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Abstract 

Queueing models have been the most widely used ana- 
lytical modelling tdol for performance studies on complex 
manufacturing systems. Conventional analysis has pro- 
ceeded along the lines of product form queueing models, 
and their extensions. Traditional applications of these 
models have been restricted to the computation of mean 
values of important performance measures; besides, cer- 
tain simplifying assumptions have to be made for these 
model6 to be applicable. The last decade has witnessed 
important advances in the applicability of these tradi- 
tional queueing networks, as well as in newer queueing 
models that exhibit constructs capable of modelling generic 
issues arising in a real-life manufacturing system. The 
issues taken up in this paper are: (i) computation of 
higher moments of performance measures, besides mean 
values; (ii) the phenomenon of blocking due to limita- 
tions of buffer capacities, and1 (iii) analysis of a network 
of multiqueues model of an Automated Manufacturing 
System. We survey the recent advances in these three 
modelling issues which are of great importance in the 
manufacturing context, and present analytical models of 
Automated Manufacturing Systems incorporating these 
features. Each model is illustrated with a numerical ex- 
ample. 

1 Introduction 

Computation of second and higher moments of performance 
measures, such as inventory levels (queue lengths), and 
manufacturing lead times (response times). In certain situ- 
ations, such as choosing between design alternatives, higher 
moment information (like variance) of these performance 
measures is also required, apart from mean values. 

Blocking due to finite queue capacities: conventional queue- 
ing models assume that every queue in the model has no 
capacity constraints. This is unrealistic, since in a real 
life manufacturing system, there is only a finite number 
of buffers for holding waiting workpieces in front of a ma- 
chine. Hence, an upstream machine cannot proceed with 
processing (gets blocked) if the buffers in the succeeding 
downstream machine are all occupied. 

Multiqueue models of nodes (machines) and networks of 
multiqueues: Traditional modelling has proceeded assum- 
ing a single queue at each node (machining centre); owing 
to the presence of multiple part types, multiqueue models 
of nodes, with each part type forming a separate queue are 
more realistic models. The manufacturing system may be 
represented as a network of such multiqueue nodes. 

The rest of this paper is organised as follows: in section 2, 
we briefly discuss the advances in computational algorithms for 
product form networks, with particular attention to the calcu- 
lation of higher moments of performance measures. Section 3 
deals with the analysis of queueing models exhibiting blocking, 
In section 4, we present an analysis of a simple 'network of mul- 

possible refinements of and extensions to the models presented 
in this paper. 

Automated Manufacturing Systems are a 'lass Of ad- 
vanced manufacturing systems, employing versatile workcentres 

nomical, high quality production of a wide variety of part types. 
The highly capital intensive nature of these systems necessitates 
the use of powerful performance modelling tools during both the 

and a highly capable Material Handling System (MHS) for eco- tiqueues' model of an AMS. we conclude with a brief look at 

design and operational phases. 
Queueing models are the primary analytical modelling tool for 

the performance analysis of AMSs. In particlar, product form 
queueing mode& ([l]), a special class of analytically tractable 
queueing networks, have been the most popular models, apart 
from several heuristic (approximate) analyses of more general 
(non- product form) queueing networks. The last decade bas 
seen several significant developments in the efficient and accu- 
rate analysis of general queueing network models arisisng in var- 
ious contexts, especially the performance evaluation of advanced 
computer systems and computer communication systems. In this 
paper, we survey these developments from the perspective of per- 
formance modelling of AMSs. These new results facilitate ele- 
gant modelling of generic features that are typicd in Automated 
Manufacturing. We shall highlight the applicability of important 
recent results in the following three areas for the performance 
modelling of AMSs: 

2 Product-form models: Computation 
of higher moments of performance 
measures 

In a product-form queuing network (PFQN) model of a manu- 
facturing system, the each machine is represented by B node and 
each part type is represented by separate custoxper class. PFQNs 
can be solved for the important performance measures by the 
well known convolution ([2]) and mean value analysis algorithms 
(131). The computational requirements of these alogrithms are 
exponential in the number of part types (chains); hence the ap- 
plication of these algorithms are infeasible for systems with many 
part types or many workpieces (large populations). 
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Newer computational algorithms like Recursion by Chain Al- 
gorithm (RECAL, [4]), Mean-Value Analysis by Chain (MVAC, 
[ 5 ] )  and Direct Analysis by Chain (DAC, [SI) have computational 
requirements that are polynomial in the number of part types, 
for a given number of machine centres; these are more suitable 
for analysing manufacturing systems than the conventional algo- 
rithms since there are usually more part types than machines. A 
comprehensive survey of queueing model applications to perfor- 
mance modelling appears in [7]. Several approximate algorithms 
have also been developed for quick analysis of PFQNs. 

An important issue in the analysis of PFQNs is the com- 
putation of the higher moments of performance measures apart 
from the mean value. However, due to the very high computa- 
tional reqdirements of the exact methods, it is necessary to take 
recourse to approximations. McKenna and Mitra ([8]) have de- 
veloped an algorithm based on asymptotic expansion of the par- 
tition function of the network; Strelen ([9,10]) has developed an 
approximate analysis (Moment Analysis) based on the Linearizer 
algorithm ([ll] of Chandy and Neuse. 

2.1 Moment Analysis: A manufacturing ap- 
plication 

Let us consider an AMS consisting of K workcentres (numbered 
1 to K), and a MHS (called station 0), represented by the well- 
known closed, central server queueing model. The central server 
represents the MHS, and each of the workcentres is represented 
by a sepatate queue (Fig. 1). From the MHS, a workpiece is 
routed to machine centre k with probability P k ,  o;r it leaves the 
system with probability po and is immediately feplaced by an 
identical workpiece; ( x f = o P k  = 1 ) .  After being ldrocessed at the 
workcentre, the workpiece is always routed back to the MHS. For 
simplicity, assume a single part type of which N identical work- 
pieces are present in the system. All stations work in a fixed- 
rate-FCFS fashion, with an exponentially distributed machining 
time (or move time at the MHS) of mean X k  at station k. The 
mean values of the performance measures may be computed by 
the well known PFQN algorithms; let us concentrate on obtain- 
ing the second moment of the mean queue lengths. (Although 
higher moment information may be computed using some exact 
computational algorithms also, in general the computational re- 
quirements make exact analysis infeasible, especially when there 
are multiple chains). We use the exact Moment Analysis method 
of Strelen ( [ l o ] ) ;  for systems with a large number of workpieces 
or a number of part types, it may be necessary to use approxi- 
aptions like Strelen's Moment Analysis-Linearizer ([lo]). 

L j  ek denote the visit ratio of a workpiece at station k; for 
our example, ek = l/po for k = 0 and ek = pk/% for 1 5 k 5 K ,  
from well known results of PFQN theory. Let Q t ) ( n )  and Wf'(.n) 
respectively denote €he _expected value of the jth-moment of the 
queue length and the w a i n g  time at station k (0 5 k 5 K), 
when there are n workpiekm in the.system (0 5 n 5 N ) .  Let 
T(J)(n)  denote the jth-moment of the system throughput with n 
workpieces. Let P k  = eh x X k  denote the relative traffic intensity 
at station k. Let us restrict our attention to the second moment 
of the mean queue lengths only. These may be computed by the 
(exact) Moment Analysis algorithm ([9]) as follows. 

Q ~ ! ) I O )  = w ~ ) ( o )  = T ( J ) ( ~ )  = 0, j = 
1,2 ,  0 5 k 5 K ;  

(1) Initialisation: 

for n = 1 to N do 
begin 

2.4. for 0 2 k, 1 5 K do 

begin 

end; {of step 2.4) 

end. { of step 2.) 

Workcentre 1 
CI=oPr= K 1 p 1 / - -  

Po 

MHS 

I N Workpieces I 

Figure 1: The Central Server Model of an AMS 
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Table 1: Results of Moment Analysis for exampe AMS 

- - - -. - - 
1 2.721 0.999 0.10484 
2 1.398 0.629 0.16775 
3 0.481 0.335 0.41939 

2.2 Numerical example 
Consider a manufacturing system with K = 3 workcentres apart 
from the MHS, with N = 10 worpieces. Let the routing probabil- 
ities be: po = 0.05; p1 = 0.3; pz  = 0.25; p3 = 0.4; the mean pro- 
cessing times are zo ='I ,  z1 = 8, z2 = 6, and 53 = 2. Table 1 
gives the mew values of the throughput, the waiting time, and 
queue length along with the second moment of the queue length. 

- _  - _  

17.265 
13.333 
2.868 

3 Queueing models with blocking 
An important feature of manufacturing systems in general, and 
AMSs in particular, is the availability of only a limited number 
of buffers space to hold waiting workpieces in front of a work- 
centre, due to either a physical limitation of storage space, or 
the provision of a limited number of fixtures, or a combination 
of both. Hence, workcentres have to be represented by a queue 
with finite capacity; this gives rise to the phenomena of block- 
ing: e.g., when a workpiece completes processing at a particular 
workcentre (say k), all the buffers at the next workcentre (say 1) 
in its routing may be full; hence, workcentre k cannot proceed 
with the processing of the next workpiece until this workpiece is 
moved out, which is possible only when a free buffer is available 
at workcentre 1, This is one particular type of blocking called type 
1 blocking or transfer blocking or manufacturing blocking. Tra- 
ditional queueing models (including PFQNs) of AMSs assume 
infinite capacity queues at all nodes; queueing networks with fi- 
nite capacity queues model AMSs to a greater degree of detail. 
However, exact analysis of queueing networks with finite buffers 
(i.e., queueing networks with blocking) can be carried out only 
for some special cases. More general systems can be analysed 
only approximately. Also, most of the analyses in the literature 
deal with networks featuring a single part type (job class) only. 
The two very recent survey articles by Perros ([12]) and Onvural 
([13]) comprehensively scan the literature on finite capacity open 
and closed queueing networks respectively. The central server 
model, with the central server (MHS in our example) having a 
infinite capacity queue, the stations having finite or infinite ca- 
pacity queues, with exponential server assumption, with a single 
part type, under manufacturing blocking has been shown to have 
a product-form solution ([14]). This representation is reasonable 
since usually machines have very limited buffer capacity, and the 
MHS has the capacity to  hold all the workpieces on the shop floor. 
The analysis of this system has been extended to the multiple job 
classes version by Zhuang and Hindi ([15]). Computational al- 
gorithms for finite capacity queueing networks with a different 
blocking mechanism called rejection blocking are presented by 
Akyildiz and von Brand ((161). 

An example 
Continuing with the central server model of the example sys- 

tem presented in the previous section, let us assume finite ca- 
pacity buffers at each of the K workcentres; the MHS (central 
server) has an infinite capacity queue. We analyse the system 

Station, k I Queue Len. I Util. I T'put I Wait. Time 
0 I 5.949 I 0.419 I 0.12581 1 14.185 

Table 2 Results for example AMS featuring blocking 

by the approximate mean value analysis of blocking queuing net- 
works (MVABLO) developed in [17). Let the buffer capacity of 
workstations 1 , 2  and 3 be 4 units each (including the server) and 
that of the MHS be 7. The routing probabilities and the process- 
ing times are the same as in the previous example. Tabla 2 gives 
the mean values of the throughput, queue length, utilisation and 
waiting time. at each of the stations 

4 Network of multiqueue nodes 

4.1 Polling models of workcentres and the 
MHS 

The fundamental machining unit in an AMS is a versatile work- 
centre, capable of processing different types of parts. In tradi- 
tional queueing models, we assume that different parts types wait 
in a common queue. Besides, we assume a common processing 
time for the different part types, i.e., treat them different part 
types as homogenous, otherwise the analysis becomes very dif- 
ficult. Due to the inherent differences among part types, it is 
more realistic to treat them as distinct, by assuming (logically) a 
separate queue for each part type. Hence, we may model a node 

(machining centre) in the AMS,by a single server attending to 
multiple queues. If there are N part  types being processed at a 
workcentre, usually they are taken up for machining in the cyclic 
onler 1, 2 ,  . . . , N-1, N, 1, 2, etc. When the machine changes over 
from processing part type j to processing part type ( j  + 1) modulo 
N + 1, a setup operation is carried out for part type j+ l ,  before 
starting machining the workpieces. Such cyclic server models of 
the workcentres are a special class of the more general polling 
models; see (181 for a survey on the analysis of polling models. 
Since the MHS moves the workpieces among the machine centres, 
it may also be considered (in a global sense) as a polling model, 
with one queue corresponding to each machining centre that in- 
puts workpieces for handling. Hence, an AMS can be modelled 
as a network of such multiqueue models, interconnected by the 
MHS. This is analogous to the interconnection of token passing 
Local Area Networks by a high-speed backbone network: the 
LANs are analogous to the machining centres in the AMs, and 
the backbone network corresponds to the MHS. 

The exact analysis of such systems (interconnected networks 
of polling models) has not been done as yet in the literature. 
However, approximate analyses, utilising simplifying assumptions 
have been presented, e.g., Kuruppillai and Bengston ([19]), and 
Ibe and Cheng ((201). The difficulty in the analysis is due to 
the fact that the arrival process to the MHS (analogously, the 
backbone network) is not exponential as required for an exact 
analysis of polling models; to simplify matters, the exponential 
assumption is usually adapted. Next we present a simple model 
of an AMS as network of multiqueue nodes, and develop an ap- 
proximate analysis. 
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4.3 Approximate analysis for manufacturing 
lead time 

We are interested in determining the mean manufacturing l e d  
time (called TpLT) ,  for each part type j ;  this value is defined 
as the time from the instant the workpiece enters the system to 
the instant it leaves the system. In our model, the mean man- 
ufacturing lead time of an arbitrary part type may bk obtained 
from: 

4.2 A typical configuration 
Consider an AMS consisting of K versatile workcells, M I  through 
M K ,  one inspection station, and a Automated Guided Vehicle 
(AGV) system (MHS), and manufacturing N different part types 
(Fig. 2). Workpieces of part type j (1 5 j 5 N )  arrive to the 
system according to Poisson process of parameter A,. An arriving 
workpiece is sent to workcell k (1 _< k 5 K )  with probability P k , J ,  

where Pk.3 2 0 and c f = l p k , ,  = 1; thus the arrival rate for part 
type j at machine Mk (1 5 k 5 K )  is pk, ,A, .  The setup time and 
processing time for part type j at workcentre Mk are denoted as 
Skj (with mean ?-k,j and variance 6 k f )  and Bk,, (with mean bk,l 

and second moment b f j )  respectively. There is a separate input 
queue for each part type at each workcell; all K workcells operate 
in cyclic server fashion described above and process atmost one 
waiting workpiece of each part type in each cycle (cyclic server 
with 1-limited service). After processing at the workcells, the 
workpieces wait in a output queue common to all part types. The 
AGV system moves the finished workpieces from the workcells 
to the corresponding queue of each part type at the inspection 
station; the MHS also works in a cyclic server fashion, moving 
workpieces Out from the buffers of the workcells in the cyclic 
order M I ,  Mz ,  ..., MK, MI etc.; the MHS works on each output 
buffer in a exhaustive fashion (i.e., it empties the output buffer 
of one workcell before taking up the next one). Let BfGV denote 
the time for the AGV system to move a workpiece (irrespective 
of part type) from workcell Mk to the inspecthn station, and 
S r H S  the time for the AGV system to move over to cell Mk after 
finishing with cell Mk-1. The inspection station operates in the 
same fashion as the workcells, examining one workpiece of each 
part type per cycle. Let BrNS denote the inspection time for a 
type j workpiece, and S:Nd be the time taken by the inspection 
station to changeover from part j - 1 to part j.  

Machining Material Handling Inspection 

AlPl.1 --& 
-10- 

Part 1 

Part j 

‘Id 
PartN 

~ K , N  * - 
w W C  BWC w M H S  BMHS W I N S  B I N S  

Figure 2: AMS modelled as a Network of Multiqueues 

where E[Wwc], E[WMHS] and E[WrNS] are respectidy the 
mean waiting time at the input queue to the workcell to which 
it is initially sent, the mean waiting time for the AGV system at 
the output queue of this workcell, an4 the mean waiting time in 
the inspection station queue; E[BWc], E[BMHS] and [BrNS] are 
respectively the mean time for processing, part movement to the 
inspection station, and the inspection time at these three stages. 

Let WGc denote the waiting time for part type j at the work- 
centre k, W p H S  be the waiting time for an arbitrary part type 
at the output queue of wokstation k, and W:NS be the waiting 
time of a type j workpiece at the inspection station. Since a type 
j workpiece is  probabilistically routed to one of the workcells ini- 
tially, we obtain the, mean manufacturing lead time for part j 
as 

E[TjM”’I = { k= 5 P k . j  1 [E[WzC] E[Bk,j] + E[W,MHS]+ 

E[B,MHS]]} + E[Wj‘Ns] + E[Bj”’] (2) 
in the above equation, we need to compute only the three 

mean waiting times, which may be done as follows: 

0 

0 

0 

4.4 

W r :  The mean arrival rate of part type j to workcell k 
is Xk.3  = pk,JXJ;  using the known values of the setup and 
processing times, we can compute the mean waiting time by 
any of the approximate methods; we used the one suggested 
by Boxma and Meister ([21]). 

W f H S :  We assume that the arrival of workpieces to the 
output queue of each workcell is exponential, with rate 
equal to the sum of the arrival rates of diffetrent work- 
pieces to that workcell; i.e., A p H S  = Cy=1 &,. Now, the 
mean waiting time in the output queue of workcell k can be 
found by solving the exhaustive service cyclic server model 
of the MHS by the method presented in [18]. 

WJNS: The arrival of workpieces of each part type to its 
corresponding queue at the inspection station from the AGV 
system is assumed to be exponential, with rate equal to 
the external arrival rate of workpieces to the system, i.e., 
AfNS = A,. The mean waiting time at the inspection sta- 
tion is obtained by using the same methods as for WEc. 

Numerical example 
Consider an AMS with the configuration consisting of K = 2 
workcells, one AGV, and one inspection station, and producing 
N = 3 different types of parts. The following table gives the mean 
values of the interarrival time, the setup time and processing 
(inspection) time a workpiece of each part type on the workcells 
and the inspection station. For simplicity, we assume that all 
activities take an exponential duration. 

92 



3 I 3.0 I 8.0 I 1.0 I 1.0 I 2.0 1 2.0 

Part type E[Wwc] E [ W M H S ]  
1 19.827 147.098 
2 17.725 146.586 
3 14.383 146.074 

The following table gives the routing probabilities, the mean 
interarrival times, and the time taken by the AGV to move a 
workpiece from the workcells to the inspection centre. The time 
taken by the AGV to changeover from one workcell to the next, 
is assumed to be 50 units. 

E[WrNS] Mean MLT 
3.038 181.46 
3.046 180.96 
2.808 174.43 

Part Routing Prob 1 
TOM1 I 

Mean Inter- 

30.0 

Move Time I 

10.0 

The mean manufacturing lead times for the three part types 
obtained from equations (1)  and (2) are: 

Mean Manufacturing Lead Times  

5 Conclusion 
In this paper, we highlighted the application of queueing net- 
work mod& for the performance evaluation of AMSs, addressing 
separately the issues of computation of higher moments of per- 
formance measures, blocking phenomena, and analysis of a open 
network of multiqueues model of AMs. Due to paucity of space, 
we had to omit most of the mathematical details. Several in- 
teresting and important extensions to the models presented here 
are possible, like the analysis of a network of multiweues model 
with finite buffers, computation of higher moments of perfor- 
mance measures for this-model, analysis of a closed network of 
multiqueues model, and incorporation of the issue of equipment 
failure and repair in the model. Development of analysis method- 
ologies for these systems, which model AMSs to a greater degree 
of detail, constitute important unsolved problems in the area of 
performance evaluation, and is part of our continuing work in 
this area. 
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