It is a very effective
method to choose more number of neighbors to achieve higher
order WNs. Here our interest is to understand and analyze
the possibility of obtaining all the r topological phases in an
isotropic Kitaev chain. (ii) For a transition between topolog-
ical phases of higher WN and lower WN, there may exist
a staircase of TQPTs [21]. Here we attempt to carry out
an analysis to extract the order of such TQPTs and study
the stability of these high-WN topological phases. (iii) For a
longer-range model with r interacting neighbors, there exist
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r topological phases and critical lines which distinguish the
topological phases [28]. Hence, when a longer-range model
is reduced to its original short-range version, there may be
a change in the behavior of its corresponding critical lines
also. To explain this, we derive all possible critical lines
and study their behavior from the perspective of quasipar-
ticle energy spectrum, curvature function and ground-state
energy. (iv) In a truly long-range model, there may exist some
emergent quasiparticles-like massive edge modes, based on
the selection of parameter space. However, we try to analyze
this phenomenon from the perspective of momentum space
characterization.

III. TOPOLOGICAL CHARACTERIZATION IN
MOMENTUM SPACE AND TOPOLOGICAL QUANTUM

CRITICALITY

Winding number is the most accepted form of topological
invariant [31,32]. In this section, we derive WN for different
choices of parameters to understand the possible topological
index of the system. We explore the superposition and van-
ishing of TQCLs through the study of Berry connection and
ground-state energy. We study and analyze the ground-state
energy to explain the stability of higher order WNs [21,33–
35]. We study the parameter space through pseudospin vectors
and also derive quite a few exact solutions for the WN.

A. Winding number

For a system in 1D, WN is defined as

W = 1

2π

∮
∂θk

∂k
dk = 1

2π

∮
χz∂kχy − χy∂kχz

χ2
z + χ2

y

dk, (7)

where θk = tan−1( χy

χz
). This relation holds good even for

longer-range models with r nearest interacting neighbors,
although this definition of W is ill-defined at TQPT. In all
possible gapped phases, topological index secures a quantized
value (integers like W = 0, 1, 2, 3, . . . , r) and this depends
on the number of interacting neighbors. This is because, the
WN is always associated with the modulo of 2π . The phase
W = 0 represents nontopological phase. One can achieve
higher order WNs by increasing the number of interact-
ing neighbors. The transition from one topological phase
to other occurs through topological quantum critical lines
(TQCL) [30]. These TQCL are the gap closing points in the
quasienergy spectrum. It is important to note that, for all
TQCLs there are the gap closings but all the gap closings
need not be TQCLs [16]. The gap closing results in the QPT
and if this QPT differentiates two distinct topological phases,
then this gap closing points are known as topological quantum
phase transition (TQPT) points.

WN always corresponds to the number of localized edge
modes of the topological gapped phases. Recently there are
some works which show the localized edge modes even at
the criticality [36–49]. Hence it is clear and meaningful to
find the WN around criticality and physically it is possible
to find the corresponding edge modes. There are some cases,
where one can get the fractional WNs at critical points. Even
though, there are no proper experimental evidences for frac-
tional edge modes, it is possible to define the fractional WN

around criticality. The definition of WN for TQPT can be
modified by excluding an infinitesimal neighborhood of the
gapless/critical points. Then the modified expression for WN
is given by [39]

W = 1

2π
lim
δ→0

∫
∀i:|k−ki|>δ

∂θk

∂k
dk, (8)

where {ki} is the set of critical/gapless points in the momen-
tum space. Thus, we can define the WN at and around the
critical point.

Here we consider a limited number of interacting neigh-
bors r = 2, 3, 4 and obtain the possible topological phases
with integer WNs. The TQPTs among these topological
phases for r = 2, 3, 4 are shown in following cases, respec-
tively.

We also calculate all possible critical lines to understand
the phase diagram of the system and its dependence on the
decay parameter α. In quantum systems, the transition occurs
from one phase to another through the QCP, which are the
gapless points in the excitation energy spectrum. The quasi-
particle excitation energy spectrum of our model is given by
Eq. (6).

1. Case 1: when r = 2

Figure 1 shows the phase diagram for r = 2. Here we
can see the interaction is up to the second nearest neighbor
in the chain and Hamiltonian is given by Eq. (1), with r =
2, λ = � = J , and α = β. Here, the gap closings occur at
three different values of k. (Appendix) which corresponds to
three different TQCLs.

For this r = 2, WN is given by

W = 1

2π

∫ π

−π

( 4λ2QA
P2 + 2λB

P

)
( 4λ2Q2

P2 + 1
) dk, (9)

where

A = (−21−α sin(2k) − sin(k)),

B = (21−α cos(2k) + cos(k)),

P = (−2λ(2−α cos(2k) + cos(k)) − μ),

Q = (2−α sin(2k) + sin(k))

Figure 1(a) shows the WN for the case r = 2. For α =
0, 0.1, one can observe transitions among W : 0 ↔ 1 and W :
0 ↔ 2. For α = 0.5, one can observe the transitions among
W : 0 ↔ 1, W : 2 ↔ 1, and W : 0 ↔ 2. We note that the
plateau of W = 2 region for α = 0.5 is reduced as compared
to that for α = 0. This indicates the decrease in the stability of
the higher order WN as α increases. For α = 0.9, the W = 2
topological phase has very short plateau and for α = 1, 1.1,

it is clearly seen that W = 2 region is absent and we observe
only W = 1 and W = 0 phases similar to the original Kitaev
chain.

Here we have three TQCLs, i.e., the red (first TQCL for
k = 0), blue (second TQCL for k = π ), and green lines [third
TQCL for k = cos−1(−2α−1)] (see Appendix). Throughout
the case first TQCL (red) separates W = 1 and W = 0 and
it is unaltered with variation of α. When α = 0, the second
critical line (blue) lies on the λ axis [Fig. 1(b1)]. As one
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FIG. 1. Topological phase diagram of longer-range Kitaev chain with r = 2 neighbors. (a) Winding number study with respect to λ for
different values of α. (b) Behavior of topological phases in μ-α parameter space with fixed λ. [(b1)–(b6)] Corresponding topological phase
diagrams of model in μ-λ parameter space with increasing values of α. This way of representation helps to understand the behavior of TQCLs.
Red, blue, and green lines represent the first, second, and third TQCLs, respectively. With the increasing value of α, the second TQCL starts
moving in anticlockwise manner to superpose with third TQCL. This causes the suppression of W = 2 phase. The third TQCL vanishes for
α > 1 and the model reduces to short-range Kitaev chain.

gradually increases α the second critical line starts moving
in anticlockwise direction [Figs. 1(b2)–1(b4)] and superposes
with third critical line (green) [Fig. 1(b5)]. This results in the
vanishing of W = 2 topological phase which in turn leads to
vanishing of the third TQCL. We observe that the third TQCL
vanishes for α > 1 [Fig. 1(b6)], which is consistent with the
fact that the point k = cos−1(−2α−1) does not exist for α > 1.
The second TQCL keeps on moving anticlockwise with fur-
ther increase of α till α = 1.5 beyond which it stops moving
with α indicating the limit of the original Kitaev chain.

2. Case 2: when r = 3

Figure 2(a) shows the phase diagram for r = 3 where we
can see the interaction is up to the third nearest neighbor in
the chain. Here gap closings occur at four different values of k
(Appendix), which corresponds to four different TQCLs. Here
the Hamiltonian is given by Eq. (1), with J0 = �0 = λ and

α = β. For this case,

W = 1

2π

∫ π

−π

(
A

Q2 + B
Q

)
(

4λ2P2

Q + 1
)dk, (10)

where

P = (2−α sin(2k) + 3−α sin(3k) + sin(k)),

Q = (−2λ(2−α cos(2k) + 3−α cos(3k) + cos(k)) − μ),

A = 4λ2P(−21−α sin(2k) − 31−α sin(3k) − sin(k)),

B = 2λ(21−α cos(2k) + 31−α cos(3k) + cos(k)).

Here the model should contain four topologically distinct
phases, i.e., W = 0, 1, 2, and 3, respectively. However, we
observe the suppression of W = 2 region. For α = 0, 0.1,
there is transition among W : 3 ↔ 0 and W : 1 ↔ 0. For α �
0.3, we see only W = 1 and W = 0 phases. When α = 0,
the second and fourth critical lines superpose on each other
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FIG. 2. Topological phase diagram of longer-range Kitaev chain
with r = 3 neighbors. (a) Winding number study with respect to λ

for different values of α. (b) Behavior of topological phases in μ-α
parameter space with fixed λ. [(b1)–(b4)] Corresponding topological
phase diagrams of model in μ-λ parameter space with increasing
values of α. This helps to understand the behavior of TQCLs. Red,
blue, green, and black lines represent the first, second, third, and
fourth TQCLs, respectively. [(b1) and (b2)] Initially the second and
fourth TQCLs superpose on each other and gradually second TQCL
shifts upward with increasing value of α. [(b3) and (b4)] Third and
fourth lines superpose on each other and vanish with the increasing
value of α.

and results in the suppression of W = 2 phase. But when we
gradually increase the value of α, the third and fourth critical
lines vanish as shown in Figs. 2(b1)–2(b4). So throughout this
precess, W = 2 region is absent. Hence the model transforms
to original Kitaev model.

3. Case 3: when r = 4

Figure 3(a) shows the phases for r = 4. Here we can see the
interaction is up to the fourth nearest neighbor in the chain and
the gap closing occurs at five different values of k (Appendix)
which corresponds to five different TQCL. Technically the
model should contain five topologically distinct phases, i.e.,
W = 0, 1, 2, 3, and 4, respectively. For this case, WN is
given by

W = 1

2π

∫ π

−π

(
P
B2 + Q

B

)
(

4λ2A2

B2 + 1
)dk, (11)

where

A =
(

sin(2k)

2α
+ sin(3k)

3α
+ sin(4k)

4α
+ sin(k)

)
,

B = −2λ

(
cos(2k)

2α
+ cos(3k)

3α
+ cos(4k)

4α
+ cos(k)

)
− μ,

P = 4λ2A

(
− sin(2k)

2−1+α
− sin(3k)

3−1+α
− sin(4k)

41−α
− sin(k)

)
,

Q = 2λ

(
cos(2k)

2−1+α
+ cos(3k)

3−1+α
+ cos(4k)

4−1+α
+ cos(k)

)
.

When α = 0, we observe the transition among W : 4 ↔ 0
and W : 1 ↔ 0. When α = 0, 0.1, there is a transition among
W : 0 ↔ 4 and 4 ↔ 2. When α = 0.4, 0.9, there occurs a
transition among W : 2 ↔ 1, 2 ↔ 0 and W : 1 ↔ 0. When
α = 1, 1.1, there is a transition only among W : 1 ↔ 0, which
represents original Kitaev chain. For α = 0, 0.1, there is a
superposition among third and fourth critical lines which re-
sults in the suppression of W = 3 and W = 2 phases. In the
beginning, the second critical line lies on the λ axis along
with fifth critical line and gradually shifts upward with the
increase of α [Figs. 3(b1)–3(b6)]. This results in the formation
of W = 2 region. The fourth critical line fails to distinguish
the topological phases and the fifth critical line vanishes for
α > 0.1, thus throughout the process W = 3 phase is sup-
pressed. Hence once again the model shifts to original Kitaev
chain.

From this section, one can summarize the observations
as following. (1) We notice that by increasing the number
of interacting neighbors r it is possible to get higher order
WNs whereas if we increase the decay parameter α the higher
order WNs vanish. (2) The reduction of higher order WNs to
lower order occurs through the process of superposition and
vanishing of TQCLs. (3) Higher order WNs are less stable
(decay early) compared to its lower orders. In the same way,
the TQCLs associated with higher order WN are also less
stable and undergo superposition/vanishing early compared
to its lower orders. (4) We also notice that it is not possible
to achieve all the intermediate higher order WNs. This is
because some of the TQCLs responsible for those particular
intermediate WN undergoes superposition and results in the
suppression of corresponding topological phases.

IV. CHARACTERISTIC STUDY OF CRITICAL LINES

The conclusion drawn from the previous section leads to
further analysis of the TQCLs as a function of α. Our goal is
uncovering the nature of the resultant TQCL when there ex-
ists multicriticality, i.e., when two TQCLs of distinct natures
superpose on each other. Also we would like to analyze the
stability of the different TQCLs as α varies. To understand
these factors, we analyze the Berry connection and ground-
state energy of the system in this section.

A. Superposition of critical lines: an analysis of Berry
connection

Now we present the physical explanations of superposition
of TQCLs from the perspective of curvature function. Curva-
ture function of Bloch state is an important quantity whose
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FIG. 3. Topological phase diagram of longer-range Kitaev chain with r = 4 neighbors. (a) Winding number study with respect to λ for
different values of α. (b) Behavior of topological phases in μ − α parameter space with fixed λ. [(b1)–(b6)] Corresponding topological
phase diagrams of model in μ − λ parameter space with increasing values of α. This helps to understand the behavior of TQCLs. Red, blue,
green, black and brown lines represent the first, second, third, fourth, and fifth TQCLs respectively. Initially the second TQCL lies on λ axis
superposed with and gradually moves upward with increasing α. (b1) There is superposition among third-fourth and second-fifth TQCLs. (b2)
Fifth TQCL shifts upward and third-fourth TQCLs remain as before. [(b3) and (b4)] With the increasing α, fourth and fifth TQCLs vanish
by yielding imaginary values. (b5) Third TQCL superposes with second TQCL. (b6) Third TQCL vanishes and model reduces to short-range
Kitaev chain.

integral over the Brillouin zone defines the topological invari-
ant [16,50]. The curvature function can take various forms
like Berry connection, Berry curvature and Pfaffian of Bloch
states. Here we consider Berry connection as our curvature
function F (k, M ).

Berry connection (BC) is a momentum dependent func-
tion which diverges at specific points in the Brillouin zone
as one approaches the critical values in the parameter space
(M → Mc, where M is the set of all parameters). If these
points in the Brillouin zone have a symmetry k0 = −k0, then
they are called as the high symmetry points (HSP) [Figs. 4(a)
and 4(b)]. Usually the BC behaves as an even function (i.e.,
F (k0 + δk, M ) = F (k0 − δk, M )) around such points. There
are also points in the Brillouin zone, where the symmetry
k0 = −k0 is not obeyed. These are non-HSPs which lies in the
Brillouin zone other than k = 0 and k = π . As the parameters
approaches critical value M → Mc, the diverging peak of BC

shifts towards non-HSP [Fig. 4(c)]. In both HSP, as well as
non-HSP the BC diverges as one approaches the critical point
(M → Mc). As the critical point is crossed, the BC flips its
sign, but point of divergence in k-space remains same. This
is the generic nature of HSP. In the same way, even for a
non-HSP, the BC tends to diverge as one approaches critical
point. The point of divergence shifts based on the parameter
space. This is the behavior of non-HSP.

Around all the critical points, the BC shows nonana-
lytic behavior and acquires the Ornstein-Zernike form around
HSPs [16], i.e.,

F (k0 + δk, M) = F (k0, M)

1 + ξ 2
k0
δk2

. (12)

When k = k0 and with M → Mc the length scale diverges
(ξk0 → ∞), which results in the narrowing of Lorentzian term
of Eq. (12). Thus one can observe the divergence of BC as M
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FIG. 4. Behavior of Berry connection for r = 2 for (a) first
TQCL with HSP at k = 0 (b) second TQCL with a HSP at k = π ,
(c) third TQCL with a non-HSP k = cos−1(−2α−1).

is approached from both sides of critical line [16], i.e.,

lim
M→M+

c

F (k0, M) = − lim
M→M−

c

F (k0, M) = ±∞. (13)

Close to the critical point, the BC follows the relation:

F (k0, M) ∝ |M − Mc|−γ and ξ (k0, M) ∝ |M − Mc|−ν,

(14)

where the exponents γ and ν corresponds to the susceptibility
and localization critical exponents, respectively. For a one-

dimensional model, exponents obey the scaling law γ = ν and
take modified forms near multicritical points [48].

Here we try to analyze the behavior of TQCLs with the
decay parameter α. We consider some cases for different
values of r and analyze the BC to understand the behavior of
TQCLs when they undergo the process of superposition. The
BC for a Bloch state across the Brillouin zone is defined as

Ak = −2i〈unk|i∂k|unk〉 = χz∂kχy − χy∂kχz

χ2
z + χ2

y

, (15)

where |unk〉 = 1√
2χ

( −χ

χz + iχy
). For example, when r = 2,

Ak = 2λ(2(4α + 2)λ + 2αA)

4λ2 + 4αB + 2α+2λ(2λ cos(k) + μ cos(2k))
, (16)

where

A = cos(k)(2αμ + 6λ) + 2μ cos(2k),

B = 4λ2 + 4λμ cos(k) + μ2.

Here HSPs are k0 = 0, π and non-HSP is k0 = cos−1(−2α−1).
As there are just two interacting neighbors, we have three
critical points (Appendix).

In a longer-range Kitaev model, there always exists two
HSPs at k = 0 and k = π . The number of non-HSPs depends
on the number of interacting neighbors r and higher order r
generates higher order TQCLs. When the decay parameter α

starts to increase, the higher order TQCLs start to superpose
on each other and vanish. Here we analyze different kind of
superpositions: superposition of two HSP, superposition of
HSP and non-HSP and superposition of two non-HSP. We
study above combinations in the following.

1. Case 1: when r = 2

Figure 5(a) shows the superposition of the second (HSP)
and third (non-HSP) TQCL for α = 1 and λ = 1. The sec-
ond TQCL starts moving in the anticlockwise direction with
increase in α (see Fig. 1). When α = 0 we can see the sym-
metric behavior of HSP at k = π . The BC tends to diverge
at the point (μ = 0, α = 0, λ = 1) which happens to lie on
the second TQCL [Fig. 4(b)]. As critical point (μ = 2, α =
0, λ = 1) on the third TQCL is crossed, the BC flips its sign,
but the point of divergence in k space is not same [Fig. 4(c)].
One can observe that the behavior of the plots in Fig. 5(a)
is a combination of both HSP as well as non-HSP. As one
approaches the critical point from the lower values of μ the
BC behaves similar to that for a HSP i.e., it shows the peak
around k = π without any shift. But after the critical point
(μ = 1, α = 1, λ = 1), it behaves as that for a non-HSP, i.e,
the diverging peaks of BC starts shifting. This is an interesting
phenomenon that occurs as a consequence of superposition of
TQCLs.

2. Case 2: when r = 3

In Fig. 5(b), we observe the superposition of second TQCL
(HSP) and fourth TQCL (non-HSP) for r = 3. Here we ob-
serve the symmetric nature of BC around the QCP (μ =
1, α = 0, and λ = 0.5). As we approach the QCP from the
lower values of α, we observe the evenness of BC because
of the high symmetric nature of second TQCL. As we pass
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FIG. 5. Behavior of Berry connection for (a) r = 2, superposi-
tion of second TQCL (HSP) and third TQCL (non-HSP) and (b) r =
3, superposition of second (HSP) and fourth TQCLs (non-HSP).

the QCP we observe the flip in the BC, but still it exhibits
high symmetric nature even though it is a non-HSP. We ob-
serve that the TQCLs associated with the higher order WNs
are usually non-HSPs and are less stable with respect to α.
When they superpose with HSP, there occurs a very slight
and insignificant shift in the diverging peaks, and hence they
behave similar to HSP. In other way, the HSP dominates over
the non-HSP, which is associated with higher order TQCLs.

3. Case 3: when r = 4

In Fig. 6(a), we show the superposition second (HSP) and
third (non-HSP) TQCLs for r = 4. As one approaches QCP
(μ = 0.58, α = 1, and λ = 0.5) from lower values of μ it
exhibits the nature of HSP and as the QCP passes it exhibits
the nature of non-HSP. Here we can observe the nature of both
HSP as well as non-HSP. Fig. 6(b) shows the superposition of
third and fourth TQCLs for r = 4 where both of them are non-
HSP. As one approaches QCP (μ = 1, α = 0, and λ = 0.5)
from the lower values of μ, the BC shows the non-HSP nature
because of the effect of third TQCL. As the QCP is passed, the
BC flips its sign, and still continue to behave as non-HSP. But
we observe a comparatively less shift in the diverging peak of
BC.

FIG. 6. Behavior of Berry connection for (a) r = 4, superposi-
tion of second TQCL (HSP) and third TQCL (non-HSP); (b) r = 4,
superposition of third (non-HSP) and fourth (non-HSP) TQCLs; and
(c) When r = 4, superposition of second TQCL (HSP) and fifth
TQCL (non-HSP).

In Fig. 6(c). we observe the superposition second (HSP)
and fifth (non-HSP) TQCLs for r = 4. As one approaches
QCP (μ = 0, α = 0, λ = 0.5) from lower values of μ it ex-
hibits the nature of HSP and as the QCP passes, even then it
exhibits the nature similar to HSP. Here the non-HSP nature
is very less expressive and one can observe an insignificant
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TABLE I. Possible parameter values of pseudospin vectors after series expansion. Here the δg gives the criticality (M → Mc) condition.
The terms A and B decide the values of characteristic length critical exponent. In all the above cases, for α > 1, the term A dominates and
critical exponents yield γ = ν = 1. However, for α < 1, the values of ν and γ varies depending on the number of interacting neighbors r.

Number Critical
of condition
neighbors (HSP) A B δg

r = 2 k = 0 2λ(1 + 2
2α ) λ(1 + 4

2α ) −μ − 2λ(1 + 2
2α )

k = π 2λ(−1 + 2
2α ) λ(−1 + 4

2α ) −μ − 2λ(−1 + 2
2α )

r = 3 k = 0 2λ(1 + 2
2α + 3

3α ) λ(1 + 4
2α + 9

3α ) −μ − 2λ(1 + 2
2α + 3

3α )
k = π 2λ(−1 + 2

2α − 3
3α ) λ(−1 + 4

2α − 9
3α ) −μ − 2λ(−1 + 2

2α − 3
3α )

r = 4 k = 0 2λ(1 + 2
2α + 3

3α + 4
4α ) λ(1 + 4

2α + 9
3α + 16

4α ) −μ − 2λ(1 + 2
2α + 3

3α + 4
4α )

k = π 2λ(−1 + 2
2α − 3

3α + 4
4α ) λ(−1 + 4

2α − 9
3α + 16

4α ) −μ − 2λ(−1 + 2
2α − 3

3α + 4
4α )

shift of diverging BC peaks. Hence the HSP dominates over
non-HSP of higher order TQCLs similar to Fig. 5(b).

The first TQCL (HSP k = 0) does not involve in any su-
perposition phenomena with the increasing values of α. For
a short-range model, the region bounded between two HSP
(k = 0, π ) gives W = 1 topological phase which is also the
characterizing nature of Kitaev chain. As α → ∞ all the
longer-range models reduce to original Kitaev chain. Hence
there is no chance for superposition of two HSP (k = 0, π ).
If such case occurs, then there will be an absence of W = 1
phase.

4. Critical exponents for longer-range models

Critical exponents are the quantities which explain the
behavior of the system around the criticality. However, the
TQPTs are second-order phase transitions where one can
calculate the critical exponents by expanding the pseudospin
vectors around at k = k0 as

χ (k)|k=k0 = χ (k0) + χ ′(k0)k + χ ′′(k0)k2/2. (17)

By substituting the expanded form of pseudospin vectors in
Eq. (15), which leads to the Ornstein-Zernike form [12,48],
i.e.,

F (k, M) |k=k0 = A.δk(2B.δk) − (δg + Bδk2)A

δg2 + (2Bδg + A2)δk2 + B2δk4

=
2ABδk2−A(δg+Bδk2 )

δg2

1 + ( 2δg.B+A2

δg2

)
δk2 + (

B2

δg2

)
δk4

= F (k0, δg)

1 + ξ 2δk2 + ξ 4δk4
, (18)

where ξ is the characteristic length. The terms A, B and
δg are the parameters that come from Taylor series of ex-
pansion. In Eq. (18), there are two terms which decides

the characteristic length. 1) ξ ∝
√

2B
δg + A2

δg2 , where the term
A2

δg2 dominates over 2B
δg . Hence ξ ∝ 1/|δg| ⇒ ν = 1. 2) ξ ∝

4

√
B2

δg2 and ξ ∝ |δg|−1/2 ⇒ ν = 1/2. Thus the dominating term

among A and
√

B decides the characteristic length critical
exponent. The exponent of the numerator gives the sus-
ceptibility critical exponent [48]. In Table I, we calculate
the terms A, B and δg of a longer-range Kitaev chain with

different number of interacting neighbors r. These critical
exponents only correspond to HSPs, which always fit into
scaling law whenever they are away from multicritical points
as well as superposition of TQCLs. In a one-dimensional
system, the critical exponents of Eq. (14) follow the scaling
rule ν = γ [12]. However, when there exists some mul-
ticriticality or superposition of critical lines, this relation
does not hold good [48]. This is because of the unevenness
of the BC around those critical point. Around the super-
position of TQCL one can observe the violation of even
nature of BC throughout the BZ (i.e., limM→M+

c
F (k0, M+) �=

−limM→M−
c
F (k0, M−) = ±∞)[16]. For a non-HSP, the cur-

vature function fails to acquire the Ornstein-Zernike form, and
thus it is not possible to do conventional scaling in such cases
[51].

The scaling scheme also fails at high-symmetry points
where the BC attains the fixed point configuration [48]. This
kind of behavior can be observed in Fig. 5(a) and 6(a). The
fixed point configuration of the BC is the state where the
height of the curve does not vary along with the varying
parameter, which can occur as a consequence of the multi-
critical point. Hence it is not possible to calculate the critical
exponents ν and γ at these points.

Through the study of BC we notice following points.
(1) Longer-range models contains a number of symmetry

points (HSP/non-HSP) depending on the number of inter-
acting neighbors. (2) As the decay parameter α → ∞, the
longer-range model reduces to short-range where only HSP
remains. (3) When two TQCLs superpose on each other,
both TQCLs influence each other. Because of this reason, we
can find mixed nature in the resultant TQCL. (4) The points
corresponding to k = 0 and k = π represents HSP and all
other symmetry points correspond to non-HSP. The non-HSPs
corresponding to higher order WN or higher TQCL are com-
paratively less expressive in their nature. (5) The lower order
symmetry points dominate over the higher order symmetry
points when they superpose on each other. (6) It is not possible
to find the critical exponents near the multicritical points as
well as at superposition of TQCLs.

B. Vanishing of critical lines

TQCLs are the boundaries which separates distinct topo-
logical phases and manifests as a gap closing in the
quasienergy spectrum. All the TQCLs lead to the gap closing
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but all the gap closings need not correspond to TQCLs. Van-
ishing of TQCL occurs through different means as follows: (1)
by creating the gap openings in the quasienergy spectrum. (2)
The critical line acquires complex values and at some point
real part vanishes and only imaginary part remains (complex
critical lines do not have any physical meaning thus we con-
sider only real part of such critical lines).

TQPTs are the discontinuities in the second-order deriva-
tive of the ground-state energy of the system [21,33,34]. These
discontinuities represent the nonanalyticities of the ground-
state energy [28,52], i.e., the ground-state energy before and
after TQPTs belongs to two different topological indices. This
creates a discontinuity in the second-order derivative of the
ground-state energy. In this section, we study ground-state
energy of the system to understand the TQPT and vanishing
of TQCL as mentioned earlier.

1. Case 1: when r = 2

From Fig. 1, we observe that with the increasing values
of α, the W = 2 phase vanishes along with its associated
TQCL. To verify this we consider the third TQCL and study
the quasienergy dispersion as a function of α. One can always
find a gapless point at k = cos−1(−2α−1) in the quasienergy
spectrum for α < 1. However, the quasienergy spectrum be-
comes gapped ∀k for α > 1 as shown in Fig. 7(a).

Another way to verify the vanishing of TQCL is through
the study of ground-state energy of the Hamiltonian. In topo-
logical systems, a phase transition can be understood from the
nonanalyticities of the ground-state energy [28,52]. Here we
calculate the second-order derivative of ground-state energy
E ′′(μ), given by

∂2E (μ)

∂μ2
= − 1

2π

∫ π

−π

∂2

∂μ2

(√
(χz )2 + (χy)2

)
dk,

= − 1

2π

∫ π

−π

2λ2 sin2(k)(2α + 2 cos(k))2

(4λ2 + 4αQ + 2α+2λA)
√

P
dk,

where

P = 41−αλ(4α (μ cos(k) + λ) + 2αA + λ) + μ2,

Q = 4λ2 + 4λμ cos(k) + μ2,

A = (2λ cos(k) + μ cos(2k)).

Figure 7(b) shows the discontinuities (spikes) in E ′′(μ) for
λ = 0.5, α = 1.5, and for two different values of μ, which
correspond to the first and second TQCLs, respectively. We
do not observe the third spike which is the signature for
third TQCL. This means for α > 1, the third TQCL vanishes
(see Appendix). When one increases the number of interact-
ing neighbors r, the number of different topological phases
increases leading to more number of TQCLs. As decay pa-
rameter α → ∞, gradually all higher order WNs along with
TQCLs (corresponding to non-HSPs) vanish. At the end, only
the TQCL which corresponds to HSP (k = 0, π ) remains.
This remaining TQCL characterizes the TQPT between W =
0 and W = 1 phases in the original Kitaev chain. One can
verify this by the quasienergy spectrum for α > 1. In the inset
of Fig. 7(b), we study all three TQCL for α = 1.5 (α > 1).
Here we can observe the gap closings only for k = 0 and π ,
which correspond to the first and second TQCLs, respectively.

FIG. 7. The panel indicates the process of vanishing of critical
line for r = 2. (a) Gap closing of third critical line for different values
of α. Here the black line does not create gapless condition. (b) Dis-
continuity in the second-order derivative of ground-state energy. Two
spikes corresponds to first and second TQCL respectively. (Inset)
Behavior of all the three critical lines for α = 1.5. The green line
(third TQCL) does not create gap closing.

There does not exist a third gap closing point. Hence it signals
the absence of the third TQCL for α > 1.

2. Case 2: when r = 3

Figure 8 represents the process of vanishing of TQCL for
r = 3. The system consists of four TQCLs among which
the first two are HSP and later two are non-HSP, respec-
tively. Initially, at α = 0, the energy spectrum corresponding
to third TQCL is gapless and becomes gapped after α = 0.2
[Fig. 8(a)]. In the same way, the fourth TQCL also exhibits a
transformation from gapless to gapped spectrum [Fig. 8(b)].
In both the cases, the gapped energy spectrum represents the
vanishing of TQCL. At the end of process one can observe
only two gapless TQCLs which correspond to HSP i.e., k = 0
and π , respectively [Fig. 8(c)].

This can also be verified by the second-order derivative of
the ground-state energy, given by

∂2E (μ)

∂μ2
= − 1

2π

∫ π

−π

2λ2P2

π (4λ2P2 + (μ + 2λQ)2)3/2 dk,
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FIG. 8. The panel indicates the process of vanishing of critical
line r = 3. (a) Gap closing of the third TQCL for different values of
α. Here the green and black lines does not create gapless condition.
(b) Gap closing of the fourth TQCL for different values of α. Even
here, the green and black lines does not create gapless condition.
(c) Behavior of all the four TQCLs for α = 0.6. The green and black
lines does not create gap closing. (d) Discontinuity in the second-
order derivative of ground-state energy. Two spikes corresponds to
the first and second TQCL, respectively. There is no spike for the
third and fourth TQCL.

where

P = 2−α sin(2k) + 3−α sin(3k) + sin(k),

Q = 2−α cos(2k) + 3−α cos(3k) + cos(k).

For r = 3, the term E ′′(k) shows only two nonanalyticities
for α > 0.2 which correspond to HSPs [Fig. 8(d)]. The small
hump before the second spike represents former QCP. With
the increasing value of α, the discontinuities in E ′′ (which
correspond to third and fourth TQCL) vanish and gradually
become a continuous curve. This signals the vanishing of third
and fourth TQCL for higher values of α.

3. Case 3: when r = 4

As one goes for more number of interacting neighbors r,
it is possible to witness complex TQCLs (see Appendix for
details). As per present knowledge, complex TQCLs does
not have any particular physical significance. In r = 4 case,
initially for lower values of α the 3rd, fourth and 5th TQCL
participates in the process of superposition of TQCLs. But as
α increases, the TQCLs becomes complex and gradually the
real part becomes zero. The imaginary part does not contribute
to the phase boundary of topological phases. Hence one can
come to conclusion that, the occurrence of imaginary value is
the signature of vanishing of TQCLs.

FIG. 9. Variation of winding number with α for the increasing
numbers of interacting nearest neighbors r = 2, 3, 4, . . . , 9 as
shown in figure (a), (b), (c),..., (h), respectively. The TQPT from
higher WN to lower occurs among even-even or odd-odd WNs only.
(Inset) The corresponding second-order derivative of the ground-
state energy (E ” = ∂2E

∂α2 ) as a function of α. The peaks in the plots
denote the points of TQPTs. For all the plots we keep λ = 1 and
μ = 1.

C. Longer-range effect and the stability of higher
order winding numbers

From Figs. 1–3, we understand certain behavior of the
isotropic longer-range Kitaev chain. Here we study the fate
of the topological phase with highest WN corresponding to a
specific value of r as the decay parameter α is varied from 0 to
higher values. For better understanding, we consider number
of interacting neighbors r > 4 as shown in Fig. 9. We observe
an interesting behavior of TQPT for the values r > 2. There
exist TQPTs from even-to-even and odd-to-odd WNs only for
even and odd values of r, respectively.

It is well known that there exists a one-to-one correspon-
dence between the WN as well as the localized edge modes
of the system [28,40]. For a system with r edge modes, there
always exists different penetration lengths corresponding to
each edge mode [11]. At TQPT this penetration length di-
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verges and edge mode merges with the bulk. For a system with
higher WN, due to the longer-range effect as one increases
α the edge mode decays in a faster way. This creates an
instability in such a way that the higher order WN reduces to
its corresponding lower order. However, in the large α (short-
range) regime all higher order WNs (W > 1), irrespective of
even or odd W , reduce to W = 1 similar to the topological
phase in the original Kitaev chain.

From the previous section, we observe different possibili-
ties of superposition of TQCLs. Higher order of neighboring
interaction generates higher order WN as well as correspond-
ing higher order TQCLs. The higher order TQCLs are less
stable with respect to α and continuously undergo super-
position with its lower orders. These higher order TQCLs
are comparatively less expressive in their nature and gets
dominated by their lower order TQCLs when they undergo su-
perposition. In the meantime, some of the higher order TQCL
vanish either by creating a gap opening in the energy spectrum
or by becoming complex. This results in the suppression of
higher order WNs and the system reduces continuously to its
lower order and finally to short-range Kitaev chain.

The inset of of Fig. 9 shows the second derivative of the
ground-state energy

E ′′(α) = − 1

2π

∫ π

−π

∂2E

∂α2
dk, (19)

with E being the ground-state energy, as a function of α

(For a many-body system E = −∑
k Ek[28,52] and the sum-

mation is replaced by the integration when it comes to the
Brillouin zone limit). The discontinuity in the derivative of
the ground-state energy symbolizes the order of the quantum
phase transition [21,33,34]. For a topological system, these
discontinuities represent the nonanalyticities of the ground-
state energy [28,52]. Here we observe discontinuity in second
order derivative of energy with respect to α, which indi-
cates the transitions are second-order TQPTs. The maximum
among the peaks signifies the TQPT from highest WN to
consecutive even/odd WNs depending on even/odd r. For the
higher order WN, the maximum peak shifts towards the lower
values of α implying the shorter existence of these phases as α

increases. We also notice that the amplitudes of peaks shift to
higher values of E ′′ with increasing number of the interacting
neighbors r.

D. Analysis of long-range model through momentum
space characterization

In previous sections, we have studied the criticality and
momentum space characterization of longer-range Kitaev
chain with different number of neighbors. In this section,
we consider Kitaev chain with infinite number of neighbors
(i.e., r → ∞) where the hopping term and the pairing terms
decay with parameter α [Eq. (5)]. The corresponding energy
dispersion is given by Eq. (6). Here both sine and cosine
functions lead to polylogarithmic functions, given by

χy(k) = 2λ

(
Liα[eik] − Liα[e−ik]

2i

)
,

χz(k) = −μ − 2λ

(
Liα[eik] + Liα[e−ik]

2

)
, (20)

TABLE II. Possible TQCLs for different regimes of an isotropic
long-range Kitaev chain. When α < 1, the TQCL does not exists as
k → 0.

Decay parameter k = 0 k = π

When α > 1 μ = −2J0ζ [α] μ = −2J0(21−α − 1)ζ [α]
When α < 1 - μ = −2J0(21−α − 1)ζ [α]

where we consider an isotopic long-range Kitaev chain for
which J0 = �0 = λ and α = β. The term χy [Eq. (20)] de-
cides the number of gap closing points in the BZ and χz

decides the parameters to be tuned for the critical conditions
i.e., M → Mc. The term �0 = λ in the χy represents the finite
superconducting gap and does not influence the gap closing
conditions of the system. The parameters μ and J0 = λ act as
the tuning parameters (M) and χz gives the critical line which
is nothing but the topological phase boundary. These critical
lines assure the gap closing conditions during the topological
phase transitions. When M is away from Mc, the system is
gapped and with M → Mc the system attains gapless condi-
tion.

In Eq. (20), pseudospin parameters exhibit polylogarithmic
nature, where the gap closing (χy → 0) occurs at k = 0 and
k = π for different regime of decay parameter as shown in Ta-
ble II and corresponding phase diagram is given by Fig. 10(a).
When k = π , criticality occurs (M → Mc), i.e., Ek → 0 at
μ = −2J0(21−α − 1)ζ [α] as χy → 0 for all values of α. When
k = 0, criticality occurs at μ = −2J0Liα[1], where χy → 0
only for α > 1. Hence both α � 1 and α > 1 belong to two
different topological phases without a boundary. Figure 10(b)
shows the energy spectrum of a long-range model, where α <

1 and α > 1, belonging to two different gapped phases with
distinct topological properties, where the transition among

FIG. 10. (a) General phase diagram of isotropic long-range Ki-
taev chain with λ = 1. (b) Energy dispersion for different values of
α. The system remains gapped for all values of α and Ek diverges for
α < 1. Here μ = −2, λ = 1, and system size l = 2000. (c) Disper-
sion of the χy parameter at k = 0 and k = π for different values of α

with μ = 0, λ = 1 and system size l = 2000. The term χy diverges,
k → 0 as (k)α−1 for all α < 1 and converges for α > 1. (d) Berry
connection plot for α < 1, which shows the nonanalytic behavior
through out the α < 1 region where μ = 0 and λ = 1.
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them occurs at α = 1 without gap closing. In a similar model,
transition without gap closing has been reported in Ref. [23].
This kind of bifurcation occurs due to the behavior of χy with
respect to α. χy forms gapless condition at k = π irrespective
of α but it diverges and fails to make gapless condition at
k = 0 when α � 1 [Fig. 10(c)]. However, due to this nature
of χy, Eq. (15) [dθk/dk = d (tan−1(χy/χz ))/dk] also becomes
nonanalytic for α � 1 region even for gapped phases [Fig,
10(d)]. Hence it is not possible to define integer WN for
α � 1, where W takes positive and negative fractional values
below and above the critical line μ = −2J0(21−α − 1)ζ [α],
respectively.

This situation can be analyzed by expanding the polylog-
arithmic function around gap closing points. Expansions of
polylogarithmic functions is given by [23,53],

Liα[eik] = �[1 − α](−ik)α−1 +
∞∑

n=0

ζ [α − n]

n!
(ik)n, (21)

where α �= 1, 2, 3 . . . ., | ln(eik )| < 2π . Substituting above
equation in Eq. (20) and after few steps of simplification, we
get

χy = 2λ

(
�[1 − α](k)α−1 cos

(
πα

2

)

+
∞∑

n=0

ζ [α − n]

n!
(k)n sin

(
πn

2

))
, (22)

Thus the χy series diverges if k → 0 as (k)α−1 for all α <

1 and convergence for α > 1 [Fig. 10(c)]. When α = 1, the
polylogarithmic series expansion in Eq. (22) is ill-defined as
per Eq. (21) [53].

The physics becomes even more rich in case of Ki-
taev chain with long-range pairing and short-range hopping
[23,26]. Because of the conditions imposed, one can get
new quasiparticles like massive edge (when M �= Mc) modes
which are neither zero modes nor can be absorbed by bulk
modes. The associated Majorana zero modes are created by χy

term (M → Mc) and the massive edge modes are controlled
by χz term (which is short-range) [26]. These massive edge
modes are not prominent in our isotropic Kitaev chain (long-
range hopping and long-range pairing) as compared to the
case of long-range pairing and short-range hopping. However
there are similar works which predict the signature of massive
edge modes along with Majorana zero modes for α < 1 region
with different approach [26].

As per the known techniques of momentum space charac-
terization, it is not possible to define the topological invariant
in gapless regions as well as α � 1 region of a long-range
model because of the nonanalyticity of the Berry connection.
In the limit α > 1, the long-range model reduces to the short
range version with a Majorana zero mode at each end while
in the limit α � 1, there exists an ill-defined region where the
BC acquires nonanalytic form [Fig. 10(d)]. Thus the critical
exponents of characteristic length as well as susceptibility
factors become undefined in this regime.

V. A REPRESENTATION OF CRITICALITY THROUGH
PARAMETER SPACE

Here we consider different parameter space and try to
analyze the topological phases as well as TQPTs through
pseudospins as well as from exact calculations.

A. Pseudospin vector parameter space

Another way to understand the topological properties of
the system is through the analysis of parameter space [30,54].
The pseudospin vector �χ (χx, χy, χz ) [see Eq. (5)] can be used
to study the parameter space. The pseudospin vector compo-
nents form a closed loop in the parameter space due to the
periodic boundary condition. If the closed loop encloses the
origin, it represents a topological state. The number of around
the origin gives the topological index W . If the closed curve
does not include the origin, it represents nontopological state.
When the curve touches the origin, it is the critical case where
TQPT occurs.

For r = 2, the components of pseudospin vector are given
by

χx = 0, χy = 2λ

(
sin(k) + sin(2k)

2α

)
,

χz = −μ − 2λ

(
cos(k) + cos(2k)

2α

)
. (23)

Figure 11 represents the pseudospin vector in the parameter
space for r = 2. We observe a transition between W : 0 ↔ 1
for different values of α. The upper panel represents the case
when α = 0. Here we observe transition among W : 0 ↔ 2
through a TQPT [Fig. 11(b)] followed by a transition be-
tween W : 2 ↔ 1 through another TQPT [Fig. 11(d)]. Also
we observe a direct transition between W : 1 ↔ 0 trough a
third TQPT. We note that for all the TQPTs the closed curve
touches the origin. The lower panel represents α = 1 case.
Here we observe a direct transition between W : 0 ↔ 1 only
as we do not find any W = 2 phase.

When the pseudospin curves touch the origin, it repre-
sent TQPTs. In general, BC becomes nonanalytic at these
points and WN becomes ill-defined. However, there are efforts
which show the localized edge modes even at the gap-
less region [36,38,41–47] especially in longer-range models
[37,39,40,48,49].

Here we use Eq. (8) to find the topological invariant around
criticality by taking the limit k → k0 as shown in Table III.
We can also observe similar nature in r = 3 and r = 4 cases.
This is because with the increasing values of α, a longer-
range model reduces to original Kitaev chain which we have
observed also from previous sections.

This analysis can also be generalized to a long-range model
with some modifications. For a one-dimensional system with
periodic boundary conditions, the polylogarithmic functions
take the form

Liα[z] =
∞∑

l=1

zl

lα
. (24)

which is the polylogarithm of complex function z with order
α and for our model z = eik �⇒ |z| = 1. Substituting it in
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FIG. 11. Closed curves representing the pseudospin vectors for
different values of parameters and for r = 2. Blue and red curves
are topological phases and TQPT, respectively. (Top) (α = 0): the
longer-range Kitaev chain exhibits TQPT among W : 0 ↔ 2 through
the third TQCL, W : 2 ↔ 1 through the second TQCL and W : 1 ↔
0 through the first TQCL. (Bottom) (α = 1): the reduced longer-
range Kitaev chain exhibits only two TQPTs. From W : 0 ↔ 1
through the second TQCL and W : 1 ↔ 0 through the first TQCL.

Eq. (20), one can get the pseudospin parameters in terms of
complex function as shown in Fig. 12.

It is clear from the analysis of Sec. IV D, that the α > 1 is
the topological regime, where the pseudospin vector takes a
complete rotation around the origin, i.e., W = 1 [Fig. 12(a)].
For the nontopological phase, i.e., W = 0, the pseudospin
vector fails to take a rotation around the origin [Fig. 12(b)].
The region α < 1 is ill-defined from the topological perspec-
tive, where we find non-closing curves [Fig. 12(c)]. The point
α = 1 represents a phase transition without gap closing, hence
we find a closed curve which does not touches the origin
[Fig. 12(d)]. One can obtain the fractional and integer winding
numbers for α < 1 and α > 1 regime respectively. The point
α = 1 is a case where the pseudospin vectors are neither con-
vergent nor divergent [Fig. 10(c)]. Thus we find a closed curve
which contains less populated vectors around k = 0, where
the curvature function still behaves as nonanalytic resulting
in the fractional WN. We observe same behavior of closed
curve and less population of vectors around k = 0 till α = 1.5.
But this regime contains a nondivergent curvature function
along with integer winding number. The authors of Ref. [27]
have used a similar approach of pseudospin vector curves to
characterize the topological phases in a similar model. Also
fractional winding number has been obtained in Ref. [26] in
the same regime for a very similar model.

B. A few exact solutions for topological characterization

Here we try to find some exact solutions of the winding
number for different parameters. It is difficult to find exact
solutions for the parameter spaces as the associated integral
may become really complicated. We consider only some of
the special cases and present the exact solutions of WN for
r = 2 only. Equation (9) gives the expression of WN for r =
2. WN always gives integer number for gapped topological
phases. However, for gapless phases, WN may take integer
or fraction values depending on the parameter space. For a
gapless phase we calculate WN by omitting the gap closing
points, i.e., k = 0, π and cos−1(−2α−1). Here the WN takes

TABLE III. A few exact solutions for the winding number when r = 2.

Phase α Relation Expression Winding number

first TQCL (k = 0) 0 μ = −4λ W = ( 1
2π

)
∫ π

−π

7+8 cos(k)
10+8 cos(k) dk W=1/2

(μ = −2λ(1 + 1/2α ))
1 μ = −3λ W = ( 1

2π
)
∫ π

−π
1 − 2

5+3 cos(k) dk W=1/2

second TQCL (k = π ) 0 μ = 0 W = ( 1
2π

)
∫ π

−π
3/2dk W=3/2

(μ = −2λ(−1 + 1/2α ))
1 μ = λ W = ( 1

2π
)
∫ π

−π
dk W=1

third TQCL (k = cos−1(−2α−1)) 0 μ = 2λ W = ( 1
2π

)
∫ π

−π
dk W=1

(μ = λ/2α−1)
1 μ = λ W = ( 1

2π
)
∫ π

−π
dk W=1

Gapped phase 0 μ = −λ W = limδ−→0+ ( 1
2π

)
∫ π+δ

π−δ

3+6 cos(k)
9+4 cos(k)−4 cos(2k) dk W=1

Gapped phase 1 μ = −λ W = limδ−→0+ ( 1
2π

)
∫ π+δ

π−δ
1 − 2 cos(k)

−3+cos(2k) dk W=1

Gapped phase 0 μ = λ W = limδ−→0+ ( 1
2π

)
∫ π+δ

π−δ

3+2 cos(k)
9+12 cos(k)+4 cos(2k) dk W=2

Gapped phase 1 μ = λ W = limδ−→0+ ( 1
2π

)
∫ π+δ

π−δ
dk W=1
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FIG. 12. Pseudospin parameter (unit vector) plots for different
regimes of α,μ with λ = 1 and system size l = 200. (a) For α > 1,
the parameter curve completes a full circle around the k axis. (b) For
α > 1, the curve does not completes a circle around the k axis. (c) For
α < 1, the curve shows a discontinuity around k = 0. (d) For α = 1,
the curve completes a full circle, but contains less populated winding
vectors around k = 0. (Inset) Corresponding two-dimensional repre-
sentation of parameter plots.

the form

W =
∫

A + B cos(k) + C cos(2k)

a + b cos(k) + c cos(2k)
, (25)

where

A = 4λ2(2 + 22α ), B = 2α+1λ(6λ + 2αμ),

C = c = 2α+2λμ, a = 4λ2(1 + 2α )22αμ2,

b = 2α+2λ(2αμ + 2λ2).

Based on parameter space, WN takes different standard inte-
gral formats [16,30,53].

Some of the standard integral formats are
(1)

∫
A+B cos k
a+b cos k dk when a2 > b2 (C = c = 0)

= B

b
k + 2(Ab − aB)

b
√

a2 − b2
tan−1

(√
a2 − b2 tan k/2

a + b

)
; (26)

(2)
∫

A+B cos k
a+b cos k dk when b2 > a2 (C = c = 0)

= B

b
k + 2(Ab − aB)

b
√

b2 − a2
ln

(√
b2 − a2 tan k/2 + (a + b)√
b2 − a2 tan k/2 − (a + b)

)
.

(27)
Other than this we have couple of more cases.

(3) Consider z = exp(ik) and dk = dz/iz,∫
Adk

a + b cos(k)
= A

∮
dz/iz

a + b(z + 1/z)/2

= 8πA(z+ − z−)/b, (28)

where z± = −a/b ±
√

a2/b2 − 1. Here z+(z−) is defined as
the root that is inside (outside) the contour |z| = 1.

(4) In the similar way,∫
B cos(k)dk

a + b cos(k)
=

(
z+

z+ − z−
+ 1

z+z−
+ 1

z+(z+ − z−)

)
.

(29)

Based on parameter space, WN gets different quantized val-
ues. Here we consider a few cases (see Table III).

For a topological system, WN represents the number local-
ized edge modes of the gapped phases. Based on the number
of interacting neighbors r, here we get corresponding exact
solutions for the topological phases. However, at the critical-
ity, the exact solutions are calculated by omitting gap closing
points. For the case r = 2, the first and third TQCLs give
fractional as well as integer exact solutions respectively for all
parameter space. The second TQCL gives fractional solutions
for initial values and integer solution as α → ∞ (Table III).

VI. OUTLOOK AND EXPERIMENTAL POSSIBILITIES

In this work, we have used the isotropic conditions (α = β,
J0 = �0 = λ) and longer-range as well as long-range model
to explain topological characterization and criticality of the
model. The results of our work can be generalized to other
parameter space also. When α, β → ∞, the model reduces
to original Kitaev model. But through our work we realize
that, the reduction should undergo through the process of
superposition and vanishing of TQCL as discussed earlier. Ac-
cording to the available literature, it is clear that the winding
number is not enough to understand the topological properties
of a long-range model. And there are two different arguments
about the reduction of the long-range model to the short-range
model. Some works suggest that the reduction happens when
α > 1 [25,55,56] and some studies obtain a short-range limit
for α > 1.5 [27]. Solving these issues through the study of
universality class of critical exponents and CFT can give the
better understanding. When the pairing term decays slower
than hopping parameter, there may be possibilities of obtain-
ing new exotic particles like massive Majorana modes [57].
The results of criticality and behavior of TQCLs may be
interesting in those cases.

Experimental possibilities. There are a number of exper-
iments which explore the properties of long-range models
especially in trapped ions [58–61], atom coupled to multi-
mode cavities [62], magnetic impurities [63,64], and quantum
computation [18]. In long-range models, the characteristic
length shrinks for the longer neighbors. Hence, even by using
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a relatively small number of ions it is possible to suppress
the finite-size effects [65]. Within the tight-binding BdG
formalism, the Shiba chains can be modeled to p-wave super-
conducting Kitaev chain with long-range pairing and hopping
[66,67]. Naturally Shiba chains exhibits 1/r decay away from
certain limits of coherence length [65]. Hence it is easy to
map our isotropic Kitaev model in such systems. Analysis of
criticality studied in this work may help to explore the subject
in a better way.

VII. CONCLUSION

To summarize, we have presented a theoretical study of the
topological quantum phase transitions and quantum criticality
in the longer-range as well as long-range Kitaev chain. Here
all possible topological criticality conditions have been calcu-
lated in detail along with precise topological phase diagram.
For a longer-range model, with the increasing number of in-
teracting neighbors, higher order winding numbers have been
generated and their stability decreases with the increasing
value of the decay parameter, which has been verified by
the analysis of ground-state energy. A decrease of winding
number has been observed with decreasing long rangeness
in the system with a pattern of odd-to-odd and even-to-even
transition among winding numbers. As a reason behind this,
we show a mechanism of the superposition of two critical
lines and vanishing of the one with higher winding num-
ber. We have analyzed different possibilities of superposition
and different means of vanishing of critical lines. Through
this we have studied the nature of multicritical points in the
longer-range model. The criticality has been studied from
the perspective of critical exponents and their fate near the
multicritical points have been analyzed. As the generalization
of this work, we have considered a truly long-range model
and its momentum space characterization been done. We have
analyzed the nonanalytic behavior of Berry connection in
both long-range Kitaev chain and longer-range (finite-range)
Kitaev chain to study the topological invariant. A parameter
space representation is done for longer-range as well as long-
range models along with a few exact solutions for the winding
numbers in support of our findings. We have also discussed
the possible outlook and experimental aspects of our work.
Instances of study of topological quantum phase transitions
covering long-range models and quantum criticality are rare
in the literature. We hope that our work will help boost the
understanding of such systems.
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APPENDIX: DETAILED DERIVATION OF CRITICAL
LINES FOR LONGER-RANGE KITAEV CHAIN

Here we derive the topological quantum critical lines of the
longer-range Kitaev chain for interacting neighbors r = 2, 3,
and 4. We follow the standard method to find the critical lines.
First we find the value of k0 by making the term χy = 0. After
that we substitute the value of k0 into χz = 0 to find the critical
line. Depending on the number of interacting neighbors, that
many critical lines will be generated.

1. When r = 2

Here the gap closing occurs for three different values of k,
i.e..

1) k = 0,

2) k = π,

3) k = cos−1(−2α−1).

Corresponding TQCLs are

1) μ = −2λ

(
1

2α
+ 1

)
,

2) μ = −2λ

(
1

2α
− 1

)
,

3) μ = λ

2α−1
,

for third TQCL 0 < α � 1.

2. When r = 3

Here the gap closing occurs for four different values of k,
i.e.,

1) k = 0,

2) k = π,

3) k = cos−1

(
3α

4

(
− 1

2
+

√
1

2α
− 4(3α − 1)

32α

))
,

4) k = cos−1

(
3α

4

(
− 1

2
−

√
1

2α
− 4(3α − 1)

32α

))
.

Corresponding TQCLs are

1) μ = −2λ

(
1

3α
+ 1

2α
+ 1

)
,

2) μ = −2λ

(
− 1

3α
+ 1

2α
− 1

)
,

3) μ = −λ(−8−α−1Q),

4) μ = −λ(8−α−1R),

where

P =
√

2−α − 4 × 9−α (3α − 1),

Q = (18αP − 36αP + 8α+1P + 9α − 18α − 22α+3),

R = (18αP − 36αP + 8α+1P − 9α + 18α + 22α+3).
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3. When r = 4

Here the gap closing occurs for five different values of k,
i.e.,

1) k = 0,

2) k = π,

3) cos(k) = −22α−1 × 3−α−1

+1

3
22α− 10

3
3

√√
4A3 + X 2 + X

− 22α− 8
3 A

3
3
√√

4A3 + X 2 + X
,

4) cos(k) = −22α−1 × 3−α−1

−1

3
(1 − i

√
3)22α− 13

3
3

√√
4A3 + X 2 + X

+
(
1 + i

√
3
)
22α− 11

3 A

3
3
√√

4A3 + X 2 + X
,

5) cos(k) = −22α−1 × 3−α−1

−1

3

(
1 + i

√
3
)
22α− 13

3
3

√√
4A3 + X 2 + X

+
(
1 − i

√
3
)
22α− 11

3 A

3
3
√√

4A3 + X 2 + X
,

where

A = 3 × 24−4α (2α − 2) − 16 × 3−2α,

X = −27 × 26−4α + 26−4α32−α + 26−3α32−α

− 128 × 3−3α,

P =
√

4A3 + X 2 + X,

Q = −22α−13−α−1 − 22α− 8
3 A

3 3
√

P
+ 1

3
22α− 10

3
3
√

P,

R = −22α−13−α−1 + (1 − i
√

3)22α− 11
3 A

3 3
√

P

−1

3
(1 + i

√
3)22α− 13

3 P,

S = −22α−13−α−1 + (1 + i
√

3)22α− 11
3 A

3 3
√

P

−1

3
(1 − i

√
3)22α− 13

3 P.

Corresponding TQCLs are

1) μ = −2λ

(
1

3α
+ 1

4α
+ 1

2α
+ 1

)
,

2) μ = −2λ

(
− 1

3α
+ 1

4α
+ 1

2α
− 1

)
,

3) μ = −2λ(−21−α + 4−α + 23−2αQ4)

−2λ(4 × 3−αQ3 + (21−α − 23−2α )Q2

+(
1 − 31−α

)
Q),

4) μ = −2λ(−21−α + 4−α + 23−2αS4 + 4 × 3−αS3)
−2λ((21−α − 23−2α )S2 + (1 − 31−α )S),

5) μ = −2λ(−21−α + 4−α + 23−2αR4 + 4 × 3−αR3)

− 2λ((21−α − 23−2α )R2 + (1 − 31−α )R).

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[2] J. E. Moore, Nature (London) 464, 194 (2010).
[3] L. D. Landau, Collected Papers of L. D. Landau (Pergamon,

Oxford, 1965).
[4] V. A. Miransky, Dynamical Symmetry Breaking in Quantum

Field Theories (World Scientific, Singapore, 1993).
[5] M. Vojta, Rep. Prog. Phys. 66, 2069 (2003).
[6] X.-G. Wen, Lectures on an introduction of topological orders

(Boulder summer school, 2016), Vol. 34, p. 54.
[7] A. Bohm, A. Mostafazadeh, H. Koizumi, Q. Niu, and J.

Zwanziger, The Geometric Phase in Quantum Systems: Foun-
dations, Mathematical Concepts, and Applications in Molecular
and Condensed Matter Physics (Springer Science & Business
Media, Berlin, 2013).

[8] F. Ortmann, S. Roche, and S. O. Valenzuela, Topological In-
sulators: Fundamentals and Perspectives (John Wiley & Sons,
Weinheim, Germany, 2015).

[9] T. D. Stanescu, Introduction to Topological Quantum Matter
& Quantum Computation (CRC Press, Boca Raton, Florida,
2016).

[10] B. A. Bernevig and T. L. Hughes, Topological Insulators
and Topological Superconductors (Princeton University Press,
Princeton, 2013).

[11] M. A. Continentino, S. Rufo, and G. M. Rufo, in Strongly
Coupled Field Theories for Condensed Matter and Quantum

Information Theory (Springer, Natal, Brazil, 2020), pp. 289–
307.

[12] S. Rufo, N. Lopes, M. A. Continentino, and M. A. R. Griffith,
Phys. Rev. B 100, 195432 (2019).

[13] S. Sachdev, Quantum phase transitions, Handbook of Mag-
netism and Advanced Magnetic Materials, edited by Helmut
Kronmüller and Stuart Parkin Fundamentals and Theory Vol. 1
(John Wiley and Sons, Ltd., New Jersey, 2007).

[14] R. Kumar R, S. Rahul, S. N. Sahoo, and S. Sarkar, Phase Trans.
93, 606 (2020).

[15] S. Sarkar, Sci. Rep. 10, 1 (2020).
[16] W. Chen and M. Sigrist, Topological phase transitions: Critical-

ity, universality, and renormalization group approach, Advanced
Topological Insulators (Wiley Online Library, Hoboken, USA,
2019), Vol. 239.

[17] D. F. Abasto, A. Hamma, and P. Zanardi, Phys. Rev. A 78,
010301(R) (2008).

[18] S. T. Amin, B. Mera, N. Paunković, and V. R. Vieira, J. Phys.:
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