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Supplementary Figure 1: Power spectral density (PSD) in Gaussian reservoirs. (a) PSD
of the position x of the particle trapped in pure water is showed by the blue line with lower
saturation value. PSD of the particle’s position x in the engineered Gaussian bath at 1331 K
is represented by the red line with higher saturation value. This bath was created by flashing
the secondary trap at 34 Hz. Black lines are fits to Supplementary eq. (1) overlaid on the
experimental data. Fits result in a roll-off frequency of f c

w = 1.4 Hz for the PSD in pure water
and a roll-off requency of f c

G = 3.86 Hz for the PSD in the engineered Gaussian bath. b PSD
of the position x of the particle trapped in pure water is showed by the blue line with lower
saturation value. PSD of the particle’s position x in the engineered Gaussian bath at 1140 K is
represented by the green line with higher saturation value. This bath was created by flashing
the secondary trap at 135 Hz. Black lines are fits to Supplementary eq. (1) resulting in a roll-off
frequency of f c

w = 1.4 Hz for the PSD in pure water and a roll-off frequency of f c
G = 4.0 Hz in

the engineered Gaussian reservoir at 1140 K.
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Supplementary Figure 2: δa distribution for non-Gaussian reservoir engineering. In (a)
skewed distributions generated for the construction of δa is plotted. Blue line shows the neg-
atively skewed distribution δaL. Red line shows the positively skewed distribution δaR. (b)
shows the δa distribution used to engineer a non-Gaussian reservoir with κ = 20 at 1824 K.
To create this reservoir, the secondary trap was flashed at 34 Hz. (c) shows the δa distribution
used to engineer a non-Gaussian reservoir with κ = 10 at 1500 K. To create this reservoir, the
secondary trap was flashed at 135 Hz.
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Supplementary Figure 3: Power spectral density (PSD) in non-Gaussian reservoirs (a)
PSD of the position x of the particle in the non-Gaussian reservoir with κ = 20 at 1310 K is
showed (red line). This reservoir was created by flashing the secondary trap at 34 Hz. Blue
line is a fit to Supplementary eq. (1) resulting in a roll-off frequency f c

NG = 3.98 Hz. We see
deviations from the fit after about one order-of-magnitude fall (dashed line). (b) PSD of the
position x of the particle in the non-Gaussian reservoir with κ = 10 at 1500 K is showed (green
line). This reservoir was created by flashing the secondary trap at 135 Hz. Blue line is a fit to
Supplementary eq. (1) resulting in a roll-off frequency f c

NG = 5.4 Hz. Here the fit agrees with
the data over a broader dynamic range (dashed line).
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Supplementary Figure 4: Probability distribution of position, work and origins of irre-
versibility in the non-Gaussian engine with κ = 10 at the hot reservoir . (a) Equilibrium
probability distribution ρ(x) of the particle’s position in the cold Gaussian reservoir at 1140 K is
showed by the blue hollow circles and in the hot non-Gaussian reservoir with κ = 10 at 1500 K
is showed by the green hollow triangles. In (b), probability distribution of work done per cycle,
ρ(Wcyc), for the non-Gaussian engine with κ = 10 at the hot reservoir for various τ . (c) Blue
hollow and solid triangles show the average work done per cycle 〈Wcyc〉 and the most-probable
workW ∗, respectively, for the non-Gaussian engine with κ = 10 for the hot reservoir at various
τ . The blue solid line is a fit to eq. (1) of the main text. Black hollow and solid circles show
〈Wcyc〉 and W ∗, respectively, for the thermal/Gaussian engine. The experimentally calculated
work for these engines agree with the theoretically calculated quasistatic work W∞ at large τ .
The value of W∞ is shown by the blue short horizontal line for the non-Gaussian engine and
by the black line for the Gaussian engine. Mean work 〈Wcyc〉 is calculated for each realization
of the engine over these many cycles: τ = 1.9 s (225 cycles), τ = 4 s (200 cycles), τ = 8
s (100 cycles), τ = 10.6 s (100 cycles), τ = 18.8 s (50 cycles) and τ = 32 s (25 cycles) for
the non-Gaussian engine. (d) The ratio measuring equilibrium violation, k〈x2〉/kBT

H
eff, calcu-

lated at the midpoint of the hot isotherm for different τ is showed by the blue triangles for the
non-Gaussian engine with κ = 10 in the hot reservoir and by the black circles for the Gaussian
engine. The horizontal line indicates the equilibrium condition which is violated inside the
shaded grey region, in case of the non-Gaussian engine with κ = 10 in the hot reservoir. The
error bars indicate the standard deviations of the mean and the most probable quantities across
different experiments.
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Supplementary Figure 5: Work done per isotherm for the non-Gaussian engines. (a) Red
circles denote the most probable work W ∗

H performed during the hot isotherm as a function of
cycle time τ for the non-Gaussian engine with κ = 10 at the hot reservoir. The red line indicates
a fit to Supplementary eq. (6) yielding ΣH = 0.11. (b) Black circles denote the most probable
work W ∗

C performed during the cold isotherm for the non-Gaussian engine with κ = 10 at
the hot reservoir. The black line is a fit to Supplementary eq. (7) resulting in ΣC = 0.0476.
(c) Red circles denote the most probable work W ∗

H performed during the hot isotherm as a
function of cycle time τ for the non-Gaussian engine with κ = 20 at the hot reservoir. The
red line indicates a fit to Supplementary eq. (6) yielding ΣH = 0.19. (d) Black circles denote
the most probable work W ∗

C performed during the cold isotherm for the non-Gaussian engine
with κ = 20 at the hot reservoir. The black line is a fit to Supplementary eq. (7) resulting
in ΣC = −0.0016 ∼ 0. The error bars indicate the standard deviations of the most probable
across different experiments.

Supplementary Note 1 | Determination of secondary trap’s stiffness and
effective temperature of the engineered reservoirs

Power spectral density (PSD) of the particle’s position is given by the Fourier transform of its
auto-correlation function. When trapped in pure water, PSD as a function of frequency (f )
shows a Lorentzian profile [1] given by

PSD(f) =
1

2π2γ

kBT

f 2 + f c2
w

(1)
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where γ is the damping coefficient, f c
w = k1/(2πγ) is the roll-off frequency proportional to the

primary trapping stiffness k1 and T is the temperature of water that is maintained at 300 K in
all our experiments. In presence of a flashing secondary trap (of stiffness k2) with memoryless
Gaussian fluctuations, the overall PSD must remain a Lorentzian with a roll-off frequency f c

G

proportional to the effective stiffness k = k1 + k2 and an effective temperature that is higher
than that of the bath. In Supplementary Figure 1a, PSD in the absence of external noise (blue
line) fits to eq. (1) with roll-off frequency f c

w = 1.35 Hz which corresponds to a primary
trapping stiffness k1 = 0.702 pN µm−1 measured using equipartition relation. With external
Gaussian noise at 34 Hz imposed, represented in Fig 1b of the main text, Lorentzian fit yields
f c

G = 3.86 Hz, allowing us to calculate k =
fc

G
fc
w
k1 ≡ 2 pNµm−1 and thus k2 = k − k1 ≡ 1.29

pNµm−1. Using this value of k in equipartition (k〈x2〉 = kBTeff), the effective temperature
of the engineered Gaussian reservoir is finally evaluated to be Teff = 1331 K. A higher Teff

lifts the plateau of the Lorentzian profile as shown in Supplementary Figure 1. Supplementary
Figure 1b shows the corresponding PSDs with noise imposed at 135 Hz. The above mentioned
calculation yields k1 = 0.5 pN µm−1, k2 = 3.17 pN µm−1 and k = 3.67 pN µm−1. Note that,
since the residence time at each δa position is reduced due to the high flashing frequency, the
value of k2 is higher in this case.

Due to the memoryless nature of the δa-distribution, no further correlation or drag is added
to the particle dynamics even in the engineered non-Gaussian reservoir. Therefore the overall
PSD should still be a Lorentzian which is confirmed in Supplementary Figure 3. The black line
indicates the fit (Supplementary Figure 3a) to Supplementary eq. (1) and the roll-off frequency
f c

NG = 3.3 Hz seems to match f c
G for the non-Gaussian reservoir with κ = 27, created by

flashing the secondary trap at 34 Hz. This implies an effective stiffness of k = 2.06 pNµm−1

and an effective temperature Teff = 1310 k corresponding to the engineered non-Gaussian noise
that is represented in Figure 1c of the main text.We see that for this reservoir, the PSD fits to a
Lorentzian up to 20 Hz and then decays down. This is a result of low flashing frequency (34 Hz).
For the non-Gaussian reservoir with κ = 10 at the hot reservoir which is created by flashing
the secondary trap at 135 Hz, the PSD (Supplementary Figure 3b) fits to a lorentzian for almost
two decades, even strengthening the claim of memoryless nature of our noise. We performed
two sets of experiments of Stirling engine. One, with flashing the secondary trap at 34 Hz
and the other with flashing the secondary trap at 135 Hz. Work done and efficiency of both
these engines agreed with the theoretically calculated quasistatic work and Stirling saturation
efficiency. Therefore, the disagrrement of the fit on Supplementary Figure 3a beyond 20 Hz
does not seems to affect the physics of our engines and our engineered noise is effectively
additive and uncorrelated.

Supplementary Note 2 | Stirling engine with engineered Gaussian baths

The performance of our non-Gaussian engines were compared to a Stirling engine operating
in the same range of τ as the non-Gaussian ones between two engineered Gaussian baths with
effective temperatures TH

eff = 1378 K and T C
eff = 1238 K, resulting in a ∆Teff = 140 K. The

isotherms of this engine were performed between a maximum and minimum effective stiffness
of kmax = 2.29 pNµm−1 and kmin = 2.08 pNµm−1, respectively, resulting in an identical
expansion/compression ratio as the non-Gaussian engines.

7



Supplementary Note 3 | Strength of noise-statistics tuning on modulat-
ing engine performance

A trade-off between increasing irreversibility and decreasing τ causes the power output of
such a Stirling engine to go through a maximum and eventually a fall on lowering the cycle
time. As a result of negligible irreversibility, the power output (Figure 3a of main text) of this
Gaussian engine increases monotonically on lowering τ and the maximum is expected to occur
at a much smaller cycle time which is not accessible in our experiments. We realize that when
the compression/expansion ratio is held fixed, an elevation of TH

eff of the hot Gaussian bath
facilitates volume equilibriation so that the onset of irreversibility occurs only for a even faster
isothermal expansion. Therefore a hypothetical Gaussian engine (with identical conditions as
the non-Gaussian ones) that performs the isothermal expansion at a considerably higher TH

eff
(= 1824 K or 1540 K) than our experimental Gaussian engine, is expected to exhibit the power
peak at a even smaller τ than the experimental one. This implies even a stronger effect of noise
statistics-tuning on the power-peak modulation - than what one can immediately infer from
Figure 3a of the main text.

Supplementary Note 4 | Non-Gaussian Stirling engine having a hot reser-
voir with κ = 10

To elucidate the effect of non-Gaussian statistics on the performance of a stochastic Stirling
engine, we executed Stirling cycles at different operating speed between a cold Gaussian reser-
voir and a hot non-Gaussian reservoir with κ = 20 in one set of experiments and κ = 10 in the
other. The engine protocol with κ = 20 at the hot reservoir is described in details in Figure 1e
of the main text. The non-Gaussian engine with κ = 10 at the hot reservoir was executed fol-
lowing an identical protocol as the one described in Figure 1e. This engine was performed by
linearly varying the effective stiffness of the confining potential between kmax = 4.04 pNµm−1

and kmin = 3.67 pNµm−1 implying an identical expansion/compression ratio as the one with
κ = 20 at the hot reservoir. The effective temperatures of the hot and the cold reservoir be-
tween which this engine performed, were set to TH

eff = 1500 k and T C
eff = 1140 k, respectively,

so that ∆Teff = 360 K is comparable to that of the non-Gaussian engine with κ = 20 at the
hot reservoir. Supplementary Figure 4a shows the probability distribution ρ(x) of the particle’s
position in the cold Gaussian and the hot non-Gaussian reservoir. It can be clearly observed that
the central part of ρ(x) for the non-Gaussian reservoir with κ = 10, is broader than that of the
corresponding ρ(x) in reservoirs with κ = 27 (Figure 1d of the main text) or κ = 20 (Figure 1e
of the main text), in spite of having comparatively lower Teff. Supplementary Figure 4b shows
the work distribution ρ(Wcyc) for τ = 18.8 s, 8 s and 1.9 s. We see that the increase in the neg-
ative skewness of ρ(Wcyc) with lowering τ is less compared to the non-Gaussian engine with
κ = 20 at the hot reservoir as described in Figure 2b of the main text. This can be explained
by the fact that a decrease in the kurtosis of ρ(x) decreases the magnitude and the number of
displacement spikes encountered within any given time interval, which, in turn, reduces the
possibility of anomalously large negative work in few cycles. In Supplementary Figure 4c, W ∗

of the non-Gaussian engine remains negative till τ = 8 s and turns positive indicating high
irreversibility for τ ≤ 6 s. The sole effect of non-Gaussian statistics of the hot reservoir in
this irreversibility-build-up is again guaranteed by the fact that the Gaussian engine has a lower
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effective temperature of the hot reservoir (TH
eff = 1378 K) and yet shows an exhaustive volume

equilibriation for all τ in most of the cycles ( since W ∗ has a flat profile). This build-up of irre-
versibility resulting in W ∗ lift-off for the non-Gaussian engine with κ = 10 at the hot reservoir
is consistent with equilibrium violation, which is confirmed by the deviation of k〈x2〉/kBTH

from the value 1 (equipartition) below τ ≤ 8 s (Supplementary Figure 4d). More interestingly,
a comparison of Supplementary Figure 4c and Figure 2c of the main text firmly implies that
the onset of irreversibility for this engine occurs at a τ smaller than the one with κ = 20 at
the hot reservoir. This is a result of the reduced kurtosis of ρ(x) with a fatter central portion
which causes a higher possibility of exploration of the permitted volume in most of the cycles
during the isothermal expansion steps. Therefore, indeed the kurtosis of the hot reservoir plays
a pivotal role in deciding the onset of irreversibility when a non-Gaussian engine is operated at
finite cycle times.

Supplementary Note 5 | Calculation of most probable efficiency

The efficiency of the engine is given by the ratio of work done per cycle to the heat absorbed
from the hot bath, that is ε =

Wcyc

Q
. To capture the effect of noise-induced irreversibility we use

the most probable work done per cycle W ∗ in this calculation. The total heat Q absorbed from
the hot reservoir consists of the heat Q2→3 (eq. (2) of the main text) taken from the hot bath
while the particle is decoupled and coupled from the cold to the hot bath during the isochoric
transition →® and the heat Q3→4 (eq. (3) of the main text) dissipated during the isothermal
transition ®→¯. Since the isochoric transition →® occurs instantaneously in our engine,
we directly calculate it from the expected change in internal energy of the system before and
after the transition as Q2→3 = −1

2
kB(TH

eff − TC
eff) ≡ 〈Qisochoric〉. The heat dissipated during the

isothermal expansion is given by

Q3→4 =

∫ (4)

(3)

∂U

∂x
ẋdt ≡

∫ (4)

(3)

kxẋdt (2)

Integration by parts of the right most expression in Supplementary eq. (2) yields

Q3→4 =
1

2
[k(t)x(t)2]

(4)
(3) −

1

2

∫ (4)

(3)

x2 ◦ dk. (3)

The first term in the right hand side of Supplementary eq. (3) is called the boundary term
(Qboundary) calculated as

Qboundary = kmin〈x2〉(4) − kmax〈x2〉(3). (4)

In our experiments Qboundary shows a symmetric distribution centred around zero and hence
we take the average of this quantity for efficiency calculation. The second term is the work
WH performed during the isothermal expansion in the hot reservoir. Since this quantity has
an asymmetric distribution even in case of a Gaussian heat bath, we use the average of this
quantity. Therefore the most probable efficiency of the non-Gaussian engine is given by

ε∗ =
W ∗

〈WH〉+ 〈Qboundary〉+ 〈Qisochoric〉
. (5)
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Supplementary Note 6 | Calculation of Curzon-Ahlborn efficiency

Work performed during the isothermal expansion (WH) and the compression (WC) can be writ-
ten as [2]:

WH = WH∞ +WHirr ≡ WH∞ + ΣH/τ (6)

and
WC = WC∞ −WCirr ≡ WC∞ − ΣC/τ (7)

where WH∞ and WC∞ are corresponding quasistatic work. Fast driving causes an irreversible
work WHirr (WCirr) which grows inversely with τ with irreversibility parameters ΣH (ΣC). It has
been shown by Schmiedl et al. [2] that the efficiency at maximum power of such a stochastic
heat engine can be written in terms of the quasistatic saturation efficiency using the irreversibil-
ity parameters as:

εCA =
εsat

2− αεsat
(8)

where α = 1/(1 +
√

ΣC/ΣH).
Although the above relations have been deduced for average quantities, we check its validity
in the most probable case. Fitting W ∗ and W ∗

C to Supplementary eq. (6) and (7) respectively
, we find ΣH = 0.11 and ΣC = 0.047 (Supplementary Figure 5a and 5b α = 0.6 for the non-
Gaussian engine with κ = 10 at the hot reservoir and ΣH = 0.19 and ΣC ∼ 0 (Supplementary
Figure 5c and 5d) resulting in an α ∼ 1 for the non-Gaussian engine with κ = 20 at the hot
reservoir. This yields an εCA = 0.035 and εCA = 0.0256 for the engines with κ = 10 and
κ = 20 at the hot reservoirs respectively. Most interestingly, these values of εCA agree with
εMax = 0.027 (τ = 8 s) for the engine with κ = 10 at the hot reservoir and εMax = 0.025
(τ = 10.6 s) for the engine with κ = 20 at the hot reservoir.
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