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ABSTRACT 

Constant extinction angle control of an in- 
verter in a MTDC-AC system is of utmost 
importance for proper operation under all 
contingencies. In this paper, the process 
of control is treated as a pattern recog- 
nition problem. A neuro-fuzzy controller 
is implemented and used for on-line oper- 
ation s f  a MTDC-AC system to enhance 
the performance of extinction angle con- 

are equipped wi th  l imited intelbgence and their ac- 
t ion is based on the f ina l  e f e c t s  (ex. reduction in 
extinction angle below the stipulated value) than 
on the early detection of the p r i m a r y  causes (ex. 
reduction in  3-phase ac bus voltages, increase in 
dc current over its rated value, etc.), they are un- 
able t o  render assistance in  proper time. Hence it 
is necessary to monitor the system to detect faults 
during their developing stages so that corrective 
action is taken at an appropriate t ime to reduce 
the disturbances. 
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degrees. This difference termed error in  the ex- 
tinction angle is used to either advance or delay 
the triggering of the thyristor so that  an optimum 
6 is maintained by the system. 

1 INTRODUCTION 

The control of extinction angle of an inverter in a 
dc transmission system is.of utmost importance [l]. 
This angle has to be maintained at a value such 
that  the incidence of commutation failure is re- 
duced and the requirement of reactive power com- 
pensation is minimised. For this purpose, a number 
of methods to control the extinction angle have 
been developed [2,3]. With the advent of mod- 
ern control theory, new techniques like adaptive 
control, system identification and estimation, etc., 
have been proposed [4,5], to improve the dc sys- 
tem performance and make it practically free from 
deleterious effects. As most of these controllers 

The m o t i v a t i o n  to improve the Constant Ex- 
tinction Angle CEA) controller is based on the 

Consider a decrease in ac bus voltage due to a 
fault, resulting in  reduction of the commutating 
voltage which feeds the inverter. This causes de- 
crease in dc voltage output o f  the inverter thereby 
increasing the dc current. The increase in de cur- 
rent coupled wi th  decrease in commutating vortage 
causes overlap angle to increase resulting in de- 
crease o f  extinction angle, finally leading to com- 
mutation failure. Hence there is a need to act on 
the early detection of p r i m a r y  c a u ~ e s  than relying 
solely on final egects .  

In the proposed system, the development of fault 
is monitored continuously and the corrective ac- 
t ion is obtained at  an early t ime so as to limit the 

following examp r e. 
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effects of the disturbance. In general, the commu- 
tation process io sensitive to the changes in the ac 
bus voltages and the dc current. Thus 3-phase ac 
bus voltages, dc current and the extinction angle 
have been used to arrive a t  the state of the system 
at  regular intervals of time. The input data are 
pre-processed using fuzzy logic and fed to an Ar- 
tificial Neural Network (ANN) so that the system 
state is identified and a proper value of the trigger- 
ing instant .is determined which results in  a trouble 
free operation. Thus the structure of the conven- 
tional controller is changed so that  (a a number of 

the error criterion for inverter control, and b) cer- 

troller so as to equip it wi th  self-learning ability. 
This system is termed as the Multi-Input-Single- 
Output (MISO) controller. The following sections 
discuss the implementation details of such a con- 
troller so that  on-line operation is possible. The 
performance of proposed controller is presented for 
a case study involving fault on the ac system fed 
from inverter. 

inter-related factors are considered t’ or arriving at  

tain amount of intelligence is imparted to t I, e con- 

the way human beings would classify. An  example 
of this classification is given below. 
The difference in the measured and the reference 
dc current waveforms are classified as foilows. 
Let this difference be X. 

IF (-0.05 > X < 0.05) THEN NORMAL 
(0.05 > X 6 0.1) -- > SLIGHTLY HIGH 
(0.1 > x 6 0.2) -- > VERY HIGH 

(-0.1 2 X < -0.05) -- > SLIGHTLY LOW 
(-0.2 a x  < -0.1) -- > VERY LOW 

(X > 0.2) -- > VERY VERY HIGH 

(X < -0.2) -- > VERY VERY LOW 

Suitable membership values are assigned for these 
classes so that  class boundaries are flexible. A 
membership value of [O.O, 0.5, 1.0, 0.5, 0.01 is 
used here. For example, if X = 0.0, then using 
the above table and the membership function, the 
pattern vector is determined as a 1 x 7 vector 
PV = (0.0, 0.0, 0.5, 1.0, 0.5, 0.0, 0.01. In a sim- 
ilar way, pattern vector corresponding to 3-phase 
ac bus voltages and extinction angle are generated. 
Altogether, they form a pattern vector 0% dimen- 
sion (1 x 35). This forms the input to the ANN. 

2 IMPLEMENTATION 
2.3 Adaptive Pattern Recognition Using 

Artificial Neural Networks OF NEURO-FUZZY CON- 
TROLLER 

2.1 System Considered 

The system considered is a 4 terminal, mesh con- 
nected MTDC-AC system shown in fig. 1.0. The 
dynamic, digital simulation of the above system is 
carried out  using a software package developed in  
[6]. The details of the system data are available 
in  appendix A. The controller discussed above has 
been implemented and embedded in to the dc sys- 
tem for on-line studies. The implementation de- 
tails are described below. 

2.2 Pattern Vector Generation Using 
Fuzzy Logic 

The %phase ac bus voltages, dc current and the ex- 
t inction angle of inverter 2 constitute input to the 
CEA control system. The deviation of these vari- 
ables from their respective steady state values are 
used to classify the variation in system status. This 
classification being imprecise, fuzzy logic is used to 
arrive at  meaningful results. Typically these classes 
can be treated as linguistic variables , similar to 

The problem of control can be defined as determi- 
nation of the mapping between the observations of 
the system state and the actions to be carried out. 
Thus it constitutes a pattern recognition probaem 
[a].  The observations are quantified as a pattern 
vector representing the status of the system. The 
actions are quantified as a pattern vector of de- 
sired control inputs. There are a number of tech- 
niques available to solve this problem. ANNs are 
a new class of computing paradigm which imitate 
the behaviour of human being’s problem solving 
capabilities [7,8,9]. They can be trained to learn 
the mapping between the input and output vectors. 
The major advantages of ANN over conventional 
pattern recognition approaches are that  the former 
can respond to untrained situations by virtue of its 
interpolating abilities and offers good noise rejec- 
t ion capability. 

There are mainly two kinds of ANNs, 1) Super- 
vised and 2) Unsupervised neural networks. We 
have employed the supervised ANN called the 
FeedForward, Mult i-  layered Perceptron with Back 
Propagation learning algorithm [ l O , f l ] .  Brief par- 
ticulars of architecture of ANN used are shown in 
fig. 2.0. 

The system state pattern vector forms the in- 
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put  to the ANN. It maps this input vector onto 
the output  vector using a non-linear transfer func- 
t ion usually a sigmoid. The output pattern vector 
corresponds to the magnitude of desired triggering 
angle of the inverter which ensures safety as per 
the domain expert's opinion. Hence it is termed as 
supervised control. In order to train the ANN, a 
number of training pattern pairs are required. Out  
of about 16,000 possible pattern pairs, 124 pat- 
tern pairs were synthetically created and used as 
the training set. The samples were carefully drawn 
to encompass all possible system states. Training 
was stopped once the difference of the network's 
response to input patterns was within f 2% of the 
desired response. The total t ime required for learn- 
ing all the pattern pairs was about 6 hours on a 
PC-AT 386 running Q 25 MHz. After the ANN is 
trained, it is tested using pattern pairs generated 
by the actual system. ,It performed satisfactorily 
when exposed to the testing set. The tested neu- 
ral network was then embedded in to the dc system 
so that  the neural controller became operational 
on-line in  order to improve the dynamics of the sys- 
tem during disturbances achieving faster recovery 
from faults. Although, the neural controller is ac- 
t ive continuously, thyristors can be triggered only 
at  discrete intervals of time. The output suggested 
by the neural controller is in relation to the present 
system status. In order to utilise the past data 
and to incorporate the constraints on the extinc- 
t ion angle, the triggering angle suggested by the 
neural controller is processed through a decision 
maker, which is a collection o f  number of rules 
implemented using IF-THEN-ELSE statements. 

3 RESULTS AND DISCUS- 
SION 

3.1 Case Study 1: 
Conventional CEA Controller at In- 
verter 2 

Initially the MTDC-AC system is simulated for 
steady operating conditions. The system perfor- 
mance under this condition is satisfactory. 

Solid single line to ground fault at INV 
2 ac bus : 

Any fault on the ac system connecting an in- 
verter generally leads to commutation failure o f  
that inverter. A solid single-line-to-ground fault on 
the ac bus 4 was simulated for a duration o f  5 ms. 
Fig. 3.0 indicates the performance of conventiona' 

controller. Eventhough the PI controller used has 
been optimised to give best transient performance, 
the system undergoes commutation failure as soon 
as S of the inverter bridge decreases to a very low 
value. The dc currents increase to a very large 
value of about 4.5 pu. The system gradually ap- 
proaches steady conditions after about 15 cycles. 
The conventional controller acts mainly on the fi- 
nal effects of the fault i.e., decrease in extinction 
angle below its opt imum value. By the t ime the 
conventional controller gives the correction it is too 
late to prevent the occurrence of commutation fail- 
ure. It can also be seen that, both the rectifiers 
and inverter 1 have also been affected due to the 
fault. 

3.2 Case Study 2: 
Neuro-Fuzzy CEA controller at In- 
verter 2 

The performance of the proposed controller is 
found to be satisfactory for steady state operations 
of the MTDC-AC system. 

Solid single line to ground fault at INV 
2 ac bus : 

A solid single line to ground fault was simulated 
on the ac bus 4 for a duration of 5 ms. Fig. 4.0 
presents the performance of the system equipped 
with the proposed neuro-fuzzy controller. It is able 
to prevent the system from undergoing commuta- 
tion failure. The dc current of the faulted inverter 
is restricted to about 2.0 pu. The rectifier cur- 
rents are almost undisturbed. In about 12 cycles 
the system is able to settle down to steady op- 
erating conditions. The delay in  settling times is 
mainly due to interaction of the controllers of the 
inverters 1 and 2. The primary objective of the 
proposed controller is to reduce the incidences of 
commutation failures. This has been achieved sig- 
n i fica n t I y. 

The case studies presented reveal the overall per- 
formance of the proposed neuro-fuzzy controller 
vis-a-vis the conventional controller. The proposed 
controller is able to prevent the occurrence of com- 
mutation failure by dynamically varying the trig- 
gering angle of the inverter bridge. Further studies 
are required to test the proposed controller to criti- 
cally examine its performance under various system 
contingencies especially when the inverter is feed- 
ing in to  weak ac system. 
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4 CONCLUSIQNS 

The proposed neuro-fuzzy controller has performed 
satisfactorily for the case studied. This can be at -  
tr ibuted mainly t o  the look ahead nature of  the  
controller coupled with the integration of multiple 
sensors. It IS possible t o  implement this controller 
to perform on-line for real t ime applications. A 
t ra nspu ter based m ul ti-processi ng arc hi tect u re is 
being developed for real t ime simulation studies. 
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6 APPENDIXA 

The system considered is a 4 terminal, mesh con- 
nected, hypothetical dc transmission system. The 
details o f  this system are 
AC SYSTE,M: 
Rated Voltage : 345 kV a t  the ac bus 
Short Circuit Ratio : 20.0 a t  al l  stations 
DC SYSTEM: 
Rated Voltage: 500 kV a t  each converter station 
dc bus 
Rated Power : 500 MW a t  each converter station 
DC LINE: 
Line 1 : 400 km , Line 2 = 600 km, Line 3 = 600 
km, Line 4 = 800 km. 
Surge impedance of each line = 334 Cl. 
TERMINAL COMPONENTS AT EACH AC BUS 
The following filters are connected: 5th, 7th, l l t h ,  
13th and High Pass. 
Reactive Power Compensating capacitor = 0.04 

Local Static Load : 100 0, 1 H. 
CONTROLLERS: 
The MTDC-AC system is equipped with Current 
Margin Control for current order co-ordination. A t  
each of  the rectifier station, a PI current controller 
is present. A t  inverter 1, conventional Minimum 
Extinction Angle control (MEA) is employed along 
with Inverter One Way Current Control. The pro- 
posed neuro-fuzzy controller replaces the conven- 
tional control for studies. 

P F .  

7 REFERENCES: 

1 E. Uhlmann, ” Power Transmission 
b y  Direct Current”, Springer Verlag, 

Berlin/Heidel berg, 1975. 

2 J. Arrillaga and 6. Galanos, ” Theoretical Ba- 
sis for a Digital Method of Grid Control for 
HVDC Converters ”, lEEE trans. on PAS, 
Vol. 89, No. 8, Nov/Dec. 1970, pp. 2049- 
2055. 

3 R. Joetten, J.P. Bowles, G. Liss, C.J.6 Martin 
and E. Rumpf, ” Control in HVDC systems”, 
The s ta te  of the art, part II : ‘Mult i-  terminal 
systems’, CIGRE, paper 14-07, 1980. 

4 S. Lefebvre, M. Saad and R. Hurteau, ” Adap- 
tive Control for HVDC Power Transmission 
System”, IEEE Trans, PAS, Vol 104, 1985, 

5 S. Bhattacharya and H.W Dommel, ’’ A Mew 
Com mu t a t  ion Margin Control Representation 
for Digital Simulation of HVDC System Tran- 
sients”, IEEE Trans. on Power Systems, Vol. 

6 Premila Manohar, ” Digital Simulation Study 
of the Application of Artificial Commutation 
in MTDC Systems lncluding Weak ac Sys- 
tems”, Ph.D Thesis, I.I.Sc , 1990. 

7 P. Werbos, ” Backpropagation and Neurocon- 
trol: A Review and Prospectus”, Proc. lnt. 
Joint Conf. Neural Networks (IJCNN), New 
York, IEEE, June 1989, pp 1-209 t o  1-216. 

8 Yoh-Han Pao, ’) Adaptive Pattern Recog- 

pp 2329- 35. 

3, NO. 3, Aug., 1988, pp. 1127-1132. 

9 

10 

11 

nit ion and Neural Net works ”, Add isson- 
Wesley, 1990. 

T.S. Dillon, “ Artificial Neural Network Appli- 
cations to  Power Systems and Their Relation- 
ship t o  Symbolic Methods”, Electrical Energy 
and Power Systems, 1991, pp. 66-72. 

Rummelhart, Hin ton and Williams, ”Learning 
Internal Representations by Error Propaga- 
tion”, Parallel Distributed Processing, Cam- 
bridge, Mass.: M I T  Press, 1986, Vol. 1. 

R. Hecht-Nielsen, ” Theory of the Backprop- 
agation Neural Network ”, Proc. Intl. Joint 
Conf. Neural Networks (IJCNN), Vol. 1, pg 
593-605, 1989. 

209 



DC BUS 5 345 k V  
AC BUS 1 

400 k M  - cs 1 - 
- RECT 1 

345 k V  
AC BUS 2 

DC BUS 6 

- c s 2  - 
RECT 2 

1 

- 
- c s  INV 3 1 - 

w 

-b--@ 
500 k V  

600 k M  

500 k V  

345 k V  
AC BUS 3 DC BUS 7 

600 k M  

I 500 k V  

500 MW 

800 k M  

F C L  

345 k V  
DC BUS 8 AC BUS 4 

CS 1..4 CONVERTER STATION 

FIG. 1.0 SCHEMATIC OF THE MTDC-AC SYSTEM 

TO FIRING PULSE CIRCUIT 

TRIGGERING ANGLE OF INVERTER 
t 

DECISION MAKER 

1 
I 

INPUT PATTERN VECTOR 

r G G A T I O N  OF PATTERN VECTOR USING FUZZY LOGIC1 
1 

9 8 ,i? 
I C l - i h j p q  

BUS "OLTAC MEASUREMENT EASUREMENT 
I I t  

It 
I INVERTER OF MTDC-AC SYSTEM I 

TRAINING OFF-LINE 

WEIGHT 
MATRICES 

n 

I PATTERN I j 
PAIRS 

FIG. 2.0 ARCHITECTURE OF NEURO-FUZZY CONTROLLER USED 

210 



4.5 I I r I 1 I 

OO 

3.5 4 /  

SOLID S-LG-FAULT (5 ms) AT INV 2 AC BUS 

INVERTER 2 
3 

2.5 

2 

1.5 

1 

2.5 

2 

1.5 

1 

0.5 

"0 0.05 0.1 0.15 0.2 0.25 0.3 
Time in second 

FIG. 3.0 PERFORMANCE OF CONVENTIONAL CONTROLLER 

SOLID S-LG-FAULT (5 ms) AT INV 2 AC BUS 

INVERTER 2 

'I.";-\ p' 

'*-,,.', I J 

I I' , 

, 
I p- , .**I I INVERTER 1 . '  ,* >,,,\* -. - 

,.,e, .*.; -1 

1 , ,  I I I 

0.05 0.1 0.15 0.2 0.25 0.3 
Time in second 

FIG. 4.0 PERFORMANCE OF NEURO-FUZZY CONTROLLER 

2 1  1 


