
Journal of Physics: Condensed Matter

PAPER

Entanglement entropy and out-of-time-order correlator in the long-range
Aubry–André–Harper model
To cite this article: Nilanjan Roy and Auditya Sharma 2021 J. Phys.: Condens. Matter 33 334001

 

View the article online for updates and enhancements.

This content was downloaded from IP address 14.139.128.34 on 28/09/2021 at 09:23

https://doi.org/10.1088/1361-648X/ac06e9
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjst_eHOD8Nob9hbc6CZFGSgU9Goc8WhbsKGQ6XPaypbA1ipX08rkCdMEC1sZ_GQP4pJlcbVCLaiobn0_XMyQoZA_fusEUsjngDTbMkUEECjwJDw-2XKTAIUjulQx2q-JwUofHQDxDMSKHdetNS16zhJFCy-LWyHkOxDDMadjjeP9kPS4GiKieFBAzSUtQoWz6E6RHS6w8Gh8yTgpgcGEciqgGT0UFxP1nfJP6h_mlzjOVn8zUwCLV-BJRdfpKVP2NsUzPmd9nWNbJnAkLe_MiKJsOL00bTV_Paw&sig=Cg0ArKJSzJSDjMPmwonb&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books


Journal of Physics: Condensed Matter

J. Phys.: Condens. Matter 33 (2021) 334001 (13pp) https://doi.org/10.1088/1361-648X/ac06e9

Entanglement entropy and
out-of-time-order correlator in the
long-range Aubry–André–Harper model

Nilanjan Roy1,2 and Auditya Sharma1,∗

1 Department of Physics, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh
462066, India
2 Department of Physics, Indian Institute of Science, Bangalore 560012, India

E-mail: auditya@iiserb.ac.in

Received 8 February 2021, revised 17 May 2021
Accepted for publication 1 June 2021
Published 25 June 2021

Abstract
We investigate the nonequilibrium dynamics of entanglement entropy and out-of-time-order
correlator (OTOC) of noninteracting fermions at half-filling starting from a product state to
distinguish the delocalized, multifractal (in the limit of nearest neighbor hopping), localized
and mixed phases hosted by the quasiperiodic Aubry–André–Harper (AAH) model in the
presence of long-range hopping. For sufficiently long-range hopping strength a secondary
logarithmic behavior in the entanglement entropy is found in the mixed phases whereas the
primary behavior is a power-law the exponent of which is different in different phases. The
saturation value of entanglement entropy in the delocalized, multifractal and mixed phases
depends linearly on system size whereas in the localized phase (in the short-range regime) it is
independent of system size. The early-time growth of OTOC shows very different power-law
behaviors in the presence of nearest neighbor hopping and long-range hopping. The late time
decay of OTOC leads to noticeably different power-law exponents in different phases. The
spatial profile of OTOC and its system-size dependence also provide distinct features to
distinguish phases. In the mixed phases the spatial profile of OTOC shows two different
dependences on space for small and large distances respectively. Interestingly the spatial
profile contains large fluctuations at the special locations related to the quasiperiodicity
parameter in the presence of multifractal states.

Keywords: quantum dynamics, out-of-time-order correlator, entanglement entropy,
long-range Aubry–André–Harper model

(Some figures may appear in colour only in the online journal)

1. Introduction

The nature of correlations between different parts of a system
is of fundamental interest in physics. Entanglement entropy
has been a popular measure of quantum correlations in many-
body systems [1]. The study of entanglement in station-
ary, equilibrium and nonequilibrium states has proven to
be insightful in a wide variety of contexts [2–6]. In recent
years, out-of-time-order correlators or OTOC, which have
emerged as a useful probe of quantum chaos [7], have gained

∗ Author to whom any correspondence should be addressed.

importance in a diverse set of fields ranging from high energy
physics [8–11] to condensed matter physics [12–17] to quan-
tum information [18, 19]. Devised originally as a theoretical
measure [20, 21], considerable excitement has been generated
from the recent experimental measurement of OTOC using
nuclear magnetic resonance [22–24] and trapped ions [25, 26].
The OTOC is generically defined as:

C(x, t) = 〈[Ŵ(x, t), V̂(0, 0)]†[Ŵ(x, t), V̂(0, 0)]〉, (1)

where Ŵ and V̂ are arbitrary local operators separated by a dis-
placement x and commute at t = 0. Here 〈· 〉 typically refers
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to a thermal average, although the expectation value in spe-
cific states may also be of interest. Choosing both W and V to
be both Hermitian and unitary is particularly advantageous as
equation (1) reduces to the compact expression:

C(x, t) = 2(1 − Re[F(x, t)]), (2)

where F(x, t) = 〈Ŵ(x, t)V̂(0)Ŵ(x, t)V̂(0)〉. At t = 0 C(x, t) is
zero. Then it increases for t > 0 due to non-commutativity of
Ŵ(x, t) and V̂(0).

Models that exhibit localization are a natural setup for
investigation of OTOC, in condensed matter systems. A par-
ticularly important class of such models is the family of mod-
els with quasi-periodic disorder, that have sustained interest
over several decades [27–30]. Unlike with Anderson local-
ization where even an infinitesimal random disorder results in
localization, a quasiperiodic disorder of finite strength is essen-
tial for localization of a single particle even in one dimension
[31, 32]. There has been a revival of interest in quasiperi-
odic systems since their experimental realization using
ultra-cold atoms [33–36]. Furthermore the possibility of
many-body localization in such models has triggered a lot of
interest both from a theoretical [37–39] and an experimen-
tal [40] perspective. Apart from the delocalized and localized
phases, quasiperiodic systems can also host other nonergodic
phases [41, 42] with their characteristic properties. In this
study, we numerically probe the different phases using quan-
tum dynamics of OTOC. We also study the quantum dynamics
of entanglement entropy to complement and contrast against
OTOC.

If C(x, t) remains non-zero for an extended period of time
one says that the system has ‘scrambled’. For early time
approach to scrambling one expects C(x, t) ∼ eλquant(t−x/vB)

where λquant is the ‘quantum Lyapunov exponent’ which is
bounded by λquant � 2πkBT/� as conjectured in [9]. vB is
called the ‘Butterfly velocity’ which is also bounded by the
Lieb–Robinson bound [43]. Quantum systems in which λquant

approaches its bound are called fast scramblers [44, 45]. How-
ever, many condensed matter systems exhibit a much slower
growth and hence are called slow scramblers. This includes
the many-body localized systems showing a power law growth
[13, 15, 16, 46] which itself may be contrasted with Ander-
son localized systems where C(x, t) is expected to be a con-
stant [16]. It should be noted that λquant, although inspired
by classical chaos is quite different from its classical counter-
part λL that characterizes chaotic motion in classical systems
[14, 47, 48]. The OTOC corresponding to classical chaos was
found to grow as C(t) = 〈[q(t), p]2〉 ∼ e2λLt, where λL may
become arbitrarily large.

Also the late time dynamics of C(x, t) has turned out to be
quite interesting. An inverse power-law behavior has been seen
in integrable quantum spin chains [49, 50] and many-body
localized systems [13]. Recently late time behavior of C(x, t)
has been proposed as a diagnostic to distinguish regular and
chaotic quantum systems [51, 52]. Although OTOC has been
studied extensively in quantum systems, not many disordered
integrable models have been addressed [53, 54] in the con-
text of the delocalization–localization transition. In addition
to studies that look at the evolution of an initial thermal state,

studies involving an initial product state in a nonequilibrium
setting have also been carried out [15, 53, 55, 56]. Here we
study OTOC starting from a CDW-type initial product state.
We also study entanglement entropy which has been one of the
most popular tools to characterize different many-body phases,
especially in disordered quantum systems [5].

This paper is organized as follows. In section 2 we intro-
duce the model and briefly discuss the various single parti-
cle phases shown by it [41, 42]. In section 3 we describe
the results obtained from the nonequilibrium dynamics of the
entanglement entropy. In section 4 we study the nonequilib-
rium dynamics of OTOC. This section consists of two subsec-
tions: subsection 4.1 where we briefly describe the formalism
for noninteracting fermions and subsection 4.2 where we dis-
cuss the results for our model. Finally we conclude in section 5.

2. The model

The one dimensional long-range Harper (LRH) model is given
by the Hamiltonian:

H = −
N∑

i< j

(
J
rσi j

ĉ†i ĉ j + H.c.

)
+ λ

N∑
i=1

cos(2παi + θp)n̂i,

(3)

where ĉ†i (ĉi) represents the single particle creation (destruc-
tion) operator at site i and n̂i = ĉ†i ĉi, the number operator acting
at site i. We consider a lattice of total number of sites N,
where ri j is the geometric distance between the sites i and j
in an open chain. Here λ is the strength of the quasi-periodic
potential with the quasiperiodicity parameter α which is a
Diophantine irrational number [57] e.g. αg = (

√
5 − 1)/2,

αs = (
√

2 − 1), αb = (
√

13 − 3)/2 etc [58, 59], also known
as the ‘golden mean’, ‘silver mean’, ‘bronze mean’ etc. θp

is an arbitrary global phase. The strength of the long range
hopping is controlled by J and the long range parameter in
the hopping σ. We set our units such that J = 1 through-
out this article. In the σ →∞ limit, this model is the well-
known Aubry–André–Harper (AAH) model [31, 32]. The
AAH model has a self-dual point λ = 2J, where the model
in position space maps to itself in momentum space. As a
consequence, all the eigenstates are delocalized in position
space for λ < 2J and localized for λ > 2J [57]. Some filling-
fraction dependent properties of the AAH model have also
been reported [42, 60].

The single particle phase diagram of the LRH model has
been chalked out recently [41, 42]. Along with the delocal-
ized and localized phases the phase diagram contains mixed
phases where a certain fraction of delocalized eigenstates
coexists with multifractal or localized eigenstates. For the
‘golden mean’ αg the mixed phases can be denoted as Pq(q =
1, 2, 3, . . .) where αq

g fraction of eigenstates are delocalized
and (1 − αq

g) fraction of eigenstates are multifractal or local-
ized depending on whether σ < 1 or σ > 1. Hence Pq phases
for σ < 1 contain the delocalized–multifractal (DM) edges.
Pq phases for σ > 1 contain the delocalized–localized (DL)

2
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Figure 1. Entanglement entropy in the AAH model. (a) The dynamics of the half-chain entanglement entropy SA with increasing values of λ
for free fermions at half-filling. Here system size N = 512. (b) The system size N dependence of the saturation value of the half-chain
entanglement entropy S∞

A of free fermions at half-filling for increasing values of λ. For all the plots, total number of θp realizations is 100
with quasi-periodicity fixed to be αg.

Figure 2. (a)–(c) The dynamics of the half-chain entanglement entropy SA with increasing values of λ for free fermions at half-filling and
for σ = 0.5, 1.5 and 3.0 respectively. For all the plots system size N = 1024.

edges, also known as mobility edges. For the present numer-
ical study we have chosen some specific (λ, σ) values. For
σ = 0.5, we consider λ = 0.1, 0.5, 1.0, 2.0 which correspond
to the delocalized, P1, P2 and P3 phases (with DM edge)
respectively. For σ = 1.5, we look at λ = 0.1, 1.3, 2.0, 3.0
which correspond to the delocalized, P1, P2 and P3 phases
(with DL edge) respectively. For σ = 3.0, we look at
λ = 0.1, 1.7, 2.1, 2.5, 5.0 which correspond to the delocalized,
P1, P2, P3 phases (with DL edge) and localized phases respec-
tively with σ = 3.0 being essentially the short-range limit.
Next we discuss the nonequilibrium dynamics of free fermions
in the AAH and LRH models.

3. Entanglement entropy

The study of out-of-equilibrium properties of disordered quan-
tum systems has been proved to be a very efficient tool to detect
delocalized and localized phases. The system is initially pre-
pared in a suitable state, and the properties of the time-evolved
state are tracked. Since a charge density wave (CDW) type of
state (for fermions at half-filling) is easily prepared in experi-
ments involving ultra-cold atoms, we consider a CDW state as
the initial state in our study. The initial state can be written as:

|Ψin〉 =
N/2∏
i=1

ĉ†2i|0〉. (4)

We are mainly interested in the dynamics of entanglement
entropy and the OTOC which are of current interest for inte-
grable disordered quantum systems [61]. In this section we
discuss the dynamics of entanglement entropy. OTOC will
be discussed in the following section. We will stick to the
quasiperiodicity parameterαg = (

√
5 − 1)/2 unless otherwise

mentioned.
When the overall state of the system is pure, entanglement

entropy is simply given by SA = −Tr(ρA ln ρA) where ρA is the
reduced density matrix of the subsystem A. We calculate the
dynamics of the half-chain entanglement entropy using free
fermionic techniques [62, 63] that allow for the study of sig-
nificantly large system sizes. In the AAH model, the growth
of SA is ballistic in time in the delocalized phase (λ = 1) and
(almost) diffusive at the critical point (λ = 2) whereas there is
essentially no growth in the localized phase (λ = 3) as shown
in figure 1(a). These results are in agreement with those of
an earlier study of quench dynamics in the AAH model [64].
Figure 1(b) shows that the saturation value S∞

A scales lin-
early with system sizes (S∞

A ∝ N) at λ = 1 and λ = 2, while

3
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Figure 3. (a) The secondary logarithmic growth of the half-chain entanglement entropy SA in the LRH model for σ = 0.5 and
λ = 0.5, 1.0, 2.0 for which the best fits are 18.98 ln t + 15.64, 12.18 ln t + 32.38 and 15.21 ln t − 15.54 respectively. (b) Similar plots for
σ = 1.5 and λ = 1.3, 2.0, 3.0 for which best fits are 17.61 ln t + 24.15, 13.39 ln t + 17.94 and 3.89 ln t + 41.93 respectively. The solid lines
are best fits whereas the scattered points represent the corresponding data-points. The x-axis is in the log scale. For all the plots system size
N = 1024 and fermionic filling fraction is 1/2.

S∞
A ∝ N0 for λ = 3. Also we have checked that these results

remain independent of the choice of the quasiperiodicity
parameter α.

The plots of SA as a function of time for the LRH model
are shown in figures 2(a)–(c) for increasing values of λ and
σ = 0.5, 1.5 and 3.0 respectively. In the plots for σ = 0.5 and
σ = 1.5 each, SA shows two different behaviors with time
which can be noticed both in figures 2(a) and (b). In figure 2(a)
after the initial transient a power-law growth is found followed
by a secondary logarithmic growth (see figure 3(a)). The sec-
ondary growth appears presumably due to the presence of the
DM edge. It is to be noted that the secondary growth is absent
for λ = 0.1 for which all the eigenstates are delocalized. The
primary growth in the dynamics of SA can be fitted with a func-
tion SA(t) = c1tβ + c2 to extract the values of the power-law
exponent β. For λ = 0.1, β turns out to be 0.53. For other
values of λ = 0.5, 1.0, 2.0 which correspond to mixed phases
with DM edges, β = 0.45, 0.38 and 0.31 respectively.

In figure 2(b) for σ = 1.5 a primary power-law growth and
a subsequent secondary logarithmic (see figure 3(b)) growth
is observed. For σ = 1.5, λ = 0.1 corresponds to the delo-
calized phase whereas λ = 1.3, 2.0, 3.0 here correspond to
mixed phases with DL edges. For λ = 0.1, 1.3, 2.0 and 3.0,
the power-law exponent β = 0.89, 0.82, 0.80 and 0.76 respec-
tively. The secondary growth is again absent for λ = 0.1
for which there is no DL edge. For σ = 3.0 the secondary
growth is absent as seen from figure 2(c) since the LRH
model approaches the short-range AAH limit at this point. For
λ = 0.1 the growth of SA happens ballistically as β = 1.0 as
in the delocalized phase of the short-range AAH model. For
λ = 1.7, 2.1, 2.6 the system is in the mixed phases with the DL
edges. In the mixed phases the growth of SA is initially less sen-
sitive to the delocalized eigenstates due to the short-rangeness
of the system. After some time the delocalized eigenstates start
to dominate as indicated by the increasing change of rate of SA

in figure 2(c). Right before reaching saturation the power-law
fit provides β = 0.84, 0.82, 0.79 for λ = 1.7, 2.1, 2.6 respec-
tively. The secondary logarithmic growth for σ = 0.5, 1.5 are

depicted in figures 3(a) and (b) respectively where the plots are
fitted with the function SA(t) = a1 ln t + b1. Lots of intrinsic
fluctuations can be seen in the plots due to the quasiperiod-
icity in the system. The secondary logarithmic growth tends
to vanish in the short-range limit of hopping as these are
barely seen for σ = 3.0 (see figure 2(c)). Logarithmic growth
of entanglement entropy has been seen recently in a few non-
interacting randomly disordered systems [61, 65] and also lon-
grange interacting systems [66]. The logarithmic behavior in
the quasiperiodically disordered long-ranged LRH model is
attributed to the presence of mixed phases in the longrange
regime. This feature is not found in the short-range regime,
and in general, in the absence of mixed phases.

We notice that the power-law exponentβ is larger forσ > 1
as compared to σ < 1. This counter-intuitive behavior of the
power-law exponent in the entanglement growth has been
addressed earlier in a clean free fermionic long-range model
[67] and our work shows that this feature is robust against
quasiperiodic disorder. It is noteworthy that the exponent β
changes very little with λ for σ = 1.5 and 3.0 for each of
which (λ, σ) combinations correspond to the same P1, P2 and
P3 phases with DL edges. This happens possibly because the
properties of the localized states barely vary in the different Pq

phases. On the other handβ changes rapidly withλ forσ = 0.5
in the presence of multifractal states the properties of which
may change significantly as one moves from P1 to P2 to P3 and
so on. Another observation is that the late time dynamics of SA

slows down for σ = 1.5 whereas it speeds up for σ = 3.0. This
happens due to varying degrees of effectiveness of the delocal-
ized eigenstates in the presence of long-range and short-range
hopping. In a particular Pq phase (with DM or DL edges) the
values of all the exponents discussed here barely change with
λ for a fixed value of σ. Similar results have been discussed in
a recent work [68]. Also we have checked that the qualitative
behaviors of all the SA plots and the values of the exponent β
change very little if, instead of αg, one uses αs or αb for an
initial half filled CDW state. However, the exponents associ-
ated with the secondary SA growth may change significantly
as this part of the dynamics is dominated by the multifractal or

4
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Figure 4. (a) The saturation value of the half-system SA as a function of λ for σ = 0.5, 1.5 and 3.0 respectively for fermions at half-filling.
(b) The system size N dependence of the saturation value of the half-chain entanglement entropy S∞

A of free fermions at half-filling for
different combinations of λ and σ.

the localized single particle eigenstates, the fraction of which
depends on the choice of the quasiperiodicity parameter in a
particular Pq(q = 1, 2, 3, . . .) phase.

The saturation value of entanglement entropy S∞
A turns out

to be a useful quantity. Figure 4(a) shows S∞
A as a function

of λ for σ = 0.5, 1.5, 3.0. The steps appearing in the plots
denote the transitions from the delocalized-to P1-to-P2-to-P3

etc phases. The Pq phases have a fraction of eigenstates that
are multifractal for σ = 0.5 and a fraction of eigenstates that
are localized for σ = 1.5, 3.0. Hence S∞

A is much lower for
σ = 1.5, 3.0 than for σ = 0.5 in these phases. Also we have
looked at the system size N dependence of S∞

A in these phases
as shown in figure 4(b). The combinations of (λ, σ) are cho-
sen in such a way that the system is in the delocalized phase
for (0.1, 0.5); P2 phase with DM edge for (1.0, 0.5); P2 phase
with DL edge for (2.0, 1.5), and (2.1, 3.0); and localized phase
for (5.0, 3.0). For the delocalized and mixed phases with DM
or DL edges S∞

A ∝ N. In the localized phase S∞
A ∝ N0, which

is obtained effectively in the short-range AAH limit. Typically
in a sufficiently long-ranged regime one can obtain algebraic
localization such as seen in the random long-range hopping
model [63]. In the random long-range hopping model an alge-
braic localization dominated phase is found for 1 < σ < 2 for
which S∞

A varies sub-linearly with N [63].

4. Out-of-time-order correlator

OTOC are good observables to capture chaos or informa-
tion scrambling in quantum systems. The majority of stud-
ies looking at OTOC have been in the context of localization
transitions in interacting systems [13, 15–17, 46]. However,
OTOC has been barely [53, 54] addressed in the literature in
relation to the localization transition in disordered noninter-
acting (quadratic) Hamiltonians. Our goal here is to investi-
gate OTOC as a distinguisher for the various phases found
in the AAH and LRH models. In this work we choose the
two unitary-and-Hermitian operators σ̂z

i and σ̂z
j at a distance

x = |i − j|. The function F(x, t) in equation (2) is then given
by

F(x, t) = 〈σ̂z
i (t)σ̂

z
j(0)σ̂z

i (t)σ̂
z
j(0)〉. (5)

We keep the position of the time evolved operator fixed at
i = N/2. By varying j we study the scrambling of quantum
information over the lattice as a function of time. The ini-
tial state is fixed as the product state of half-filled fermions
defined in equation (4). For free fermions one can use the
Jordan–Wigner transformation σ̂z

j = 2n̂ j − 1 to simplify the
expression of F(x, t) [53]. We elaborate on this ahead.

4.1. Formalism

Here we provide a brief description of the formalism in relation
to OTOC which is used in this work. Let us consider a generic
quadratic Hamiltonian:

Ĥfree =
∑

i, j

Hi jĉ
†
i ĉ j, (6)

where Hi j’s are the elements of a Hermitian matrix H and ĉ†i ’s
(ĉi’s) are fermionic creation (annihilation) operators obeying
the following anti-commutation relations:

{ĉ†i , ĉ j} = δi j; {ĉ†i , ĉ†j} = {ĉi, ĉ j} = 0. (7)

Using the eigenvectors of the coupling matrix H, we can define
new fermionic operators that diagonalize the Hamiltonian. If
Ajk represent the coefficients of the eigenvectors of the matrix
H, we introduce the fermionic operators:

d̂†
k =

∑
j

A∗
jkĉ†j, d̂k =

∑
j

A jkĉ j (8)

that transform the Hamiltonian into a diagonal form:

Ĥfree =
∑

k

εkd̂†
kd̂k. (9)

Here d̂†
k (d̂k) creates (annihilates) a particle with energy εk and

obeys similar anti-commutation relations as ĉi’s:

{d̂†
k, d̂l} = δkl, {d̂k, d̂l} = 0, {d̂†

k, ˆd†
l } = 0. (10)

5
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Using the Heisenberg equation for operators, the time-evolved
operators d̂†

k(t) and d̂k(t) can be found.

d
dt

d̂k = ı
[
Ĥfree, d̂k

]
= −ıεkd̂k, (11)

which leads to

d̂k(t) = e−ıεkt d̂k(t = 0) (12)

and hence d̂†
k(t) = eıεk t d̂†

k(t = 0). Using the relations:

ĉ†j(t) =
∑

k

A jkd̂†
k(t), ĉ j(t) =

∑
k

A∗
jkd̂k(t) (13)

one finds the following anti-commutation relations between
creation and annihilation operators at different times in posi-
tion space.

{ĉ†i (t), ĉ j} =
∑

k

eıεkt A∗
ikA jk = ai j(t)

{ĉi(t), ĉ†j} =
∑

k

e−ıεkt AikA∗
jk = a∗

i j(t)
(14)

along with {ĉ†i (t), ĉ†j} = {ĉi(t), ĉ j} = 0, which are trivially
satisfied. Here the parentheses used to denote time are dropped
from the operators for t = 0. This convention is used further in
the paper.

In this work we consider an initial product state of the form

|Ψ〉 =
∏
j∈S

ĉ†j|0〉, (15)

where j refers to the index of the site which is occupied. Let S
be the set consisting of site indices of sites which are occupied.
The initial occupation matrix in position space is then given by

〈c†i ĉ j〉 =
{

1 if i = j ∀ i ∈ S

0 otherwise.
(16)

Using the Jordan–Wigner transformation σ̂z
i = 2n̂i − 1 with

n̂i = ĉ†i ĉi in equation (5) we have:

F(x, t) = 16〈n̂i(t)n̂ jn̂i(t)n̂ j〉+ 4〈n̂ jn̂i(t)〉 − 4〈n̂i(t)n̂ j〉

− 8〈n̂i(t)n̂ jn̂i(t)〉 − 8〈n̂ jn̂i(t)n̂ j〉+ 1. (17)

In this work we have kept i = N/2 where N is the number
of sites in the lattice and calculated F(x, t) by varying j. For the
case j ∈ S such that ĉ†j|Ψ〉 = 0, equation (17) can be written as
[53]

F(x, t) = 8|ai j|2 〈n̂i(t)〉 − 8|ai j|2 + 1. (18)

For j /∈ S, ĉ j|Ψ〉 = 0 which leads to

F(x, t) = 1 − 8|ai j|2 〈n̂i(t)〉 . (19)

4.2. Results

We now discuss the OTOC-related results for the AAH and
LRH models.

AAH model: first we calculate C(x, t) in the AAH model.
The profiles of C(x, t) in position space for increasing instants
of time are shown in figures 5(a)–(c) for λ = 1.0, 2.0 and 3.0
respectively. At t = 0 C(x) is zero for all x because F(x, 0)
reduces to the squares of Pauli matrices yielding unity in
equation (5). Then C(x) starts developing for small values of
the distance x due to the non-commutation of the matrices σ̂z

i (t)
and σ̂z

j(0) for small x at early times. During this period of time
C(x) attains high values for small x while the maximum value
of C(x) happens to be at x = 1. This is shown in figure 5(a)
for λ = 1. Then C(x, t) starts decreasing for small x whereas it
keeps growing for large values of x due to the spreading of non-
commutativity among Pauli matrices. In the long run C(x, t)
shows a uniform dependence on x for λ = 1 (see figure 5(a))
when SA also reaches saturation. For the critical point λ = 2
the initial dynamics of C(x, t) shown in figure 5(b) is similar
to that for λ = 1. But in the long-time limit C(x, t) shows a
non-uniform dependence on x with occasionally large fluctua-
tions especially at x = 21, 34, 55 etc which are terms in the
Fibonacci sequence of the ‘golden mean’ [69]. These large
fluctuations appear possibly due to the multifractal nature of
the eigenstates. In figure 5(c) for the localized phase at λ = 3,
C(x, t) grows for small x at early times while the subsequent
decay is absent in the dynamics. Eventually in the long-time
limit C(x) drops exponentially with x i.e. C(x) ∼ e−x/ξOTOC

[53] such that C(x) �= 0 for x < ξOTOC but is zero for large x.
ξOTOC decreases with λ in the localized phase.

Also we analyse the system size N-dependence of the
spatial profile of C∞(x) in the long-time limit as shown in
figures 5(d)–(f) for λ = 1, 2, 3 respectively. For λ = 1, C∞ ∝
1/N. This can be explained by looking at the long-time behav-
ior of |ai j(t)|2 defined in section 4.1. lim

T→∞
1
T

∫ T
0 dt|ai j(t)|2 =∑

k|Aik|2|A jk|2, which scales with 1/N as Aik ∝ 1/
√

N in the
delocalized phase. At the critical point λ = 2, C∞ depends
on x and shows a sub-linearly decreasing dependence with N
except on the points where large fluctuations are observed due
to the multifractal nature of the eigenstates. At these special
points the N-dependence is not regular. The number of these
large fluctuations increases with N. However, in the localized
phase for λ = 3, C∞ ∝ N0 for x < ξOTOC and is in any case
zero for large x.

The early-time growth of OTOC in the AAH model is
shown in figures 6(a)–(c) for small values of x and for λ = 1,
2, 3 respectively. For all values of λ we notice that C(x, t) ∼
t2x ∀ odd x and C(x, t) ∼ t2(x+1) ∀ even x, which is also found
in translationally invariant models [49]. This can be under-
stood by writing the Heisenberg time evolution of Ŵ(t) using
the Hausdorff–Baker–Campbell formula

eitĤ Ŵ e−itĤ =
∞∑

m=0

(it)m

m!
L̂m(Ŵ), (20)

where L̂(Ŵ) = [Ĥ, Ŵ] and Ŵ = σ̂z
L/2. The power-law growth

obtained in the early-time dynamics is controlled by the term
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Figure 5. OTOC in the AAH model. (a)–(c) OTOC C(x, t) as a function of distance x at different instants t for λ = 1.0, 2.0 and 3.0
respectively. System size N = 256. The plot legend shown in (a) also applies to (b) and (c). (d)–(f) Saturation value C∞(x) as a function of
distance x for increasing system sizes N and for λ = 1.0, 2.0 and 3.0 respectively. The plot legend shown in (d) also applies to (e) and (f).
For all the plots, total number of θp realizations is 500.

with the smallest m such that
[
L̂m, σ̂z

L/2+x

]
) ] �= 0. For short-

range AAH Hamiltonian it is clear that this happens when
m = x leading to C(x, t) ∼ t2x [49]. For x = 2, 4, 6, . . . one
includes the next leading term which gives C(x, t) ∼ t2(x+1)

[53]. This shows that the quasiperiodic disorder does not play
any important role in the initial dynamics. However, in the
long-time limit OTOC is found to decay as 1/tγ with time
and the power-law exponent γ depends on λ as shown in
figures 6(d)–(f) for λ = 1, 2, 3 respectively. We find that the
values of γ ≈ 1.0, 0.3, 0.0 for λ = 1, 2, 3 respectively which
correspond to the delocalized, critical and localized phases
respectively. The t−1 decay in the delocalized phase is also seen
in a clean system [49]. The extended (ergodic or nonergodic)

states are responsible for the correlation wavefront to reach a
particular distant site in the lattice (leading to OTOC growth)
and then proceed further (leading to OTOC decay) until OTOC
reaches saturation. The decay rate is expectedly less in the
(nonergodic) multifractal phase in comparison to the (ergodic)
delocalized phase. A lot of intrinsic fluctuations are found in
these plots due to the presence of quasiperiodic disorder. We
also note that in the late time dynamics for a fixed value of
λ the value of γ does not depend on x unlike the early-time
growth.

LRH model: the spatial distribution of OTOC for the LRH
model of fermions at half-filling is shown in figure 7. We have
chosen the combination of parameters (λ, σ) in such a way that

7
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Figure 6. Time dynamics of OTOC in the AAH model for increasing values of x. (a)–(c) C(x, t) vs t plots for early times for λ = 1.0, 2.0
and 3.0 respectively. The plot legend shown in (a) also applies to (b) and (c). (d)–(f) C(x, t) vs t plots for late times for λ = 1.0, 2.0 and 3.0
respectively. The plot legend shown in (d) also applies to (e) and (f). For all the plots, system size N = 1024 and total number of θp
realizations is 500.

the system is in four different types of phases: (i) P2 phase
with DM edge (σ = 0.5), (ii) P2 phase with DL edge where
the hopping is relatively long-range (σ = 1.5), (iii) P2 phase
with DL edge where the hopping is short-range (σ = 3.0) and
(iv) the localized phase. The spatial profiles of C(x, t) for each
of the above kinds of parameter combinations are shown in
figures 7(a)–(d) respectively. For early times C(x, t) shows
1/x2σ dependence for all the choices of parameters.

In the mixed phases we see that in the long time limit C(x, t)
follows 1/xδ (power-law) behavior for small x and almost x-
independent behavior for large x. In figure 7(a) δ ≈ 1.0 for
small x whereas occasional large fluctuations can be seen for
large values of x which are terms in the Fibonacci sequence of
the ‘golden mean’. The occasional large fluctuations are sig-
natures of the multifractal states similar to the AAH model

at the transition point. In figure 7(b) for intermediate times
(t ∼ 10) C(x, t) shows 1/x1.5 dependence for small x and 1/x2σ

dependence for large x. However, in the long time limit x-
independent behavior of C(x, t) is seen for large x along with
the 1/x1.5 dependence for small x. Here δ ≈ 1.5. In figure 7(c)
for intermediate times C(x, t) shows 1/x1.5 dependence for
small x and 1/x2σ dependence for large x. A sharp boundary
can be seen between these two behaviors, which is a charac-
teristic signature of the short-range regime [43]. In the long
time limit C(x, t) does not depend on x for large x whereas
it continues to show the 1/x1.5 dependence for small x corre-
sponding to δ ≈ 1.5 once again. In figure 7(d) corresponding
to the localized phase the spatial profile C(x, t) continues to be
1/x2σ ∀x. We do not a see a ‘mixed’ behavior in this case as the
system is unambiguously in the localized phase. We notice that
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Figure 7. OTOC in the LRH model. (a)–(d) OTOC C(x, t) as a function of distance x at different instants t for (λ = 1.0,σ =
0.5), (λ = 2.0,σ = 1.5), (λ = 2.1, σ = 3.0) and (λ = 5.0,σ = 3.0) respectively. System size N = 1024 the plot legend shown in
(a) also applies to (b), (c) and (d). (e)–(h) Saturation value C∞(x) as a function of distance x for increasing system sizes N and
for (λ = 1.0, σ = 0.5), (λ = 2.0, σ = 1.5), (λ = 2.1, σ = 3.0) and (λ = 5.0, σ = 3.0) respectively. The plot legend shown in figure
(e) also applies to figures (f), (g) and (h). For all the plots, total number of θp realizations is 500.
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Figure 8. Time dynamics of OTOC in the LRH model for increasing values of x. (a)–(d) C(x, t) vs t plots for early times for (λ = 1.0,σ = 0.5),
(λ = 2.0, σ = 1.5), (λ = 2.1, σ = 3.0) and (λ = 5.0,σ = 3.0) respectively. The plot legend shown in (a) also applies to (b), (c) and (d). (e)–(h)
C(x, t) vs t plots for late times for (λ = 1.0, σ = 0.5), (λ = 2.0, σ = 1.5), (λ = 2.1,σ = 3.0) and (λ = 5.0, σ = 3.0) respectively. The plot
legend shown in figure (e) also applies to figures (f), (g) and (h). For all the plots, system size N = 1024 and total number of θp realizations
is 500.
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the value of δ ≈ 1.0 for all the mixed phases with DM edges
(σ < 1) while δ ≈ 1.5 for the mixed phases with DL edges
(σ > 1). It is noticeable that the value of δ is larger in the pres-
ence of localized states than that in the presence of multifractal
states.

In figures 7(e)–(h) we show the system size dependence
of the spatial profile of OTOC in the long time limit C∞(x)
corresponding to phases described in figures 7(a)–(d) respec-
tively. Since we have already mentioned earlier that the calcu-
lation of C∞(x) involves each eigenstate in the spectrum, in the
mixed phases (P2 phase with DL/DM edge), in figures 7(e)–(g)
C∞(x) for large x decreases with the system size N although
its functional dependence on N is not very clear due to fluctu-
ations. In figure 7(e) we see the occasional large fluctuations
due to the presence of multifractal states increase and become
more prominent with N. In figures 7(f) and (g) the large fluc-
tuations are not seen due to the absence of multifractal states.
In the presence of DM edge C(x) depends on N for small x
whereas in the presence of DL edge C(x) remains invariant
with the change in N for small x. In figure 7(h) the spatial
profile of C∞(x) becomes system size independent which is
characteristic of a localized phase. We note that in the pres-
ence of localized states the peak of the profile of C∞(x) has a
higher value (figures 7(f)–(h)) than in the absence of localized
states (figure 7(e)).

The early-time growth of OTOC in the LRH model is shown
for small x in figure 8 for the P2 phase with DM edge in
figure 8(a), P2 phase with DL edge in figures 8(b)–(c) and the
localized phase in figure 8(d). Independent of the values of λ
and σ, we find that C(x, t) ∼ t2 ∀ odd x and C(x, t) ∼ t4 ∀ even
x as also found for the translationally invariant long-range hop-
ping model (we have checked). Unlike the short-range AAH
model here OTOC does not have a power-law behavior with
x and the growth here is in fact largely x-independent. This
can be again understood from equation (20). Since the LRH
Hamiltonian is long-ranged σ̂z

L/2 and σ̂z
L/2+x immediately get

connected for smallest m = 1 which gives C(x, t) ∼ t2 [70] for
odd x. For even x, including the next-to-leading-order term, we
obtain C(x, t) ∼ t4. For the same phases of the LRH model,
the late-time decay of OTOC is shown in figures 8(e)–(h).
From figure 8(e) we see that in the P2 phase with DM edge the
power-law decay exponent γ = 0.15 ∀ x. In figures 8(f)–(g)
we find that in the P2 phase with DL edge the decay expo-
nent gets smaller, and is difficult to determine. A power-law
decay is found due to the presence of the delocalized states
in the phase. However it is smaller as compared to that in
figure 8(e) due to the presence of localized states instead of
(extended nonergodic) multifractal states. In figure 8(h) we do
not see any decay of OTOC after the early-time growth due
to the absence of delocalized or multifractal states. We have
checked that all the dynamical behaviors shown by both the
entanglement entropy and OTOC can be seen more clearly as
the system size is increased.

We would also like to mention that we have checked that for
a clean (undisordered) system in the presence of long-range
hopping, in the long-time limit C(x, t) decays as 1/t indepen-
dent of x and the long-range parameter σ. The values of C∞

are also independent of x and σ as the phases are delocalized
for all σ. On the other hand in the LRH model, the power-law
decay exponent γ is much lower than that in the clean system.
In the LRH model γ depends on the values of σ. The values of
C∞ depend on x as the phases are (nonergodic) mixed or local-
ized. However, the values of γ and C∞ change very little with
the fraction of delocalized states present in the mixed phases,
especially in the presence of the DM edge.

5. Conclusion

To conclude we study the nonequilibrium dynamics of entan-
glement entropy and OTOC of noninteracting fermions at
half-filling starting from a product state to distinguish dif-
ferent phases hosted by the quasiperiodic AAH model with
long-range hopping. Apart from the delocalized and localized
phases, the model also shows mixed phases which consist of
delocalized and multifractal or localized states. In the nearest
neighbor hopping limit due to the restoration of self-duality
the model hosts delocalized, multifractal and localized phases.
When the hopping is sufficiently long-ranged a secondary log-
arithmic behavior in the entanglement entropy is seen in the
mixed phases whereas the primary behavior is a power-law
growth which can be different in different phases. The satu-
ration value of entanglement entropy in the delocalized, mul-
tifractal and mixed phases depends linearly on system size
whereas in the localized phase (in the short-range regime) it is
independent of system size. The secondary growth is a unique
feature that we expect to see in the long-ranged mixed phases
of other models as well, since this feature seems to be con-
nected to the long-ranged nature of the hopping. Although in
our specific system, we find that the secondary growth is log-
arithmic, this may not necessarily be true in other long-ranged
systems. In early-time dynamics OTOC shows very different
behavior in the presence of nearest neighbor hopping and long-
range hopping, like is seen also in clean systems. The late-time
decay rate of OTOC is different in the delocalized and mul-
tifractal phases of the nearest neighbor AAH model whereas
the localized phase of the same model shows no such decay.
In the long-time limit the spatial profile of OTOC is inde-
pendent, dependent (with large fluctuations) and exponentially
dependent on space in the delocalized, multifractal and local-
ized phases respectively. Also the profile decreases linearly
and sub-linearly with system size in the delocalized and multi-
fractal phases respectively whereas it is independent of system
size in the localized phase. In the multifractal phase, large fluc-
tuations are observed at the special points which are related
to the Fibonacci sequence of the quasiperiodicity parameter.
In the LRH model, the late-time power-law decay is present
in the mixed phases due to the presence of extended states
although the power-law decay exponent is smaller compared
to the inverse power-law behavior found in the delocalized
phase of the (clean) system. The power-law exponent barely
changes with the change in the fraction of delocalized states
in the mixed phases showing the dominance of the nonergodic
states in the dynamics. In the mixed phases the presence of
localized states suppresses the late-time decay even more than
multifractal states. The localized phase of this model does not
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show any such decay due to absence of extended states. The
dynamics of the spatial profile of OTOC in the mixed phase in
the short-range limit reveals a sharp boundary which is typical
of longrange models [67]. The spatial profile of OTOC in the
long-time limit in the mixed phases shows a mixed behavior:
power-law dependence for small distance (nonergodic behav-
ior) and no dependence for large distance (ergodic behavior).
In the mixed phases containing multifractal states the profile
shows large fluctuations at special points for large distance
similar to the critical point of the AAH model. In the localized
phase the spatial dependence of OTOC is a power-law one for
all distances and is also independent of system size. Also in the
mixed phases the spatial profile shows different system-size
dependences for small and large distances which is expected.
One may expect to see these behaviors in the mixed phases of
other long-range (Harper-like) models.

Entanglement entropy and OTOC are two quantities that are
of great interest in dynamical studies of quantum systems with
the second one being easier to be implemented in experiments.
Very recently, a surge of interest in the community [71–74]
has been seen in the experimental detection of quantum phase
transitions using OTOC. At this point our work provides the
temporal and spatial features of OTOC to detect a host of
different quantum phases which can potentially be imple-
mented in the ongoing experiments. Also there are possibilities
of studying the temperature dependence of OTOC in the LRH
model using a thermal state which one can address in the
future.
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