
Received May 20, 2021, accepted June 22, 2021, date of publication July 5, 2021, date of current version July 16, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3094962

FPGA Implementation of Particle Filters
for Robotic Source Localization
ADITHYA KRISHNA 1, ANDRÉ VAN SCHAIK 2, (Fellow, IEEE),
AND CHETAN SINGH THAKUR 1, (Senior Member, IEEE)
1Department of Electronic Systems Engineering, Indian Institute of Science, Bengaluru 560012, India
2International Centre for Neuromorphic Systems, The MARCS Institute, Western Sydney University, Kingswood, NSW 2747, Australia

Corresponding author: Chetan Singh Thakur (csthakur@iisc.ac.in)

This work was supported by Pratiksha Trust, Indian Institute of Science.

ABSTRACT Particle filtering is very reliable in modelling non-Gaussian and non-linear elements of physical
systems, which makes it ideal for tracking and localization applications. However, a major drawback of
particle filters is their computational complexity, which inhibits their use in real-time applications with
conventional CPU or DSP based implementation schemes. The re-sampling step in the particle filters
creates a computational bottleneck since it is inherently sequential and cannot be parallelized. This paper
proposes a modification to the existing particle filter algorithm, which enables parallel re-sampling and
reduces the effect of the re-sampling bottleneck. We then present a high-speed and dedicated hardware
architecture incorporating pipe-lining and parallelization design strategies to supplement the modified
algorithm and lower the execution time considerably. From an application standpoint, we propose a novel
source localization model to estimate the position of a source in a noisy environment using the particle filter
algorithm implemented on hardware. The design has been prototyped using Artix-7 field-programmable
gate array (FPGA), and resource utilization for the proposed system is presented. Further, we show the
execution time and estimation accuracy of the high-speed architecture and observe a significant reduction
in computational time. Our implementation of particle filters on FPGA is scalable and modular, with a low
execution time of about 5.62µs for processing 1024 particles (compared to 64ms on Intel Core i7-7700 CPU
with eight cores clocking at 3.60 GHz) and can be deployed for real-time applications.

INDEX TERMS Particle filters, field programmable gate array, bearings-only tracking, Bayesian filtering,
unmanned ground vehicle, hardware architectures, real-time processing.

I. INTRODUCTION
Emergency response operations such as disaster relief, and
military applications often require localization of a contam-
inant chemical or biological source in an unknown envi-
ronment. In recent times, unmanned vehicles have become
increasingly popular in such applications due to reduced
human involvement and the ability to carry out the task
remotely. These autonomous systems can eventually sup-
plement human intervention in various safety-critical and
hazardous missions. Nevertheless, conditions in which these
missions are conducted vary drastically depending on the
environmental factors that result in the sensor receiving
noise-corrupted measurements. This poses a significant
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challenge to unmanned vehicles to navigate and locate a
target in an unknown environment autonomously.

Our study demonstrates autonomous source localization
using an Unmanned ground vehicle (UGV) and proposes
a novel source localization model for light source localiza-
tion with noise-corrupted input measurements as a proof-
of-concept. The model presented here uses a particle filter
algorithm [1] to increase the robustness to false detections
and noise-corrupted measurements. In recent times, there
is a growing popularity of particle filters (PFs) in signal
processing and communication applications to solve various
state estimation problems like tracking [2], localization, nav-
igation [3], and fault diagnosis [4]. PFs have been applied for
models described using a dynamic state-space approach com-
prising a system model representing the state evolution and a
measurement model representing the noisy measurements of
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the state [5]. In most real-time scenarios, these models are
non-linear and non-Gaussian. Traditional filters like Kalman
filters prove to be less reliable for such applications, and it
is proven that PFs outperform conventional filters in such
scenarios [6].

PFs are inherently Bayesian in nature, intending to con-
struct a posterior density of the state (e.g., the location
of a target or source) from observed noisy measurements.
In PFs, the posterior of the state is represented by a set of
weighted random samples known as particles. A weighted
average of the samples gives the state estimate (location of
the source). PFs use three major steps: Sampling, Impor-
tance, and Re-sampling for state estimation, thus deriving
the name SIR filter. In the sampling step, particles from the
prior distribution are drawn. The importance step is used
to update the weights of particles based on input measure-
ments. The re-sampling step prevents any weight degeneracy
by discarding particles with lower weights and replicating
particles having higher weights. Since PFs apply a recur-
sive Bayesian calculation, all particles must be processed for
sampling, importance, and re-sampling steps. Then, the pro-
cess is repeated for the next input measurement, resulting
in enormous computational complexity. Further, the execu-
tion time of PFs is proportional to the number of particles,
which inhibits the use of PFs in various real-time applications
wherein a large number of particles need to be processed to
obtain a good performance. Several implementation strate-
gies have been proposed in the literature to address this issue
and make PFs feasible in real-time applications discussed in
Section. II.

A. OUR CONTRIBUTIONS
The contributions of this paper are on algorithmic and hard-
ware fronts:

1) ALGORITHMIC CONTRIBUTION
We propose a novel source localization model employing a
light source as the target/source to be localized and an UGV
carrying an array of photodiodes to sense and localize the
source. Photodiode measurements and the UGV position are
processed to estimate the bearing of the light source relative
to the UGV. Based on the bearing of the light source, we try to
localize the source using the PF algorithm. Reflective objects
and other stray light sources are also picked by the sen-
sor (photodiodes), leading to false detections. In this study,
we have successfully demonstrated that our PF system is
robust to noise and can localize the source even when the
environment is noisy.We introduce two parameters α and β to
model the sensor imperfections and background noise activ-
ity, respectively. However, the PFs are computationally very
expensive, and the execution time often becomes unrealistic
using a traditional CPU-based platform. The primary issue
faced during the design of high-speed PF architecture is the
parallelization of the re-sampling step. The re-sampling step
is inherently not parallelizable as it needs the information
of all particles. We propose a modification to the standard

SIR filter (cf. Algorithm 1) to address this problem and
make a parallel and high-speed implementation possible.
The modified algorithm proposed (cf. Algorithm 2) uses a
network of smaller filters termed sub-filters, each processing
independently and concurrently. The processing of total N
particles is partitioned into K sub-filters so that at most
N/K particles are processed within a sub-filter. This method
reduces the overall computation time by a factor of K . The
modified algorithm also introduces an additional particle
routing step (cf. Algorithm 2), which distributes the particles
among the sub-filters and makes the parallel implementation
of re-sampling possible. The particle routing step is integrated
with the sampling step in the architecture proposed and does
not require any additional time for computation. We also
compare the estimation accuracy of the standard algorithm
with the modified algorithm in Section VIII-C and infer that
the modified and the standard approaches do not vary signifi-
cantly in terms of estimation error. Additionally, the modified
algorithm achieves a very low execution time of about 5.62µs
when implemented on FPGA, compared to 64 ms on Intel
Core i7-7700 CPU with eight cores clocking at 3.60 GHz
for processing 1024 particles and outperforms other state-of-
the-art FPGA implementation techniques.

2) HARDWARE CONTRIBUTION
We implemented the modified SIR algorithm on an FPGA
and key features of the proposed architecture are:
• Modularity: We divide the overall computation into
multiple sub-filters, which process a fixed number of
particles in parallel, and the processing of the particles
is local to the sub-filter. This modular approach makes
the design adaptable and straightforward as it allows
us to customize the number of sub-filters in the design
depending on the sampling rate of input measurement
and the amount of parallelism needed.

• Scalability: Our architecture can be scaled easily to
process a large number of particles without increasing
the execution time by using additional sub-filters.

• Design complexity: The proposed architecture relies on
the exchange of particles between sub-filters. However,
communication and design complexity increase propor-
tionallywith the number of sub-filters used in the design.
In our architecture, we employ a simple ring topology to
exchange particles between sub-filters to reduce com-
plexity and design time.

• Memory utilization: The sampling step uses particles
from the previous time instant to estimate the particles
of the present time instant. This requires the sampled
and re-sampled particles to be cached in two separate
memories. The straightforward implementation of the
modified SIR algorithm needs 2 × K memory ele-
ments each of depth M for storing the sampled and
re-sampled particles for K sub-filters. Here, M is the
number of particles in a sub-filter (M = N/K ). How-
ever, applications involving non-linear models require
a large number of particles [7]. This would make the
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total memory requirement 2×K significant for large K
or M . The proposed architecture reduces this memory
requirement to K memory elements each of depth M
using a dual-port ram, as explained in Section VII-A1.
Therefore, the proposed architecture lowers memory
utilization, and reduced memory access makes it more
energy-efficient.

• Real-time: Since all sub-filters operate in parallel,
the execution time is significantly reduced compared to
that of other traditional implementation schemes that use
just one filter block [8]. Our implementation has a very
low execution time of about 5.62µs (i.e., a sampling rate
of 178 kHz) for processing 1024 particles and outper-
forms most state-of-the-art implementations, allowing
real-time deployment.

• Flexibility: The proposed architecture is not limited to a
single application, and the design can be easily modified
bymaking slight changes to the architecture for other PF
applications.

The architecture was successfully implemented on the
Artix-7 FPGA and the experimental results show its efficacy
in source localization.

The rest of the paper is organized as follows: We provide
the theory behind Bayesian filtering and PFs in Section III
and IV, respectively. An experimental setup for the proposed
source localization model using a Bearings-only track-
ing (BOT) framework is presented in section V. In this frame-
work, input to the filter is a time-varying angle (bearing) of
the source, and each input is processed by the PF algorithm
implemented on hardware to estimate the source location.
Further, in section VI, we propose algorithmic modifications
to the existing PF algorithm that make the high-speed imple-
mentation possible. The architecture for implementing PFs on
hardware is provided in Section VII. Evaluation of resource
utilization on the Artix-7 FPGA, performance analysis in
terms of execution time, estimation accuracy, and the experi-
mental results are provided in Section VIII.

II. STATE-OF-THE-ART
The first hardware prototype for PFs was proposed by
Athalye et al. [8] by implementing a standard SIR filter
on an FPGA. They provided a generic hardware frame-
work for realizing SIR filters and implemented traditional
PFs without parallelization on FPGA. As an extension
to [8], Bolić et al. [9] suggested a theoretical framework
for parallelizing the re-sampling step by proposing dis-
tributed algorithms called Re-sampling with Proportional
Allocation (RPA) and Re-sampling with Non-proportional
Allocation (RNA) of particles to minimize execution time.
The design complexity of RPA is significantly higher than
that of RNA due to non-deterministic routing and com-
plex routing protocol. Though the RNA solution is pre-
ferred over RPA for high-speed implementations with low
design time, the RNA algorithm trades performance for
speed improvement. Agrawal et al. [10] proposed an FPGA
implementation of a PF algorithm for object tracking in

video. Ye and Zhang [11] implemented a SIR filter on the
Xilinx Virtex-5 FPGA for bearings-only tracking applica-
tions. Sileshi et al. [12]–[14] suggested two methods for
implementation of PFs on an FPGA: the first method is
a hardware/software co-design approach for implementing
PFs using MicroBlaze soft-core processor, and the second
approach is a full hardware design to reduce execution
time. Velmurugan [15] proposed an FPGA implementa-
tion of a PF algorithm for tracking applications without
any parallelization using the Xilinx system generator tool.
Schwiegelshohn et al. [16] proposed the FPGA optimized
re-sampling (FO-resampling) to parallelize the re-sampling
step by introducing virtual particles. A fixed number of vir-
tual particles are generated around every real particle, and
if the importance factor (weight) of the real particle is less
than the virtual particle, then it gets replaced. Otherwise,
the same real particles are propagated in the next iteration.
However, the resource utilization of their architecture is sub-
stantially higher compared to the conventional PF algorithms.
Mountney et al. [17] proposed a modular PF architecture for
Brain Machine Interfaces (BMI). Their architecture intro-
duces multiple particle processors to parallelize the state
vector and likelihood estimations. Although the state vec-
tor estimation and likelihood computations are parallelized,
the re-sampling step is done sequentially, which is the major
drawback of the architecture. Recently, Alam and Gustafsson
[18] proposed an improved re-sampling architecture by intro-
ducing a weight pre-fetch mechanism to reduce the latency of
the re-sampling step. In this technique, new particle weights
are pre-fetched along with the random values concurrently,
which help in reducing the total number of cycles for re-
sampling. Pre-fetching parameters, on the other hand, neces-
sitates the use of additional buffers to store the pre-fetched
data, resulting in the increased area and power consumption.
Miao et al. [19] proposed a parallel implementation scheme
for PFs using multiple processing elements (PEs) and a cen-
tral unit (CU) to reduce the execution time. PE performs
sampling andweight update, while CU performs re-sampling.
The communication overhead between the PE and the CU,
on the other hand, grows linearly with the number of PEs,
rendering the design unscalable for large-scale particle pro-
cessing. In other work, Velmurugan et al. [20] took an analog
approach to implement PF with low-power consumption.
Their implementation utilizes a minimum number of data
converters to reduce both area and power. However, owing
to the analog mixed mode implementation, their architecture
is not scalable, and verification of the design is difficult
compared to the digital counterparts due to lack of standard
design and test flows in large analog implementation.

Further, several real-time software-based implementation
schemes have been proposed with the intent to reduce com-
putational time. Hendeby et al. [21], [22] proposed the
first Graphical Processing Unit (GPU) based PFs, demon-
strating that the GPU-based architecture outperforms the
CPU-based implementation in terms of processing speed.
Murray et al. [27] provided an analysis of two alternative
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TABLE 1. State-of-the-art PF implementations.

schemes for the re-sampling step based on Metropolis
and Rejection resamplers to reduce the overall execution
time. They compared it with standard Systematic resam-
plers [28] over GPU and CPU platforms. Chitchian et al. [23]
devised an algorithm for implementing a distributed com-
putation PF on GPU for fast real-time control applications.
Zhang et al. [29] suggested an architecture for efficiently
implementing PFs on a DSP for wireless network track-
ing applications. Gong et al. [24] present a shared-memory
systematic re-sampling (SMSR) algorithm to parallelize
the re-sampling step on a GPU. Their algorithm is very
challenging to implement on an FPGA due to the use

of shared memory architecture and parallel scan step to
obtain the prefix sum. Furthermore, they don’t present any
architecture for implementing the algorithm on hardware.
Choppala et al. [30] introduced a random network as a fixed
re-sampling unit in PF. This network assigns each particle a
predetermined set of other particles with which it will inter-
act, and the re-sampler randomly selects one particle from
the set. However, they don’t show the hardware feasibility of
the proposed network on FPGA. Par and Tosun [25] present
a parallel implementation of PF algorithm based on both
multi-core processors and on a GPU using Compute Unified
Device Architecture (CUDA). Their performance analysis
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shows that up to 75x speedup can be achieved on a 512-core
GPU over sequential implementation. Kim et al. [26] imple-
mented PF on a GPU for target position estimation and
parallelized the calculation process utilizing multiple GPU
cores. The proposed algorithm was simulated on a CPU in
MATLAB and then verified on GPU, resulting in a 55%
reduction in execution time. However, they do not show the
hardware feasibility. In addition, these software-based meth-
ods have their own drawbacks when it comes to hardware
implementation owing to their high computational complex-
ity. Therefore, it is essential to develop a high-speed and
dedicated hardware design with the capacity to process a
large number of particles in specified time to meet the speed
demands of real-time applications. This paper addresses this
issue by proposing a high-speed architecture that is mas-
sively parallel and easily scalable to handle a large number
of particles. The benefits of the proposed architecture are
summarized in Section. I-A2.

III. BAYESIAN FRAMEWORK
The evolution of the state sequence xt in a dynamic state space
model is characterised by:

xt = ft (xt−1,wt ) (1)

where, ft is a nonlinear function of the state xt−1, and wt
represents the process noise. The objective is to recursively
estimate the state xt based on a measurement defined by:

zt = gt (xt , vt ) (2)

where, gt is a nonlinear function describing the measurement
model, and zt is the system’s observation vector corrupted by
measurement noise vt at time instant t .

From a Bayesian standpoint, the objective is to construct
the posterior p(xt |z1:t ) of the state xt from the measurement
data z1:t up to time t . By definition, the posterior is con-
structed in two stages: prediction and update.

The prediction stage uses the system model (cf. Eq. 1) to
estimate a prediction probability density function (PDF) of
the state at time instant t , using the Chapman-Kolmogorov
equation:

p(xt |z1:t−1) =
∑
xt−1

p(xt |xt−1)p(xt−1|z1:t−1) (3)

where, the transition probability p(xt |xt−1) is defined by the
system model (cf. Eq. 1).
In the update stage, the measurement data zt at time step t

is used to update the PDF obtained from the prediction stage
using Bayes rule, to construct the posterior:

p(xt |z1:t ) =
p(zt |xt )p(xt |z1:t−1)∑
xt p(zt |xt )p(xt |z1:t−1)

(4)

where, p(zt |xt ) is a likelihood function defined by the mea-
surement model (cf. Eq. 2).
The process of prediction (cf. Eq. 3) and update

(cf. Eq. 4) are done recursively for every newmeasurement zt .

Constructing the posterior based on Bayes rule is a con-
ceptual solution and is analytically estimated using tra-
ditional Kalman filters. However, in a non-Gaussian and
non-linear setting, the analytic solution is intractable, and
approximation-based methods such as PFs are employed to
find an approximate Bayesian solution. A detailed illustra-
tion of the Bayesian framework and its implementation for
estimating the state of a system is provided by [31], [32].

IV. PARTICLE FILTERS BACKGROUND
The core principle behind PFs is to represent the required
posterior density with a collection of random samples called
particles, each with its own weights, and then calculate the
state estimate using these particles and weights. The particles
and their weights are represented by {x it ,w

i
t }
N
i=1, where N is

the total number of particles. x it denotes the ith particle at
time instant t . wit represents the weight corresponding to the
particle x it . The variant of PF called sampling, importance,
and re-sampling filter (SIRF) is presented in Algorithm 1.

Algorithm 1 SIR Algorithm
Initialization: Set the particle weights of the previous time
step to 1/N, {wit−1}

N
i=1 = 1/N .

Input: Particles from previous time step {x it−1}
N
i=1 and

measurement zt .
Output: Particles of current time step {̂x it }

N
i=1.

Method:

1: Sampling and Importance:
2: for i = 1 to N do
3: Sample x it ∼ p(xt |x it−1)
4: Calculate wit = wit−1p(zt |x

i
t )

5: end for
6: Re-sampling: Deduce the re-sampled particles {̂x it }

N
i=1

from {x it ,w
i
t }
N
i=1.

In the sampling step, particles are drawn from the prior
density p(xt |x it−1) to generate particles at time instant t .
p(xt |x it−1) is deduced from (1). Intuitively, it can be thought
as propagating the particles from time step t − 1 to t . The
sampled particles at time instant t is denoted by {x it }

N
i=1.

At time instant 0, particles are initialized with prior distribu-
tion to start the iteration. These particles are then successively
propagated in time.

The importance step assigns weights to every particle x it
based on the measurement zt . By definition, the weights are
given by:

wit = wit−1p(zt |x
i
t ) (5)

However, weights of the previous time step are initialized
to 1/N i.e wit−1 = 1/N . Thus, we have:

wit ∝ p(zt |x
i
t ) (6)

The re-sampling step is used to deal with the degeneracy
problem in PFs. In the re-sampling step, particles with lower
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FIGURE 1. UGV Design. (a) Schematic of the UGV with a photodiode housing mounted on top. (b) The region around the
UGV is divided into 8 sectors with 45◦ angular separation.

weights are eliminated, and particles with higher weights are
replicated to compensate for the discarded particles depend-
ing on the weight wit associated with the particle x it . The
re-sampled set of particles is denoted by {̂x it }

N
i=1.

V. SOURCE LOCALIZATION MODEL
This section gives an overview of the experimental setup and
measurement model relevant to the source localization.

A. OVERVIEW OF THE EXPERIMENTAL SETUP
In our source localization model, an omnidirectional light
source serves as a source to be localized. A photodiode hous-
ing mounted on top of the UGV (cf. Fig. 1(a)) constitutes a
sensor to measure the relative intensity of light in a horizontal
plane. The space around the UGV is divided into 8 sectors
with 45◦ angular separation, as shown in Fig. 1(b), and an
array of 8 photodiodes are placed inside the circular housing
to sense the light source in all directions. The housing con-
fines the angle of exposure of the photodiode to 45◦. Depend-
ing on the light incident on each photodiode, we consider the
output of the photodiode to be either 0 or 1.

The PF algorithm applied to the BOT model requires
dynamic motion between the sensor and source [33]. In our
experimental configuration, we have a stationary source and a
moving sensormounted on theUGV. TheUGV ismade to tra-
verse in the direction of the source and eventually converges
at the source location. Reflective sources and other stray light
sources are potential sources of noise picked up by the sensor,
producing false detections. A target-originated measurement,
along with noise, is sensed by the photodiodes and processed
in addition to the UGV position data to measure the light
source’s bearing with respect to the UGV. Based on the
bearing of the light source, we try to estimate its position
using the PF algorithm.

B. MEASUREMENT MODEL
The position of UGV (xUGVt ) at time instant t is defined by
the Cartesian co-ordinate system:

xUGVt = [XUGVt ,YUGVt ]

The orientation of the longitudinal axis of UGV is repre-
sented by φUGVt , which gives its true bearing.

The source is considered to be stationary, and its
co-ordinates in the 2-dimensional setting is given by:

xt = [Xt ,Yt ] (7)

At time instant t , a set of 8 photodiode measurements
are captured zt = {z1t , z

2
t · · · z

8
t }, which comprise of the

target-associated measurement and clutter noise. Then, based
on the measurement model (2), the source-associated mea-
surement can be modelled as:

zt = g(xt )+ vt (8)

Since themeasurement gives the bearing information of the
source, we have:

g(xt ) = tan−1
(
Yt − YUGVt

Xt − XUGVt

)
(9)

The four-quadrant inverse tangent function evaluated from
[0, 2π ) gives the true bearing of the source.
The relevant probabilities needed to model the sensor

imperfections and clutter noise are as follows:
(i) The probability of clutter noise (nt ) produced by a stray

or reflective light source is: p(nt ) = β.
(ii) The probability of the jth photodiode output being 1

i.e., (zjt = 1) either due to the light source or clutter noise
is: p(zjt |xt , nt ) = α.

(iii) If there is a light source in the sector j, then jth photodi-
ode output will be 1 with a probability of α irrespective
of noise. The likelihood of photodiode output being 1 or
0 in the presence of the source is:

p(zjt |xt ) =

{
α, for zjt = 1.

1− α, for zjt = 0.
(10)

(iv) If there is no source in sector j, then there is a noise
source with probability β. The likelihood of photodiode
output being 1 or 0 in the absence of the source is:

p(zjt |x̃t ) =

{
αβ, for zjt = 1.

1− αβ, for zjt = 0.
(11)
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These two likelihoods are used in our system to model
the sensor imperfections and noise, and even with high noise
probability β, the PF algorithm is robust enough to localize
the source.

VI. ALGORITHMIC MODIFICATION OF SIRF FOR
REALIZING HIGH-SPEED ARCHITECTURE
In this section, we suggest modifications to the standard
SIR algorithm to make it parallelizable. The key idea of
high-speed architecture is to utilize multiple parallel filters,
termed sub-filters, working simultaneously and performing
sampling, importance, and re-sampling operations indepen-
dently on particles. The architecture utilizes K sub-filters in
parallel to process a total of N particles. Thus, the number
of particles processed within each sub-filter is M = N/K .
In comparison to traditional filters, the amount of particles
processed inside each sub-filter is reduced by a factor of K .

The sampling and importance steps are inherently paral-
lelizable since there is no data dependency for the particle
generation and weight calculation. However, the re-sampling
step cannot be parallelized as it needs to have the information
of all particles. This creates a major bottleneck in the parallel
implementation scheme. Thus, in addition to the SIR stage,
we introduce a particle routing step, as shown in Algorithm 2,
to route particles between sub-filters. Our empirical analysis
shows that the particle routing step enables the distribution
of particles among sub-filters, and the re-sampling step can
be effectively parallelized. Section. VIII-C shows that there
is no substantial variation in the estimation error between
the proposed modified SIR algorithm and the conventional
algorithm. An algorithmic flowchart is shown in Fig. 2.

Algorithm 2 High-Level Description of Each Sub-Filter k
Performing SIR and Particle Routing Operations
Initialization: Set the particle weights of previous time step
to 1/M, {w(k,i)

t−1 }
M
i=1 = 1/M .

Input: Particles from previous time step {x(k,i)t−1 }
M
i=1 and

measurement zt
Output: Particles of current time step {̂x(k,i)t }

M
i=1

Method:

1: Particle Routing: Exchange Q particles with neighbour-
ing sub-filters.

2: {x(k,q)t−1 }
Q
q=1← {x

(k−1,q)
t−1 }

Q
q=1 for k = 2, · · ·K , and

3: {x(k,q)t−1 }
Q
q=1← {x

(K ,q)
t−1 }

Q
q=1 for k = 1.

4: Sampling and Importance:
5: for i = 1 to M do
6: Sample x(k,i)t ∼ p(xt |x

(k,i)
t−1 )

7: Calculate w(k,i)
t = w(k,i)

t−1 p(zt |x
(k,i)
t )

8: end for
9: Re-sampling: Compute the re-sampled particles
{̂x(k,i)t }

M
i=1 from {x

(k,i)
t ,w(k,i)

t }
M
i=1.

The particles and their associated weights in sub-filter

k at time step t are represented by {x(k,i)t ,w(k,i)
t }

M
i=1, for

k = 1, · · ·K . The particle x(k,i)t represents the position in the
Cartesian co-ordinate system.

VII. ARCHITECTURE OVERVIEW
In this section, we present a high-speed architecture for
PFs, based on the modified SIR algorithm presented in
Section VI.
The top-level architecture shown in Fig. 3 utilizes a filter

bank consisting of K sub-filters working in parallel. Sam-
pling, importance, and re-sampling operations are carried out
within a sub-filter. In addition to the SIR step, a fixed number
of particles are routed between sub-filters after the comple-
tion of every iteration as part of the particle routing opera-
tion. The sub-filters are connected based on ring-topology
inside the filter bank. M particles are time-multiplexed and
processed within each sub-filter, and Q = M/2 particles
are exchanged with neighbouring sub-filters. Since the num-
ber of particles exchanged and the routing topology are
fixed, the proposed architecture has very low design com-
plexity. The design can be easily scaled up to process a
large number of particles (N ) by replicating sub-filters. The
binary measurements of the eight photodiodes (zt ) are fed
as an input to the filter bank along with the true bearing
(φUGVt ) and the position of theUGV (xUGVt ). Randomnumber
generation needed for the sampling and re-sampling steps
is provided by a random number generator block. We use
a parallel multiple output LFSR architecture presented by
Milovanović et al. [34] for random number generation. A 16
bit LFSR is used since our internal variables are 16 bits wide.
Further, a detailed description of the sub-filter architecture is
provided in Section VII-A. The sector check block, described
in Section VII-B, computes the particle population in each
of the eight sectors and outputs a sector index that has the
maximum particle population. This information is used by
the UGV to traverse in the direction of the source. The mean
computational block used to calculate the global mean of all
N particles from K sub-filters to estimate the source location
(post ), is explained in Section VII-C.

A. SUB-FILTER ARCHITECTURE
The sub-filter is the main computational block responsible
for particle generation, processing, and filtering. It consists of
three main sub-modules, namely, sampling, importance and
re-sampling, as shown in Fig. 4. The sampling and impor-
tance blocks are pipelined in operation. The re-sampling
step cannot be pipelined with the former steps as it requires
weight information of all particles. Thus, it is started after
the completion of the importance step. Since sampling and
importance stages are pipelined, together they take M clock
cycles to iterate forM particles, as shown inAlgorithm 2 from
line 5 to line 8. The particle routing between the sub-filters
is done along with the sampling step and does not require
any additional cycles. The re-sampling step takes 3M clock
cycles, as discussed in Section VII-A3.
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FIGURE 2. Flowchart illustrating the sequence of operations carried out incorporating the modified SIR
algorithm. T represents the total time steps for localizing the source.

1) SAMPLING AND ROUTING
The sampling step involves generating new sampled parti-
cles {x(k,i)t }

M
i=1 by propagating re-sampled particles {̂x(k,i)t−1 }

M
i=1

from the previous time step using the dynamic state space
model:

x(k,i)t ∼ p(xt |̂x
(k,i)
t−1 ) (12)

Conventionally, particles {x(k,i)t }
M
i=1 are used to generate the

weights {w(k,i)
t }

M
i=1 in the importance unit, and using these

weights we determine the re-sampled particles {̂x(k,i)t }
M
i=1.

Further, {̂x(k,i)t }
M
i=1 is utilized to obtain particles {x(k,i)t+1 }

M
i=1 of

the next time step. Thus, with the straightforward approach,
we would need two memories each of depth M to store
{x(k,i)t }

M
i=1 and {̂x(k,i)t }

M
i=1 within a sub-filter. Similarly, for

K sub-filters we would require 2 × K memory elements,
each of depth M . This increases memory usage for higher
K or M . In this work, we suggest a novel scheme to store
the particles using a single dual-port memory instead of two
memory blocks, which brings down the total memory require-
ment for storing particles to K memory elements, each of
depthM .
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FIGURE 3. Top-level architecture of the realized particle filter algorithm.

FIGURE 4. Sub-filter architecture.

In this scheme, since the re-sampled particles are actually

the subset of sampled particles (i.e.,{̂x(k,i)t }
M
i=1 ⊂ {x

(k,i)
t }

M
i=1)

instead of storing {̂x(k,i)t }
M
i=1 in a different memory, we can

use the same memory as {x(k,i)t }
M
i=1 and use suitable pointers

or indices to read {̂x(k,i)t }
M
i=1.

The re-sampling unit in our case is modified such that
instead of returning re-sampled particles x̂(k,i)t−1 , it returns the
indices of replicated (Ind R(k,i)) and discarded (Ind D(k,i))
particles (cf. Fig. 4). Ind R(k,i) is used as a read address of
the dual-port particle memory shown in Fig. 5 to point to
the re-sampled particles x̂(k,i)t−1 . The dual-port memory enables
us to perform read and write operations simultaneously;
however, this might result in data overwriting. For example,

consider six particles, after re-sampling particle 2 (x(k,2)t−1 ) is
replicated four times; particle 5 (x(k,5)t−1 ) is replicated two times

and particles 1, 3, 4&6 are discarded. The re-sampling unit
returns Ind R = (2, 2, 2, 2, 5, 5) and IndD = (1, 3, 4, 6). The
read sequence of the dual-port memory is (2, 2, 2, 2, 5 & 5)
and the write sequence is (2, 1, 3, 4, 5 & 6). Initially, particle

2 (x(k,2)t−1 ) is read from the dual-port memory and after prop-

agation in the sampling block, the sampled particle x(k,i)t is
written back to the memory location 2. Next, particle 2 is
read again from memory location 2. However, this time the
content of the location is changed, and it no longer holds the
original particle x(k,2)t−1 , which causes an error while reading.
In order to avoid this scenario, we introduce a sub-block
(a) (cf. Fig. 5), wherein when we read the particle from
the memory for the first time, it is temporarily stored in a
register. Hence, whenever there is a replication in Ind R or
read address, we read the particle from the register instead
of memory. The Rep signal is generated by comparing Ind R
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FIGURE 5. Sampling and routing unit architecture.

with its previous value and if both are same, Rep will be made
high.

Further, we introduce a sub-block (b) (cf. Fig. 5), which
is responsible for routing the particles between neighbouring
sub-filters. Out ofM particles read from the particle memory
of sub-filter k , the first M/2 particles, i.e., {x(k,q)t−1 }

M/2
q=1 are

sent to sub-filter k + 1, and simultaneously the first M/2
particles, i.e., {x(k−1,q)t−1 }

M/2
q=1 , of sub-filter k − 1 are read and

fed to the sampling block of sub-filter k . The sampling block
propagates the particles from time step t − 1 to time step t .
The routed particles from sub-filter k − 1 {x(k−1,q)t−1 }

M/2
q=1 , and

last M/2 local particles {x(k,q)t−1 }
M
q=M/2+1 read from particle

memory of sub-filter k are propagated by the sampling block
and written back to the memory. The input to the sampling
block are particles of time step t − 1 (x(k,i)t−1 ) and the output
are particles of current time step t (x(k,i)t ). The sampling block
pseudocode is provided by Algorithm 3. The random number
PRN (k) needed for random sampling of particles as shown in
Algorithm 3, line 2 and line 3 is provided by a random number
generator block (cf. Fig. 3). The Sel Route signal is used to

Algorithm 3 Sampling Block Pseudocode
Input: Particles from previous time step
x(k,i)t−1 = [X (k,i)

t−1 ,Y
(k,i)
t−1 ] and random number

PRN (k)
= [PRN (k)

x ,PRN (k)
y ].

Output: Particles of current time step x(k,i)t .
Method:

1: for i = 1 to M do
2: X (k,i)

t = X (k,i)
t−1 + PRN

(k)
x ∗ std

3: Y (k,i)
t = Y (k,i)

t−1 + PRN
(k)
y ∗ std F std is the standard

deviation.
4: x(k,i)t = [X (k,i)

t ,Y (k,i)
t ]

5: end for

control the switching between the local and routed particles
by making it low for the first M/2 cycles and then making
it high for the next M/2 cycles. Further, at time instant 0,
we feed the UGV position xUGV0 as a prior to the sampling
block to distribute the particles around the UGV. The Sel Int
control signal is made low in the first iteration, i.e., at time
instant 0, and then made high for the subsequent iterations.

2) IMPORTANCE
The importance unit computes the weights of the particles
based on the photodiode measurements zt given by:

w(k,i)
t = w(k,i)

t−1 p(zt |x
(k,i)
t ) (13)

w(k,i)
t−1 is initialized to 1/M. Estimation of p(zt |x

(k,i)
t )

involves determining the angle of each particle (θ (k,i)t ), which
is computed using an inverse tangent function based on the
position of the UGV (xUGVt ) and position of the particle
(x(k,i)t ), as follows:

θ
(k,i)
t = tan−1

(
Y (k,i)
t − YUGVt

X (k,i)
t − XUGVt

)

where, X (k,i)
t and Y (k,i)

t represents the co-ordinates of the par-

ticle x(k,i)t in two-dimensional Cartesian co-ordinate system.
The inverse tangent function is implemented using a

Cordic IP block provided by Xilinx [35]. The architecture of
the importance unit is shown in Fig. 6. The index generator
block estimates the angle of the particles with respect to the
longitudinal axis of the UGV based on the bearing of the
UGV (φUGVt ). In addition to this, the index generator block
is used for determining the sector indices (Ind θ (k,i)t ) of the
particles based on the angle information. The sector indices
of the particle can be defined as follows:

Ind θ (k,i)t = d4/π ∗ (θ (k,i)t − φUGVt )e
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FIGURE 6. Importance unit architecture.

zt is 8 bit wide data consisting of 8 binary photodiode mea-
surements {z1t , z

2
t · · · z

8
t }. Based on the measurement zt and

the sector indices of particles, weights are generated by the
weight computation block. These weights are stored in the
weight memory using the address provided by the sampling
unit, to store weights in the same order as the sampled
particles x(k,i)t . The sum of all the weights required by the
re-sampling unit is obtained by an accumulator. The particle
population block is used to estimate the number of particles
present in each of the eight sectors, using the sector indices
of particles for a given sub-filter. The particle count in each
of the eight sectors of sub-filter k is concatenated and given
as the output Count Ind θ (k). For example, if sector 1 has 15
particles, sector 3 has 14 particles, and sector 5 has 3 particles,
then Count Ind θ (k) = {15, 0, 14, 0, 3, 0, 0, 0}.

3) RE-SAMPLING
Particles with higher weights are replicated, while particles
with lower weights are discarded during the re-sampling
process. This is accomplished by utilizing a Systematic
re-sampling algorithm shown in Algorithm 4. A detailed
description of the systematic re-sampling algorithm is pro-
vided in [8], [28]. The weights and sum of all weights
are obtained from the importance unit. The random number
(U0) needed to compute the parameter U_scale in line 2 of
Algorithm 4 is provided by the Random number genera-
tor block shown in Fig. 3. The algorithm presented works
with un-normalized weights, which will avoid M division
operations on all particles to implement normalization. The
division required to compute Aw in line 1 of Algorithm 4 is
implemented using the right shift operation. This approach
consumes fewer resources and area on hardware. The repli-
cated and discarded indices generated by the systematic
re-sampling block are stored in their respective memories,
as shown in Fig. 7. In the worst-case scenario, the inner loop

Algorithm 4 Systematic Re-Sampling

Input: Un-normalized weights ({w(k,i)
t }

M
i=1) of M particles,

summation of all the weights in a sub-filter (Sum w) and the
uniform random number (U0) between [0, 1]
Output: Replicated index (Ind R) and Discarded index
(Ind D).
Method:

1: Compute Aw =
Sumw
M

2: Initialize: U_scale = U0 × Aw
3: s = 0, p = 0,m = 0
4: for i=1 to M do
5: while s < U_scale do
6: p = p+ 1
7: s = s+ w(k,p)

8: if s < U_scale then
9: m = m+ 1

10: Ind D(k,m)
= p

11: end if
12: end while
13: U_scale = U_scale+ Aw
14: Ind R(k,i) = p
15: end for

of Algorithm 4 takes 2M cycles for execution in hardware
as it involves fetching M weights from weight memory and
doing M comparison operations. Further, line 13 and line
14 takeM cycles to obtainM replicated indices. Thus, in total,
the execution of the re-sampling step requires 2M+M = 3M
cycles.

B. SECTOR CHECK BLOCK
The direction/orientation of the UGV is decided by the pop-
ulation of particles in different sectors and is used to move
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FIGURE 7. Re-sampling unit architecture.

FIGURE 8. Sector check block architecture.

towards the source. This is achieved by the sector check
block, which estimates the particle population in each of
the eight sectors and gives the sector index with maximum
particle count. The block diagram shown in Fig. 8 utilizes
eight parallel adders to count the number of particles in each
sector. The particle count in a given sector of K sub-filters is
fed as an input to the adder. Count Ind θ (k)n in Fig. 8 denotes
the particle count in sector n of sub-filter k . The output of an
adder gives the total particle population in a particular sector.
Furthermore, the sector index (Ind θ) having the maximum
particle count is estimated using a max computation block.
The UGV uses this information to traverse in the direction of
the source.

C. MEAN ESTIMATION BLOCK
The mean of total N particle positions is estimated using the
mean estimation block. Particle positions from K sub-filters
are fed in parallel and accumulated over M cycles to gener-
ate the sum, which is further divided by N , by right shift-
ing log2(N ) times to get the mean. In our implementation,
we consider N as a power of 2. The mean gives an estimate
of the position of the source post .

VIII. RESULTS
In this section, we present the resource utilization of the
proposed design on an FPGA. We also evaluate the exe-
cution time of the proposed architecture as a function of
the number of sub-filters and inspect the estimation accu-
racy by scaling the number of particles. We then compare

our design to the current state-of-the-art implementations.
Furthermore, we present experimental results for the source
localization problem implemented on FPGA using the pro-
posed architecture.

A. RESOURCE UTILIZATION
The architecture presented was implemented on Artix-
7 FPGA. Resource utilization of the implemented design for
the different number of sub-filters is summarized in Table 2.
The number of particles per sub-filter (M ) was fixed to 32
for synthesizing the design. All memory modules shown in
the architecture for storing particles, weights, replicated, and
discarded indices are translated into embedded 18kb block
random access memory (BRAM) available on the FPGA,
using a block memory generator (BMG) IP [36] provided by
Xilinx. The number of 18kb BRAM blocks needed on the
FPGA is indicated in the Block RAM column of Table 2. It
can be seen that the resource utilization increases proportion-
ally with the number of sub-filters. For 64 sub-filters, 64%
of the slice LUTs (lookup tables) are used, and a maximum
of approximately 90 sub-filters can fit onto a single Artix-7
(xc7a200tfbg484-1) FPGA platform.

B. EXECUTION TIME
The proposed design utilizes K parallel sub-filters, thus
bringing down the number of particles processed within a
sub-filter toN/K . Since, sampling and importance blocks are
pipelined, these steps take N/K + τs + τi clock cycles and
the re-sampling step takes 3N/K + τr cycles to process N/K
particles, where τs, τi and τr represent the start-up latency of
the sampling, importance and re-sampling units, respectively.
Since all the K sub-filters are parallelized, the time taken to
process a total of N particles for SIR operation is:

TSIR = (4N/K + τ )Tclk

where, τ = τs + τi + τr and Tclk is the clock period of the
design.

Fig. 9 gives the timing diagram for completion of SIR
operations using the proposed architecture for N particles,
for a single iteration. Furthermore, since particle routing
is incorporated within the sampling step, the transfer of
particles between the sub-filters do not take any additional
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TABLE 2. Resource utilization on Artix-7 FPGA.

FIGURE 9. Timing diagram for SIR operations of the proposed design.

cycles. This makes the design scalable for a large number
of sub-filters, as the routing operation requires no extra
time.

In Fig. 10(a), we show the execution time of the proposed
architecture as a function of the number of sub-filters (K )
for different N . As expected, the execution time increases
with the number of particles (N ). In many applications, for
example, in biomedical signal processing, the state space
dimension is very high [7]. Consequently, a large number
of particles are needed to obtain satisfactory performance.
In such cases, the computation time often becomes unreal-
istic. Introducing parallelization in the design by using more
sub-filters (K ) brings down the execution time significantly,
as shown in Fig. 10(a). However, the reduction in execution
time by increasing K comes at the cost of added hardware,
which can be inferred from Fig. 10(b). Thus, there is a
trade-off between the speed and the hardware utilized. For
instance, using a single sub-filter and no parallelization uses
a mere 1.4k (1%) LUTs to process 256 particles, and the time
taken for SIR operations is around 1075 clock cycles. On the
other hand, an 8 sub-filter design takes only 178 clock cycles
for SIR operations, but utilizes 11k (8%) LUTs. Thus, there
is a trade-off between speed and hardware used. The given
FPGA resources limit the total number of sub-filters that can
be accommodated on an FPGA, thus limiting the maximum
achievable speed.

C. ESTIMATION ACCURACY
We analyzed the estimation accuracy for the 2D source local-
ization problem as a function of the number of particles
(N ) for the standard and the modified SIR algorithm. The
estimation error gives the error between the actual source
location and the estimated source location given by:

Error =
√
(posx − x)2 + (posy − y)2 (14)

where, posx and posy denote the estimated position of the
source obtained from the PF algorithm, in the 2D Cartesian
co-ordinate system. x and y denote the true position of the
source in the 2D arena.

The algorithm for the standard SIR filter is presented in
Section. IV and has no parallelization incorporated. Themod-
ified SIR algorithm implements parallelization by utilizing
K sub-filters working concurrently to reduce the execution
time, introduced in Section. VI. The estimation errors pre-
sented in Fig. 10(c) are the average errors in 1000 runs
over 250 time-steps. It is inferred that there is no significant
difference in the estimation error between the standard and
the modified SIR algorithm. Additionally, the modified algo-
rithm achieves lower execution time and allows the parallel
computation of PFs. Further, it is noted that by scaling the
number of particles, the estimation accuracy improves as the
error decreases.

D. CHOICE OF THE NUMBER OF SUB-FILTERS K
Choice of the number of sub-filters (K ) used in the design
depends on several factors such as, the number of particles
(N ), the clock frequency of the design (fclk ), and the obser-
vation sampling rate (fs) of the measurement samples. The
sampling rate gives the rate at which new input measurements
can be processed. N is chosen depending on the application
for which the particle filter is applied. fclk is selected based
on the maximum frequency supported by the design. The
relationship between the sampling rate and the execution time
(TSIR) of the filter is given by:

fs = 1/TSIR =
fclk

(4N/K + τ )
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FIGURE 10. Performance analysis of the proposed design. (a) Execution time of the proposed design as a function of the number of sub-filters
(K ), for different number of particles (N). (b) Resource utilization in terms of the number of slice LUTs used as a function of the number of
sub-filters (K ). (c) Estimation error as a function of the number of particles (N) for the standard SIR filter without any parallelization using
algorithm 1 and the modified SIR filter with parallelization using algorithm 2.

where, fclk = 1/Tclk . Thus, for a specified measurement
sampling rate (fs), the clock frequency of the design (fclk ), and
the number of particles (N ), we can determine the number of
sub-filters (K ) needed from the above equation. For instance,
in our application, we use 256 particles because the error
curve levels off at N = 256 (cf. Fig. 10(c)), and there is no
improvement in the estimation error by further increasing N .
Thus, to achieve a sampling rate of fs = 562 kHz, with 256
particles and clock frequency fclk = 100 MHz, we utilize
K = 8 sub-filters. The maximum number of sub-filters that
can be used in the design depends on the resources of the
given FPGA.

E. COMPARISON WITH STATE-OF-THE-ART
IMPLEMENTATIONS
A comparison of our design with state-of-the-art implementa-
tions is provided in Table 3. To obtain a valid assessment with
other works, we have used N = 1, 024 particles (although
256 particles are sufficient for our application as error curve
levels off atN = 256 (cf. Fig. 10(c)) andK = 8 sub-filters for
comparison. Themajority of current implementation schemes
use the standard SIR algorithm (cf. Algorithm 1), which does
not support parallelization. Moreover, their architectures are

not scalable to process a large number of particles at the high
sampling rate, as the execution time is proportional to the
number of particles. Also, the re-sampling step is a major
computational bottleneck, as it is inherently not paralleliz-
able. In this work, we propose a modification to the exist-
ing algorithm that overcomes this computational bottleneck
of the PF algorithm and makes the high-speed implemen-
tation possible. We introduce an additional particle routing
step (cf. Algorithm 2) allowing for parallel re-sampling.
We develop a PF architecture based on themodified algorithm
incorporating parallelization and pipelining design strategies
to reduce the execution time. Since the particle routing step is
coupled with the sampling step and the routing is constrained
between the two neighboring sub-filters, our implementation
is highly scalable and has low complexity. In comparison,
other parallel implementations suffer from scalability issues
due to the high communication overhead between the concur-
rent processing elements.

Despite the difficulty of directly comparing the proposed
architecture to other implementations owing to variation in
model, application, device, and particle count (N ), our design
achieves high input sampling rates, even for a large number
of particles, by scaling the number of sub-filters K . The first
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TABLE 3. Performance summary and comparison with state-of-the-art particle filter implementation schemes.

hardware architecture for implementing PFs on an FPGAwas
provided by Athalye et al. [8], applied to a tracking problem.
Their architecture is generic and does not incorporate any
parallelization in the design. Thus, their architecture suffers
from a low sampling rate of about 16 kHz for 2048 particles,
which is approximately 11 times lower than the sampling rate
of our design. However, owing to non-parallel architecture,
the resource consumption of their design (4.4k registers and
3.8k LUTs) is relatively low. Agrawal et al. [10] proposed
a PF architecture for object tracking in video with 59k LUTs
and a sampling rate of around 42kHz. Another state-of-the-art
system was presented in [11]. The authors implemented
the SIR filter on the Xilinx Virtex-5 FPGA platform for
bearings-only tracking application and achieved a sampling
rate of 46 kHz for 1024 particles. Regarding its hardware
utilization, it uses 13.6k registers and 7.3k LUTs, which are
comparable to those of our design; however, their sampling
rate is four times lower than that of our system. Sileshi et al.
[12] proposed two methods for implementing PFs on hard-
ware. The first method was a hardware/software (HW/SW)
co-design framework, where the software components were
implemented using an embeddedMicroBlaze processor. A PF
hardware acceleration module on an FPGA was used for the
hardware portion. This HW/SW co-design approach has a
low sampling rate of about 1 kHz due to communication
overhead between the MicroBlaze soft processor and the

hardware acceleration module. Furthermore, using a large
number of parallel particle processors to speed up the design
is constrained by the number of bus interfaces available in the
soft-core processor (MicroBlaze). Thus, to improve the sam-
pling rate, they proposed a second approach which is entirely
a hardware design. However, their architecture does not sup-
port parallel processing and achieves a low sampling rate of
about 18 kHz, whereas our system can sample at 178 kHz
for processing the same 1024 particles. Their full hardware
system utilizes 1.4k registers and 19k LUTs. Velmurugan
[15] proposed a fully digital PF FPGA implementation for
tracking application, without any parallelization in the design.
They used a high-level Xilinx system generator tool to gen-
erate the VHDL code for deployment on a Xilinx FPGA
from Simulink models or MATLAB code. Their design is
not optimized in terms of hardware utilization as they use
a high-level abstraction tool and lack flexibility to fine-tune
the design. On the other hand, our design is completely
hand-coded in Verilog and provides granular control to tweak
the design parameters, and ensures that the design can be
easily integrated into a multitude of PF applications. They
achieve a sampling rate of about 30 kHz for 1000 particles,
which is six times lower than that of our design. Further,
their resource consumption is relatively high (17.4k registers
and 30.9k LUTs) as they use high-level abstraction tools for
implementation. In other work, Schwiegelshohn et al. [16]
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FIGURE 11. 2D source localization experimental result. The source is positioned at [6,22] marked by a ’red’ circular dot. At the start, the UGV is
positioned at [38,−4]. The model is run over 250 time-steps for 256 particles, and the UGV traverses towards the source based on sensor
measurements. The final source estimate (post ) obtained by the PF algorithm is marked by a ’yellow’ circular dot and has an estimation error of 0.5.
The probabilities α and β are set as 0.8 and 0.6, respectively.

proposed an FPGA optimized re-sampling to support par-
allelism and demonstrated the hardware implementation for
meager 14 particles with 5.93k registers and 52.41k LUTs.
Due to low particle count, they achieve a sampling rate
of around 166 kHz. Mountney et al. [17] implemented a
Bayesian auxiliary particle filter algorithm (BAPF) on an
FPGA for brain machine interfaces with a 90 kHz sampling
rate. Alam and Gustafsson [18] proposed an improved multi-
nomial re-sampling scheme to reduce the re-sampling latency
and implemented the same on an FPGA with 299 LUTs
and 2 BRAMs for 1k particles. However, they don’t report
the sampling rate of the whole architecture. Miao et al. [19]
introduced a probability hypothesis density filtering for track-
ing multiple sources of neural activity. The sampling and
weight update steps are distributed over concurrent PEs, and
the re-sampling is done within a CU. The communication
cost between the multiple PEs and CU increases linearly
with the number of PEs, making the architecture not scal-
able to process a large number of particles. In contrast,
the re-sampling in our architecture is local to the sub-filter
and the ring topology employed limits the communication
to adjacent sub-filters, thereby reducing the routing over-
head. Their implementation utilizes 43.6k flip flops (FFs) and
42.3k LUTs with sampling rate of 20 kHz for 3200 particles.

Our system has a comparable resource utilization (12.3k
registers and 10.9k LUTs for 8 sub-filters) with a low exe-
cution time of about 5.62 µs and achieves a sampling rate of
about 178 kHz. Our design can be used in real-time appli-
cations due to the low execution time. Further, to achieve
a high sampling rate even with a large number of parti-
cles, more sub-filters can be used, as shown in Fig. 10(a).
However, this comes at the expense of additional hardware.
On the other hand, the resource utilization of our system can

FIGURE 12. Variation in the number of time-steps required to localize the
source as a function of α and β.

go as low as 1.7k registers and 1.4k LUTs using a single
sub-filter (cf. Table 2) for applications that have stringent
resource constraints, but at the cost of increased execution
time (cf. Fig. 10(a)).

F. EXPERIMENTAL RESULTS
The design was implemented on an Opal Kelly board [37]
with Artix-7 FPGA for 2D source localization. The imple-
mentation result is shown in Fig. 11. The state in this 2D
model is 2-dimensional and incorporates position in x and
y directions. The input to the design is binary measurements
from a set of 8 photodiodes and the instantaneous position of
the UGV. Inputs are sampled and processed by the PF system
over 250 time-steps on an FPGA to estimate the source
location. We consider the probabilities α and β to be 0.8 and
0.6, respectively. It can be seen that the algorithm is robust
enough to localize the source even with a noise probability
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FIGURE 13. 3D source localization experimental result. The source is positioned at [40,5,25], and the initial position of the UGV is [10,30,0]. The
model is run over 350 time-steps for 512 particles. Here, the UAV traverses in three dimensions to move towards the source. The error between the
source and the estimated location is 0.83. The probabilities α and β are set as 0.8 and 0.4, respectively.

of 0.6. However, with an increase in noise probability (β),
the number of time-steps or iterations required to localize
the source also increases, as shown in Fig. 12. The source is
considered to be localized if the estimation error is less than
the predetermined threshold, which is 2.5 in our case. The
time-steps shown in Fig. 12 are the average time required to
localize the source over 500 runs. The entire designwas coded
in Verilog HDL, and the design was implemented on FPGA.

All variables were translated from the floating-point to the
fixed-point representation for the implementation on FPGA.
We have used a 16-bit fixed-point representation for particles
and their associated weights. All bearing-related information,
such as the angle of the UGV and the angle of particles used
in the importance block, is represented by a 12-bit fixed-point
representation. Further, the indices of the replicated and the
discarded particles are integers and are represented using
log2(M ) = 5 bits. The output estimate of the source location
(post ) is represented using a 16-bit representation. N = 256
particles were used for processing. K = 8 sub-filters were
used in the design with M = 32 particles processed within
each sub-filter.M/2 = 16 particles were exchanged between
the sub-filters after the completion of every iteration as part
of the particle routing operation. The time taken to complete
SIR operations for N = 256 and K = 8 is 178 clock cycles.
With a clock frequency of 100 MHz, the speed at which we
can process new samples is around 562 kHz, and the execu-
tion time for SIR operation is 1.78 µs. This high sampling
rate enables us to use the proposed hardware architecture in
various real-time applications.

Further, we show that the 2D source localization problem
can be extended to 3D, and we have modelled it in software
using MATLAB. This 3D model incorporates position along
the x, y, and z directions. Here, an Unmanned Aerial Vehi-
cle (UAV) can be utilized to localize the source. As compared

to 8 sensors used in 2D localization, here we utilize 16 sensors
for scanning the entire 3D space. We consider α = 0.8 and
β = 0.4, and the model was run over 350 time-steps for
512 particles to localize the source. The result is presented
in Fig. 13. The estimation error between the actual source
location and the estimated source location in the 3D arena
is given by:

Error=
√
(posx−x)2+(posy−y)2+(posz−z)2 (15)

where, posx , posy and posz denote the estimated position of
the source obtained from PF algorithm, in the 3D Cartesian
co-ordinate system. x, y and z represent the true position of
the source in the 3D arena.

IX. CONCLUSION AND OUTLOOK
In this paper, we presented an architecture for the hardware
realization of PFs, particularly sampling, importance, and
re-sampling filters, on an FPGA. PFs perform better than
traditional Kalman filters in non-linear and non-Gaussian
settings. Interesting insights into the advantages of PFs,
performance comparison, and trade-offs of PFs over other
non-PF solutions are provided by [38], [39]. However, PFs
are computationally very demanding and take a significant
amount of time to process a large number of particles; hence,
PFs are seldom used for real-time applications. In our archi-
tecture, we try to address this issue by exploiting paralleliza-
tion and pipelining design techniques to reduce the overall
execution time, thus making the real-time implementation
of PFs feasible. However, a major bottleneck in high-speed
parallel implementation of the SIR filter is the re-sampling
step, as it is inherently not parallelizable and cannot be
pipelined with other operations. In this regard, we modified
the standard SIR filter to make it parallelizable. The modified
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algorithm has an additional particle routing step and utilizes
several sub-filters working concurrently and performing SIR
operations independently on particles to reduce the overall
execution time. Our implementation is highly scalable and
has low complexity since the particle routing step is inte-
grated with the sampling step, and the routing is confined
between the two adjacent sub-filters. On the other hand, other
parallel architectures have scalability issues due to the high
communication overhead between the concurrent processing
elements.

A performance assessment in terms of the resource utilized
on an FPGA, execution time, and estimation accuracy is pre-
sented.We also compared the estimation error of themodified
SIR algorithm with that of the standard SIR algorithm and
noted that there is no significant difference in the estima-
tion error. The proposed architecture has a total execution
time of about 5.62 µs (i.e., a sampling rate of 178 kHz) by
utilizing 8 sub-filters for processing N = 1024 particles.
We compared our design with state-of-the-art FPGA imple-
mentation schemes and found that our design outperforms
other implementation schemes in terms of execution time.
The low execution time (i.e., high input sampling rate) makes
our architecture ideal for real-time applications.

The proposed PF architecture is not limited to a particular
application and can be used for other applications by modify-
ing the importance block of the sub-filter. The sampling and
re-sampling block designs are generic and can be used for any
application.

We also present a novel source localization model to esti-
mate the position of a source based on received sensor mea-
surements. Our PF implementation is robust to noise and can
predict the source position even with a high noise probability.
Experimental results show the estimated source location with
respect to the actual location for 2D and 3D settings and
demonstrate the effectiveness of the proposed algorithm.

In recent times, there has been an increase in the utilization
of UGVs in several instances, such as disaster relief, and
military applications, due to reduced human involvement and
the ability to carry out the task remotely. The proposed source
localization model using PFs can autonomously navigate and
localize the source of interest without any human interven-
tion, which would be very helpful in missions wherein there
is an imminent threat involved, such as locating chemical,
biological or radiative sources in an unknown environment.
Further, the proposed PF framework and its hardware realiza-
tion would be useful for the signal processing community for
solving various state estimation problems such as tracking,
navigation, and positioning in real-time.
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