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Abstract
The global structure of theminimal spanning tree (MST) is expected to be universal for
a large class of underlying random discrete structures. However, very little is known
about the intrinsic geometry of MSTs of most standard models, and so far the scaling
limit of theMST viewed as a metric measure space has only been identified in the case
of the complete graph (Addario-Berry et al. in Ann Probab 45(5):3075–3144, 2017).
In this work, we show that the MST constructed by assigning i.i.d. continuous edge
weights to either the random (simple) 3-regular graph or the 3-regular configuration
model on n vertices, endowed with the tree distance scaled by n−1/3 and the uniform
probability measure on the vertices, converges in distribution with respect to Gromov–
Hausdorff–Prokhorov topology to a random compact metric measure space. Further,
this limiting space has the same law as the scaling limit of the MST of the complete
graph identified in Addario-Berry et al. (2017) up to a scaling factor of 61/3. Our
proof relies on a novel argument that proceeds via a comparison between a 3-regular
configuration model and the largest component in the critical Erdős–Rényi random
graph. The techniques of this paper can be used to establish the scaling limit of the
MST in the setting of general random graphs with given degree sequences provided
two additional technical conditions are verified.
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1 Introduction

Consider a finite, connected, and weighted graph (V , E, w), where (V , E) is the
underlying graph and w : E → [0,∞) is the weight function. A spanning tree of
(V , E) is a tree that is a subgraph of (V , E) with vertex set V . A minimal spanning
tree (MST) T of (V , E, w) satisfies

∑

e∈T

w(e) = min

{∑

e∈T ′
w(e) : T ′ is a spanning tree of (V , E)

}
. (1.1)

The two natural choices for the underlying weighted graph are (i) a deterministic
graph (e.g., the complete graph on n vertices or the hypercube) or a random graph
(e.g., Erdős–Rényi random graph, random regular graph, or inhomogeneous random
graphs [30]) with i.i.d. continuous edgeweights assigned to them, and (ii) the complete
graph on a finite set of random points in R

d (e.g., n i.i.d. points or a Poisson point
process in the unit cube) where the edge weights are some function of the Euclidean
length of the edges. The MST in the latter case is sometimes called the Euclidean
MST.
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The MST is one of the most studied objects in combinatorial optimization and
geometric probability and has inspired a large body of work. For an account of law
of large numbers and related asymptotics in the Euclidean setting, see e.g., [12,13,17,
19,82]. Central limit theorems (CLT) for the total weight of Euclidean MSTs were
first proved by Kesten and Lee [60] and by Alexander [15] in 1996. This was a long-
standing open question at the time of its solution. Later certain other CLTs related to
MSTs were proved in [62,63]. A question raised in [60] about the convergence rate in
the CLT for the total weight of the Euclidean MST was answered in [36].

Studies related to the MST in several other directions were undertaken in [18,28,
77,78,80]. An account of certain structural and connectivity properties of minimal
spanning forests can be found in [14,16,67,76] and the references therein. For an
account of the scaling limit of minimal spanning trees in subsets of Z2 with respect
to the topology introduced by Aizenman, Burchard, Newman, and Wilson, see, e.g.,
[7,49].

The MST of Kn-the complete graph on [n] := {1, . . . , n} has been studied exten-
sively as well. A celebrated theorem of Frieze [47] shows that under some assumptions
on the weight distributions, the total weight of the MST of Kn converges in expec-
tation to ζ(3). Various extensions of this result were proved in [10,21,46,48,79]. The
central limit theorem for the total weight of the MST of Kn constructed using i.i.d.
Uniform[0, 1] edge weights was proved in [53].

The global geometric properties of the MST, e.g., the diameter and the typical
distance, have also been of considerable interest, but until very recently, there were
few rigorous mathematical results on this problem. Frieze and McDiarmid asked a
question [45, Research Problem 23] about the ‘likely shape of a minimum spanning
tree’ and the order of the diameter of the MST. In the statistical physics literature,
paths in the MST correspond to optimal paths in the so-called strong disorder regime
for complex networks. Using empirical observations, it was predicted in [31] (see
also [32]) that in the strong disorder regime, the length of optimal paths in complex
networks should scale like n1/3 if the degree distribution of the network has finite third
moment, although a rigorous justification of this claim was missing in this work.

An upper bound of the order n1/3 on the diameter of the MST of Kn was proved in
[6]: Let Mn,er∞ be1 theMST of Kn constructed using i.i.d. continuous edgeweights, and
denote by diam(Mn,er∞ ) the maximum tree distance between vertices of Mn,er∞ . Then
diam(Mn,er∞ ) = OP (n1/3). Nachmias and Peres [74] showed that the diameter of the
largest component of the critical Erdős–Rényi random graph is �P (n1/3). There is a
natural coupling betweenMSTs and percolation (see Observation 4.2), which together
with the above result gives a matching lower bound :

diam(Mn,er∞ ) = �P (n1/3). (1.2)

Then a stronger result was proved in [5], where the scaling limit of Mn,er∞ viewed as a
metric measure space was obtained. We state this result in the following theorem. We
refer the reader to Sect. 3.2 for the definition of the Gromov–Hausdorff–Prokhorov
topology.

1 Here, the superscript ‘er’ is being used to refer to the Erdős–Rényi random graph. The reason behind
using this notation will become clear in Sect. 4.3.
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Theorem 1.1 (Scaling limit of the MST of the complete graph [5]) View Mn,er∞ as a
random metric measure space by endowing it with the tree distance and the uniform
probability measure on its vertices. Then there exists a random compact metric measure
space M such that

n−1/3Mn,er∞
d−→ M

w.r.t. Gromov–Hausdorff–Prokhorov topology. Further, almost surely, the space M is
a binary real tree and its Minkowski dimension exists and equals 3.

Theorem 1.1 appears to be one of the first scaling limits to be identified for any
problem from combinatorial optimization, and so far, the above theorem gives the only
result where the metric space scaling limit of the MST has been identified. Several
questions about the geometry ofM remain open. For instance, what is the distribution
of the typical distance in M ? More generally, is there a stick-breaking construction
of M ? Is the support of the mass measure μ on M the whole of M ? Since M is a
compact real tree, by [41, Corollary 1.2], the metric space M (without the measure)
is encoded by a random continuous function (see Sect. 3.4). What can we say about
the distribution of this function?

The limiting spaceM is expected to be a universal object in the following sense: For
a wide array of random discrete structures that exhibit mean-field behavior, the MST
constructed using i.i.d. continuous edge weights should have a rescaled version ofM
as its scaling limit. Examples of such models include the high-dimensional discrete
torus, the hypercube, random regular graphs or more generally random graphs with
given degree sequence (under finite third moment assumption on the degrees), various
models of inhomogeneous random graphs (under appropriate assumptions), bounded-
size rules, and the quantum random graph model. See Sect. 7 for a more detailed
discussion.

In this work, we take a first step in this broader program of establishing universality
of the MST by showing that the above claim is true for the random simple 3-regular
graph and the 3-regular configuration model. The core of the largest component of the
Erdős–Rényi random graph, in the critical window and also in the barely-supercritical
regime up to a certain threshold, can be described by a 3-regular configuration model
on a randomnumber of vertices and having randomedge lengths (see [56]). Thismakes
the 3-regular case special. We use an indirect approach by exploiting the above cou-
pling between the 3-regular configuration model and the Erdős–Rényi random graph.
However, with two additional technical estimates, our arguments can be extended to
establish the scaling limit of the MST of general random graphs with given degree
sequences. We refer the reader to Sect. 7 for details.

1.1 Organization of the paper

In Sect. 1.2, we describe the random graph models considered in this paper. Section 2
contains precise statements of our main results. We have deferred many definitions to
Sect. 3, where we also give the necessary background on results on scaling limits of
critical random graph models. The proofs of two results (Theorems 3.11 and 3.13 )
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stated in Sect. 3 are outlined in Appendix A. In Sect. 4 we list several properties of
MSTs, and describe the connection between MSTs and percolation and the so-called
cycle-breaking algorithm.We also state a result (Theorem 4.8) central to our argument.
In Sect. 5, we describe some of the ideas used in the proof of Theorem 2.1. The proofs
of our main results are given in Sect. 6. In Sect. 7 we discuss the relevance of this
work and related open problems.

1.2 Random graphmodels

First we define the classical Erdős–Rényi random graphmodel. Recall that Kn denotes
the complete graph on [n].
Definition 1.2 (The Erdős–Rényi process) The Erdős–Rényi process

(
ER(n, λ), λ ∈

R
)
is a stochastic process taking values in the space of subgraphs of Kn defined as

follows: Assign a random variable Ui j to each edge (i, j) of Kn , where Ui j , 1 ≤ i <

j ≤ n, are i.i.d. Uniform[0, 1] random variables. Set ER(n, λ) to be the subgraph of
Kn whose vertex set is [n] and edge set is

{
(i, j) : Ui j ≤ n−1 + λn−4/3

}
.

Remark 1 The Erdős–Rényi process is often defined as a random graph process that
is indexed by a parameter p ∈ [0, 1] and takes values in the space of subgraphs of Kn ,
where the graph at parameter value p has edge set

{
(i, j) : Ui j ≤ p

}
. We instead

work with the parametrization of Definition 1.2, as this will be particularly convenient
for us.

Now fix a collection of n vertices labeled by [n] := {1, 2, . . . , n} and an associated
degree sequence d = (dv, v ∈ [n]) where �n := ∑

v∈[n] dv is assumed even. There
are two natural constructions resulting in a random graph on [n] with the prescribed
degree sequence.

Definition 1.3 (Uniformly distributed simple graphs) Suppose d = (dv, v ∈ [n]) is
a given degree sequence. Consider the set of all simple graphs with vertex set [n]
where vertex v has degree dv , and write G n,d for the random graph having uniform
distribution over this set.

When dv = 3 for all v ∈ [n], we will denote the corresponding random graph by
G n,3. In this case, we assume that n is even.

Recall that a multigraph is a graph where we allow multiple edges and self-loops.

Definition 1.4 (Configuration model [20,29,73]) Let Gn,d be the random multigraph
with degree sequence d constructed sequentially as follows: Equip each vertex v ∈ [n]
with dv half-edges or stubs. Initially all half-edges are unpaired, and then sequentially
at each step, pick two half-edges uniformly from the set of half-edges that have not
yet been paired, and pair them to form a full edge. Repeat till all half-edges have been
paired.

When dv = 3 for all v ∈ [n], we will denote the corresponding random multigraph
by Gn,3. In this case, we assume that n is even.

Note that Gn,d is not uniformly distributed over the set of multigraphs with degree
sequence d. We record the distribution of Gn,d here for later use. Let G be amultigraph
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on vertex set [n] in which there are xi j many edges between i and j , 1 ≤ i < j ≤ n,
and vertex i has xii many loops, so that di = xii + ∑n

j=1 xi j is the total degree of i
(note that a loop contributes two to the degree). Let �n = ∑n

i=1 di . Then

P
(
Gn,d = G

) = 1

(�n − 1)!! ×
∏

i∈[n] di !∏
i∈[n] 2xii

∏
1≤i≤ j≤n xi j ! . (1.3)

The proof of (1.3) can be found in [84, Proposition 7.7].

2 Main results

In this section we will describe our main results. We first fix some conventions that
we will follow throughout this paper.
Convention. (i) For any metric measure space X = (X , d, μ) and α > 0, αX will
denote the metric measure space (X , αd, μ), i.e, the space where the metric has been
multiplied byα and themeasureμ has remained unchanged. Precise definitions ofmet-
ric space convergence including the Gromov–Hausdorff–Prokhorov (GHP) topology
are deferred to Sect. 3.
(ii) For any finite (not necessarily connected) graph G, unless the edge weights are
specified, the “MSTofG”willmean the (random)minimal spanning tree of the largest
component of G obtained by assigning i.i.d. continuous weights to the edges of G.
It is a standard fact (see Observation 4.1) that the law of the MST constructed using
exchangeable edge weights that are almost surely pairwise distinct does not depend
on the distribution of the underlying weights. So the above definition of MST of G
makes sense.

Recall the definitions of G n,3 andGn,3 from Sect. 1.2. Our first main result concerns
the scaling limit of the MST of Gn,3.

Theorem 2.1 (Scaling limit of the MST of the 3-regular configuration model) For n
even, let Mn denote the MST of Gn,3. Think of Mn as a metric measure space by using
the tree distance and the uniform probability measure on the vertices. Let M be as in
Theorem 1.1. Then

n−1/3 · Mn
d−→ 61/3 · M as n → ∞

with respect to the Gromov–Hausdorff–Prokhorov topology.

Our next main result concerns the scaling limit of the MST of G n,3.

Theorem 2.2 (Scaling limit of the MST of the simple 3-regular graph) For n even, let
Mn denote the MST of G n,3. Then the result in Theorem 2.1 continues to hold with
Mn in place of Mn, i.e.,

n−1/3 · Mn
d−→ 61/3 · M as n → ∞

with respect to the Gromov–Hausdorff–Prokhorov topology.
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Remark 2 Let

Bn := {
Gn,3 is connected

}
. (2.1)

By the results of [43,64],

lim
n→∞P(Bn) = 1 = lim

n→∞P
(
G n,3 is connected

)
. (2.2)

Thus the conclusions of the two theorems above also hold forGn,3 andG n,3 conditioned
to be connected. Further, the results of Theorems 2.1 and 2.2 remain true if the MST
were constructed using exchangeable edge weights that are almost surely pairwise
distinct.

Our next result, which is interesting in its own right, is a crucial ingredient in the
proofs of the above two theorems.

Theorem 2.3 Almost surely the mass measure μ on M is non-atomic, i.e.,

P
(
μ({x}) = 0 for every x ∈ M

) = 1.

3 Definitions and various scaling limits

3.1 Notation and conventions

For any set A, we write |A| or #A for its cardinality and 1 {A} for the associated
indicator function. For any graph H , we write V (H) and E(H) for the set of vertices
and the set of edges of H respectively. We write |H | for the number of vertices in H ,
i.e., |H | = |V (H)|. For any finite connected graph H = (V , E), we write sp(H) for
the number of surplus edges in H , i.e.,

sp(H) := |E | − |V | + 1 . (3.1)

For any finite multigraph H = (V , E) and e1, . . . , ek ∈ E , let H \ {e1, . . . , ek} :=
(V , E \ {e1, . . . , ek}). While removing a single edge e we will simply write H \ e
instead of H \ {e}. Further, denote by Conne(H) the set of all edges e ∈ E such
that H \ e is connected. For any finite multigraph H = (V , E) and edges f1, . . . , fk

in the complete graph on V , let H ∪ { f1, . . . , fk} := (V , E ∪ { f1, . . . , fk}). For
two multigraphs Hi = (Vi , Ei ), i = 1, 2, we write H1 ∪ H2 for the multigraph
(V1 ∪ V2, E1 ∪ E2). If H2 is a connected component of H1, then we write H1 \ H2 for
the multigraph (V1 \ V2, E1 \ E2).

For any u > 0, �u will denote a Gamma(u, 1) random variable. We will write �
(α)
u ,

α ∈ 	, to denote i.i.d. Gamma(u, 1) random variables indexed by the set 	.
For anymetric space (X , d) andU ⊆ X , we define diam(U ; X) := sup {d(x1, x2) :

x1, x2 ∈ U }. We simply write diam(U ) when there is no scope of confusion. For any
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δ > 0 and x ∈ X , we let B(x, δ) = {
y ∈ X : d(x, y) ≤ δ

}
. For any metric measure

space (X , d, μ), we define m(δ; X) := sup
{
μ
(
B(x, δ)

) : x ∈ X
}
.

For any tree t on [m] rooted at ρ, we write

ht(u, t) := dt(ρ, u) for u ∈ t, and ht(t) = max
u∈[m] ht(u, t) ,

where dt(· , ·) denotes the tree distance on t. If u 	= ρ, we write
←(1)
u or simply ←−u for

the parent of u in t. If ←−u 	= ρ, then
←(2)
u will denote the parent of ←−u . Similarly define

←(k)

u for 1 ≤ k ≤ ht(u, t). We set
←(0)
u = u.

For any set A and function f : A → R, we let ‖ f ‖∞ := supx∈A | f (x)|. We use
the standard Landau notation of o(·), O(·) and the corresponding order in probability

notation oP (·), OP (·), and �P (·). We use
P−→,

d−→, and
a.s.−→ to denote convergence

in probability, convergence in distribution, and almost sure convergence respectively.

We write
d= to mean equality in distribution.

When a graph with edge lengths is viewed as a metric space, the underlying set
will be the collection of vertices in the graph joined by line segments (that represent
the edges in the graph) of lengths specified by the edge lengths. When not specified,
all edge lengths are taken to be one. When a finite connected graph is viewed as a
metric measure space, the measure, unless specified otherwise, will be the uniform
probability measure on the vertices.

We will work with edge lengths as well as edge weights. To avoid confusion, we
make a note here that their roles are completely different. When a graph with edge
lengths is viewed as a metric space, the distances are calculated using the edge lengths.
In Sect. 4.2, we will define the ‘cycle-breaking’ process, and edge lengths will be used
to perform cycle breaking. On the other hand, edge weights are used to construct the
MST (as in (1.1)).

Throughout this paper, C, C ′, c, c′ will denote positive universal constants, and
their values may change from line to line. Special constants will be indexed as c1, c2
etc. We freely omit ceilings and floors when there is little risk of confusion in doing
so.

3.2 Topologies on the space of metric spaces

Wemainly follow [1,5,35,71]. All metric spaces under consideration will be compact.
For any compact (X , d) and A1, A2 ⊆ X , we define the Hausdorff distance between
A1 and A2 to be

dH (A1, A2) := inf
{
ε > 0 : A1 ⊆ Aε

2 and A2 ⊆ Aε
1

}
,

where Aε
1 := ⋃

x∈A1
B(x, ε).

Next we recall the Gromov–Hausdorff distance dGH between metric spaces. Fix
two metric spaces X1 = (X1, d1) and X2 = (X2, d2). For a subsetR ⊆ X1 × X2, the
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distortion of R is defined as

dis(R) := sup
{|d1(x1, y1) − d2(x2, y2)| : (x1, x2), (y1, y2) ∈ R

}
.

A correspondence R between X1 and X2 is a measurable subset of X1 × X2 such
that for every x1 ∈ X1, there exists at least one x2 ∈ X2 such that (x1, x2) ∈ R
and vice-versa. The Gromov–Hausdorff (GH) distance between the two metric spaces
(X1, d1) and (X2, d2) is defined as

dGH(X1, X2) = 1

2
inf {dis(R) : R is a correspondence between X1 and X2} .

Let SGH denote the set of isometry equivalence classes of compact metric spaces
endowed with the quotient metric induced by dGH, which we will continue to denote
by dGH.

We next define the marked topology; see [71, Sections 6.4 and 6.5] for a more
detailed treatment. A marked metric space is a triple

(
X , d, Z

)
, where (X , d) is a

compactmetric space and Z is a compact subset of X . The isometry classes
[(

X , d, Z
)]

of marked spaces are defined in the obvious way, and the set of such isometry classes
is denoted byS∗

GH.We put the following metric onS∗
GH: For [X i ] = [(

Xi , di , Zi
)] ∈

S∗
GH, i = 1, 2, define

d∗
GH

([X1], [X2]
) := inf

φ1,φ2

{
dH
(
φ1(X1), φ2(X2)

)+ dH
(
φ1(Z1), φ2(Z2)

)}
, (3.2)

where the infimum is taken over all isometric embeddings φi : Xi → S, i = 1, 2,
into some metric space S. (There is an equivalent definition of the Gromov–Hausdorff
distance dGH that is similar to (3.2); see, e.g., [35, Section 7.3.2].)

The following result is the content of [71, Proposition 9].

Lemma 3.1 (a) The space (S∗
GH, d∗

GH) is Polish.
(b) A collection

{[(
Xα, dα, Zα

)] : α ∈ 	
}

is relatively compact in (S∗
GH, d∗

GH) iff{[(Xα, dα)] : α ∈ 	
}

is relatively compact in (SGH, dGH), or equivalently, iff
the collection of metric spaces

{
(Xα, dα) : α ∈ 	

}
is uniformly totally bounded.

To ease notation, we will simply write (X1, d1, Z1) to denote both the marked
metric space and its equivalence class.

A compact metric measure space (X , d, μ) is a compact metric space (X , d) with
an associated finite measure μ on the Borel sigma algebra of X . We will use the
Gromov–Hausdorff–Prokhorov (GHP) distance to compare compact metric measure
spaces. Given two compact metric measure spaces (X1, d1, μ1) and (X2, d2, μ2) and
a measure π on the product space X1 × X2, the discrepancy of π with respect to μ1
and μ2 is defined as

D(π;μ1, μ2) := ||μ1 − π1|| + ||μ2 − π2|| ,
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where π1, π2 are the marginals of π and || · || denotes the total variation of signed
measures. Then define the distance dGHP(X1, X2) by

dGHP(X1, X2) := inf

{
max

(
1

2
dis(R), D(π;μ1, μ2), π(Rc)

)}
,

where the infimum is taken over all correspondencesR and measures π on X1 × X2.
The function dGHP is a pseudometric and defines an equivalence relation: X ∼

Y ⇔ dGHP(X , Y ) = 0. Let SGHP be the set of all equivalence classes of compact
metric measure spaces. As before, we continue to denote the quotient metric by dGHP.
Then by [1], (SGHP, dGHP) is a complete separable metric space. As before, to ease
notation, we will continue to use (X , d, μ) to denote both the metric space and the
corresponding equivalence class.

Sometimes we will be interested in not just one but an infinite sequence of compact
metric measure spaces. Then the relevant space will be SN

GHP equipped with the
product topology inherited from dGHP.

3.3 Scaling limits of component sizes at criticality

As we will see in the course of our proof, a key step in understanding the geometry
of the MST in the supercritical regime is obtaining the metric space scaling limit of
the random graph model in the critical window. The starting point for establishing
the metric space scaling limit of critical random graph models is understanding the
behavior of their component sizes. Aldous [11] studied themaximal components of the
Erdős–Rényi random graph in the critical regime and proved the following remarkable
result. Recall the notation sp(·) from (3.1).

Theorem 3.2 [11, Corollary 2]WriteC n,er
i (λ) for the i-th largest connected component

of ER(n, λ). Then there exists a random sequence ζ (λ) =
((

ξi (λ), Ni (λ)
)
, i ≥ 1

)

such that as n → ∞,

((
n−2/3|C n,er

i (λ)| , sp
(
C n,er

i (λ)
)) ; i ≥ 1

)
d−→ ζ (λ)

with respect to product topology.

This convergence in fact holds w.r.t. a stronger topology. We refer the reader to [11]
for an explicit description of the limiting sequence ζ (λ). We record here a result about
the asymptotic growth of the random variables ξ1(λ) and N1(λ).

Lemma 3.3 We have, as λ → ∞,

ξ1(λ)

λ

d−→ 2, and
N1(λ)

λ3
d−→ 2

3
.
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Theproof of this result can be found in [5, Lemma5.6]. (See also [4] for the analogue
of this result for the multiplicative coalescent in the regime where the scaling limit is
a pure-jump process.)

Theorem 3.2 has since been generalized to a number of other random graphmodels.
In the context of graphs with given degree sequence, Nachmias and Peres [75] studied
critical percolation on random regular graphs; Riordan [81] analyzed the configuration
model with bounded degrees; Joseph [59] considered i.i.d. degrees. A more general
result was obtained in [39]. We will state a weaker version of this result next.

For a measure ν on R and p > 0, write σp(ν) = ∫
R

|x |pdν; if ν has support Z≥0
then σp(ν) = ∑

i≥0 i pν(i). Recall that νn → ν w.r.t. the Wasserstein distance Wp if
νn → ν weakly and σq(νn) → σq(ν) < ∞ for all 0 ≤ q ≤ p; see [86, Definition
6.8].

Assumption 3.4 Suppose d = d(n) = (d (n)
v , v ∈ [n]) is a degree sequence for each

n ≥ 1, and write νn := n−1∑
v∈[n] δdn

v
for the empirical degree distribution. Assume

the following hold as n → ∞:

(i) There exists a measure ν on Z≥0 such that νn → ν w.r.t. the W3 distance.
(ii) The degree sequence is in the critical scaling window, i.e., there exists λ ∈ R such

that

σ1(ν)
(
σ3(ν) − 4σ1(ν)

)2/3 ·
(

σ2(ν
n)

σ1(νn)
− 2

)
· n1/3 → λ.

Note that this assumption implies that σ2(ν) = 2σ1(ν).

Theorem 3.5 [39]Consider a sequence of degree sequencesd = d(n), n ≥ 1, satisfying
Assumption 3.4 with limiting empirical distribution ν. Let C n

i be the i-th largest
connected component of Gn,d (or G n,d). Then as n → ∞,

((
(σ3(ν) − 4σ1(ν))1/3

σ1(ν) · n2/3 · ∣∣C n
i

∣∣, sp
(
C n

i

))
, i ≥ 1

)
d−→ ζ (λ) (3.3)

with respect to product topology.

This result, in a stronger form, can be found in [39, Theorem 2 and Remark 5].
In [39], the description of the limiting sequence is slightly different. But it is easy to
restate the result in the above form using Brownian scaling. In the next section we
will use the random sequence ζ (λ) to describe certain metric measure spaces that will
appear in our proofs.

3.4 Real trees andR-graphs

In this sectionwewill first define real trees andR-graphs and introduce various notions
related to them. We will then introduce a family of random R-graphs H (s), s ≥ 0,
that act as the building blocks for the scaling limits of various critical random graph
models. Using these spaces and the sequence ζ (λ) introduced in Sect. 3.3, we will
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define a sequence S(λ) of random metric measure spaces; see Construction 3.10. As
we will see in the next section, the sequence S(λ) describes (up to a multiplicative
constant) the scaling limits of the critical random graph models of interest to us.

For any metric space (X , d), a geodesic between x1, x2 ∈ X is an isomeric embed-
ding f : [0, d(x1, x2)] → X such that f (0) = x1 and f

(
d(x1, x2)

) = x2. (X , d) is
a geodesic space if there is a geodesic between any two points in X . An embedded
cycle in X is a subset of X that is a homeomorphic image of the unit circle S1.

Definition 3.6 (Real trees [42,61]) A compact geodesic metric space (X , d) is called
a real tree if it has no embedded cycles.

Definition 3.7 (R-graphs [5]) A compact geodesic metric space (X , d) is called an
R-graph if for every x ∈ X , there exists ε= ε(x) > 0 such that

(
B(x, ε), d|B(x,ε)

)
is

a real tree. A measured R-graph is anR-graph with a probability measure on its Borel
σ -algebra.

The core of an R-graph (X , d), denoted by Core(X), is the union of all the sim-
ple arcs having both endpoints in embedded cycles of X . If it is non-empty, then
(Core(X), d) is an R-graph with no leaves. We define Conn(X) to be the set of all
x ∈ X such that x belongs to an embedded cycle in X .

Clearly, Conn(X) ⊆ Core(X). By [5, Theorem 2.7], if X is an R-graph with a
non-empty core, then (Core(X), d) can be represented as (k(X), e(X), len), where
(k(X), e(X)) is a finite connected multigraph in which all vertices have degree at least
3 and len : e(X) → (0,∞) gives the edge lengths of this multigraph. We denote by
sp(X) the number of surplus edges in (k(X), e(X)). On anyR-graph (X , d) there exists
a unique σ -finite Borel measure �, called the length measure, such that if x1, x2 ∈ X
and [x1, x2] is a geodesic path between x1 and x2 then �

([x1, x2]
) = d(x1, x2). Further,

we define

L(X) :=
∑

e∈e(X)

len(e) = �(Core(X)). (3.4)

Note that �(Conn(X)) ≤ �(Core(X)) < ∞. If Conn(X) 	= ∅ (in which case
�(Conn(X)) > 0), we write �Conn(X) for the restriction of the length measure to
Conn(X) normalized to be a probability measure, i.e.,

�Conn(X)(·) = �(·)
�(Conn(X))

.

Note that any finite connected multigraph with edge lengths, viewed as a metric
space, is an R-graph. So the above definitions make sense for any finite connected
multigraph H . Note the difference between e(H) defined above and E(H)-the set of
edges in H . Note also that in this case, the graph theoretic 2-core of H , viewed as a
metric space, coincideswith the spaceCore(H) as defined above.Wewill useCore(H)

to denote both the metric space and the graph theoretic 2-core, and the meaning will be
clear from the context. Clearly, for any finite connected multigraph H with unit edge
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lengths, L(H) = |E(Core(H))|. Further, if H = (V , E, len) is a finite connected
multigraph with edge lengths, then

�(H) =
∑

e∈E

len(e). (3.5)

We will write �(H) to mean the above even when H is not connected.
Functions encoding excursions from zero can be used to construct real trees via

a simple procedure. We now describe this construction. An excursion on [0, 1] is
a continuous function h ∈ C([0, 1],R) with h(0) = 0 = h(1) and h(t) ≥ 0 for
t ∈ (0, 1). Let E1 be the space of all excursions on the interval [0, 1]. Given an
excursion h ∈ E1, one can construct a real tree as follows. Define a pseudo-metric dh

on [0, 1] as follows:

dh(s, t) := h(s) + h(t) − 2 inf
u∈[s,t] h(u), for s, t ∈ [0, 1].

Define the equivalence relation s ∼ t ⇔ dh(s, t) = 0. Let [0, 1]/ ∼ denote the
corresponding quotient space and consider the metric space Th := ([0, 1]/ ∼, d̄h),
where d̄h is the metric on the equivalence classes induced by dh . ThenTh is a real tree
( [42,61]). Let qh : [0, 1] → Th be the canonical projection and write μTh for the
push-forward of the Lebesgue measure on [0, 1] onto Th via qh . Further, we assume
that Th is rooted at ρ := qh(0). Equipped with μTh , Th is now a rooted compact
metric measure space. Note that by construction, for any x ∈ Th , the function h is
constant on q−1

h (x). Thus for each x ∈ [0, 1], we write ht(x) = h(q−1
h (x)) for the

height of this vertex.
The Brownian continuum random tree defined below is a fundamental object in the

literature of random real trees.

Definition 3.8 (Aldous’s Brownian continuum random tree (CRT) [8]) Let e be a stan-
dard Brownian excursion on [0, 1]. The real tree T2e is called the Brownian CRT.

It is well-known [8,9] that the associated measureμT2e (also called the mass measure)
is non-atomic and concentrated on the set of leaves ofT2e almost surely. We will now
define a collection of randommetric measure spacesH (s), s ≥ 2, using the Brownian
CRT. Recall the definition of Gn,3 from Sect. 1.2.

Construction 3.9 (The spaceH (s) for s ≥ 2) Fix an integer s ≥ 2, and let n = 2(s−1)
and r = 3(s − 1).

(a) Let Kn,3 be distributed as Gn,3 conditioned to be connected. Label its edges arbi-
trarily as (ui , vi ), 1 ≤ i ≤ r .

(b) Independently of the above, sample (X1, . . . , Xr ) from a Dirichlet( 12 , . . . ,
1
2 ) dis-

tribution.
(c) Independently of the above, sample i.i.d. Brownian CRTs T1, . . . ,Tr . For 1 ≤

i ≤ r , let ρi be the root of Ti and zi be a point in Ti sampled according to its
mass measure.
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(d) For 1 ≤ i ≤ r , construct the metric measure space T ′
i from Ti by multiplying the

distance between each two points by
√

Xi and multiplying the measure of each
Borel set by Xi . Denote the points in T ′

i that correspond to ρi and zi by ρ′
i and z′

i
respectively.

(e) Form a new spaceH (s) fromKn,3 by replacing the edge (ui , vi ) byT ′
i identifying

ρ′
i with ui and z′

i with vi , 1 ≤ i ≤ r .

This construction ofH (s) was given in [2, Procedure 1].Note thatCore(H (s)) is given
by the multigraphKn,3 with associated edge lengths dT ′

i
(ρ′

i , z′
i ) = √

Xi ·dTi (ρi , zi ),
1 ≤ i ≤ r , where dTi denotes the metric on Ti .

For s = 0, we define the space H (0) to be the Brownian CRT T2e. The explicit
construction of the space H (1) is not relevant to our proof, so we do not include it
here, and instead refer the reader to [2, Procedure 1]. Let us also mention here that
there are two other constructions of H (s). In Construction A.3 below, we describe
a ‘depth-first construction’ of H (s). This construction was essentially contained in
the arguments in [3]. An alternate construction that can be viewed as a ‘breadth-first
construction’ is given in [72, Construction 2.2].

Now, we will define a sequence S(λ) = (
S1(λ), S2(λ), . . .

)
of random metric

measure spaces. Recall the random sequence ζ (λ) from Theorem 3.5.

Construction 3.10 (The sequence S(λ)) Sample ζ (λ) = ((
ξi (λ), Ni (λ)

)
, i ≥ 1

)
. For

simplicity, write ξi = ξi (λ), and Ni = Ni (λ). Conditional on ζ (λ), construct the
spaces Si (λ) independently for i ≥ 1, where

Si (λ)
d= √

ξi · H (Ni ).

Set S(λ) = (
S1(λ), S2(λ), . . .

)
.

Note that the spaces H (s) and Si (λ), i ≥ 1, are R-graphs (recall Definition 3.7).

3.5 Geometry of critical random graphs

In this section, we will state four results on the geometry and scaling limit of critical
random graphs that will be pivotal in our proofs.

Theorem 3.11 (Geometry of uniform connected graphs with a given surplus) Fix an
integer s ≥ 2. Let Hm,s be uniformly distributed over the set of all simple connected
graphs on [m] having surplus s. Recall the notation

(
k(·), e(·), len

)
and L(·) intro-

duced around (3.4). Let r = 3(s − 1).

(a) We have,

lim
m→∞P

((
k(Hm,s), e(Hm,s)

)
is a 3-regular multigraph

)
= 1. (3.6)

In particular,
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lim
m→∞P

(|e(Hm,s)| = r
) = 1. (3.7)

Let e(m)
1 , . . . , e(m)

r (resp. e1, . . . , er ) be an enumeration of
{
e : e ∈ e(Hm,s)

}

(resp.
{
e : e ∈ e(H (s))

}
). Then as m → ∞,

( 1√
m
Hm,s ,

1√
m

· (len(e(m)
i ), 1 ≤ i ≤ r

)) d−→
(
H (s),

(
len(ei ), 1 ≤ i ≤ r

))
,

(3.8)

where the convergence in the first coordinate is with respect to GHP topology.
Further, for any α > 0,

sup
m

E
[
exp

(
αm−1/2L(Hm,s)

)]
< ∞. (3.9)

As a consequence of (3.8), for every ε > 0, there exists rε > 0 such that for all
large m,

m−1/2L(Hm,s) ≤ 1/rε, and m−1/2 min
e∈e(Hm,s)

len(e) ≥ rε (3.10)

with probability at least 1 − ε.
(b) Let V (m)

i be the set of vertices in Hm,s that are connected to Core(Hm,s) via e(m)
i ,

1 ≤ i ≤ r . (The common endpoints of multiple e ∈ e(Hm,s) and their pendant

subtrees are assigned to only of the V (m)
i ’s in an arbitrary way.) Recall the real

trees T ′
i , 1 ≤ i ≤ r , from Construction 3.9. Denote the measure on H (s) by μ(s).

Then as m → ∞,

1

m

(|V (m)
i |, 1 ≤ i ≤ r

) d−→ (
μ(s)(T ′

i ), 1 ≤ i ≤ r
) ∼ Dirichlet

(1
2
, . . . ,

1

2

)
.

(3.11)

(3.6) follows from[56,Theorem7]. (3.7) follows from(3.6) and the fact sp(k(Hm,s)) =
s. The rest of the assertions can be proved by following the arguments used in [3]. An
outline of the proof is given in Sect. A.1.

Theorem 3.12 (Scaling limit of ER(n, λ)) Fix λ ∈ R, and let C n,er
i (λ) denote the i-th

largest component of ER(n, λ). Then

n−1/3(C n,er
1 (λ),C n,er

2 (λ), . . .
) d−→ S(λ) = (

S1(λ), S2(λ), . . .
)

with respect to the product topology on SN

GHP as discussed at the end of Sect. 3.2.

This result is the content of [3, Theorem 2]. That the limiting sequence of spaces
is same as S(λ) follows from the discussion around [2, Equation 1].

In [26, Theorem 2.2], the metric space scaling limit of random graphs with a critical
degree sequence was established. (See also [22], where a similar result for critical
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percolation on the supercritical configuration model was derived as an application of
a more general universality principle.) The next result gives a variant of [26, Theorem
2.2]. This result follows from arguments similar to those used in [26]. A sketch of
proof is given in Sect. A.2.

Theorem 3.13 Suppose
{
d(n)

}
n≥1 is a sequence of degree sequences satisfying

Assumption 3.4 with limiting empirical distribution ν. Further, suppose f :
{1, 2, . . .} → [0,∞) satisfies max

{
f (dv) : v ∈ [n]} = o(n2/3) and∑

k≥1 f (k)ν(k) > 0.

(i) Let C n
j be the j-th largest component of Gn,d. View C n

j as a metric space in the
usual way; further, assign mass f (dv) to each v ∈ V (C n

j ) and normalize it to
make it a probability measure. (If

∑
v∈C n

j
f (dv) = 0 then simply take the uniform

measure on the vertices.) Denote the resulting metric measure space by C
n, f
j .

Then

n−1/3(C n, f
1 ,C

n, f
2 , . . .

) d−→ σ1(ν)
(
σ3(ν) − 4σ1(ν)

)2/3 · S(λ)

with respect to the product topology onSN

GHP jointly with the convergence in (3.3).
(ii) The conclusion of part (i) continues to hold with the same limiting sequence of

metric measure spaces if we replace Gn,d by G n,d.

Next we state a result about the core of the components of a critical graph with
given degree sequence.

Theorem 3.14 Suppose
{
d(n)}n≥1 is a sequence of degree sequences satisfying Assump-

tion 3.4 with limiting empirical distribution ν. Let C n
1 denote the largest component

of Gn,d, and write E n
1 = |E(C n

1 )|. We will drop the superscript n for convenience. Let

�
(1)
1 , �

(2)
1 , . . . be i.i.d. Exponential(1) random variables independent of Gn,d.

(a) Recall the notaion
(
k(·), e(·), len

)
and L(·) introduced around (3.4). Then

n−1/3(L(C1), min
e∈e(C1)

len(e)
) d−→ σ1(ν)

(
σ3(ν) − 4σ1(ν)

)2/3 · (L(S1(λ)), min
e∈e(S1(λ))

len(e)
)
.

In particular, for every ε > 0, there exists rε > 0 such that for all large n,

sp(C1) ≤ 1/rε,
L(C1)

n1/3 ≤ 1/rε, and min
e∈e(C1)

len(e)

n1/3 ≥ rε

with probability at least 1 − ε.
(b) Assign lengths �

(1)
1 , . . . , �

(E 1)

1 to the edges of C1, and call the resulting graph with
edge lengths C exp

1 . Then the conclusion in (a) continues to hold with C
exp
1 in place

of C1.
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By Theorem 3.5, sp(C n
1 )

d−→ N1(λ). The other claims in Theorem 3.14(a) follow
from the arguments used in the proof of [26, Theorem 2.4]. The claim in (b) can be
proved in an identical manner.

4 Properties of minimal spanning trees

In this section we discuss various properties of MSTs and give another description of
the space M appearing in Theorem 1.1.

4.1 MST and percolation

Suppose G = (V , E, w) is a weighted, connected, and labeled graph. Assume that
w(e) 	= w(e′) whenever e 	= e′. We now state a useful property of the MST.

Lemma 4.1 (Minimax paths property) Let G = (V , E, w) be as above. Then the MST
T of G is unique. Further, T has the following property: Any path (x0, . . . , xm) with
xi ∈ V and {xi , xi+1} ∈ E(T ) satisfies

max
i

w
({xi , xi+1}

) ≤ max
j

w
({x ′

j , x ′
j+1}

)

for any path (x ′
0, . . . , x ′

m′) with {x ′
j , x ′

j+1} ∈ E and x0 = x ′
0 and xm = x ′

m′ . In words,
the maximum edge weight in the path in the MST connecting two given vertices is
smallest among all paths in G connecting those two vertices.

Moreover, T is the only spanning tree of G with the above property.

The above lemma is just a restatement of [60, Lemma 2]; see also [14, Proposition
2.1]. We record the following useful observations:

Observation 4.1 Using Lemma 4.1, we see that the MST can be constructed just from
the ranks of the different edge weights. Thus the law of the MST constructed using
exchangeable edge weights that are almost surely pairwise distinct does not depend
on the distribution of the weights.

Observation 4.2 Let G = (V , E, w) be a connected and labeled graph with pairwise
distinct edge weights. Let u ∈ [0,∞) and C be a component of the graph Gu =
(V , Eu), where Eu ⊆ E contains only those edges e for which w(e) ≤ u. Then the
restriction of the MST of (V , E, w) to C is the MST of

(
V (C ), E(C ), w|E(C )

)
. This

can be argued as follows: If v, v′ ∈ C , then there exists a path in G connecting v and
v′ such that all edge weights along this path is at most u. By Lemma 4.1, it follows
that all edge weights in the path in the MST of (V , E, w) connecting v and v′ is also
smaller than u. Thus the restriction of the MST of (V , E, w) to C is a spanning tree of
C . Since the restriction of the MST of (V , E, w) to C also satisfies the minimax path
property, it is the MST of C (constructed using the restriction of the weight function
w(·) to the edges of C ). This fact is extremely useful as it can be used to connect the
structure of the MST to the geometry of components of the graph under percolation.

123



570 L. Addario-Berry, S. Sen

Observation 4.3 Let G = (V , E, w) be a connected and labeled graph with pairwise
distinct edge weights. Recall the notation Conne(·) from Sect. 3.1. Let e ∈ Conne(G)

be the edge with the maximum weight among all edges in Conne(G). Then G ′ =
(V , E \ {e}, w′) is connected, where w′ is the restriction of w to E \ {e}. Further, by
Lemma 4.1, e is not contained in the MST of G. Thus, the MST of G ′ is the same as
the MST of G. We can use this algorithm inductively to remove edges until we are
left with a tree, and this tree will be the MST of G.

4.2 Cycle-breaking andmodified cycle-breaking

In this section we define two procedures that can be applied to R-graphs and multi-
graphs. Recall the definitions related to R-graphs from Sect. 3.4.

Definition 4.2 (Cycle-breaking (CB)) Let X be an R-graph. If X has no embedded
cycles, then set CB(X) = X . Otherwise, sample x from Conn(X) using the measure
�Conn(X), and set CB(X) to be the completion of the space X \ {x} endowed with the
intrinsic metric inherited from the metric on X . (Thus, CB(X) is also an R-graph.)

For k ≥ 2, we inductively define CBk(X) to be the space CB
(
CBk−1(X)

)
. (Thus,

at the k-th step, if CBk−1(X) has an embedded cycle, then we are using the measure
to �Conn(CBk−1(X)) to sample a point.)

Note that CBk(X) = CBsp(X)(X) for all k ≥ sp(X), i.e., the spaces CBk(X) remain
the same after all cycles have been cut open. We denote this final space (which is a
real tree) by CB∞(X).

Next we define a cycle-breaking process for discrete multigraphs. We will use a
variation of the above process.More precisely, wewill sample edgeswith replacement.
This will turn out to be convenient in our proof.

Definition 4.3 (Cycle-breaking for discrete graphs (CBD)) Let H = (V , E, len) be a
finite (not necessarily connected) multigraph with edge lengths given by the function
len : E → (0,∞). Set CBD0(H) = H . For k ≥ 1,we inductively defineCBDk(H) as
follows: Sample ek from E with probability proportional to len(ek). If ek is not an edge
in CBDk−1(H), set CBDk(H) = CBDk−1(H). Otherwise, if C is the component of
CBDk−1(H) containing ek and ek ∈ Conne(C ), then set CBDk(H) = CBDk−1(H) \
ek ; and if ek /∈ Conne(C ), then sample a point x uniformly on the edge ek and color
x red, and set CBDk(H) to be CBDk−1(H) with the point x colored red.

Ignoring the colored points, the multigraphs CBDk(H) are the same (and are all
forests) for all large values of k. We denote the tree (without any colored points) in
this forest with the most number of vertices by CBD∞(H).

Suppose H is a finite connectedmultigraphwith edge lengths. Let f1, . . . , fs be the
edges of H that get removed in the process

(
CBDk(H), k ≥ 1

)
. Clearly, s = sp(H).

For 1 ≤ i ≤ s, let yi be a uniformly sampled point on fi . It is easy to see that
viewing H as an R-graph, the completion of the space H \ {y1, . . . , ys} has the same
distribution as CB∞(H). In this coupling, CBD∞(H) is a subspace of CB∞(H), and

dH
(
CBD∞(H), CB∞(H)

) ≤ max
e∈E

len(e). (4.1)
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Further, suppose G1 (resp. G2) is a finite connected graph with edge lengths and u1
(resp. u2) is one of its vertices. Denote by (G1, u1)

a— (u2, G2) the graph obtained
by joining u1 and u2 by an edge of length a. Then

CBD∞
(
(G1, u1)

a— (u2, G2)
) d= (

CBD∞(G1), u1
) a—

(
u2,CBD∞(G2)

)
. (4.2)

We now record a useful observation that we will use in the proofs. The proof of
this result is elementary, so we omit it.

Lemma 4.4 Suppose H = (V , E, len) is a finite multigraph with edge lengths.

(a) Assume that len(e), e ∈ E, are exchangeable random variables. For 1 ≤ i ≤ |E |,
let Ei denote the i-th distinct edge sampled in the process

(
CBDk(H), k ≥ 1

)
.

Then for any j ∈ {1, . . . , |E | − 1} and collection of distinct edges e1, . . . , e j ,
conditional on the event {Ei = ei for 1 ≤ i ≤ j}, E j+1 is uniformly distributed
over E \ {e1, . . . , e j }.

(b) Assume that H is connected and that len(e), e ∈ Conne(H), are exchangeable
random variables. For 1 ≤ i ≤ sp(H), let E ′

i denote the i-th edge removed in the
process

(
CBDk(H), k ≥ 1

)
. Consider j ∈ {1, . . . , sp(H)−1} and a collection of

edges e1, . . . , e j satisfying ei ∈ Conne
(
H\{e1, . . . , ei−1}

)
for all1 ≤ i ≤ j . Then

conditional on the event {E ′
i = ei for 1 ≤ i ≤ j}, E ′

j+1 is uniformly distributed

over Conne
(
H \ {e1, . . . , e j }

)
.

For any finite multigraph H = (V , E, len) having edge lengths (and possibly
points colored red on its edges), we write Shape[H ] to denote the multigraph (V , E)

(without any red points). We also define Rem(H) to be the multigraph with edge
lengths obtained by removing all edges of H that have at least one red point on them.
We now state a lemma that connects cycle-breaking to MSTs.

Lemma 4.5 Suppose H = (V , E, len) is a finite connected multigraph with random
edge lengths. Assume that len(e), e ∈ Conne(H), are exchangeable random variables.
Then Shape[CBD∞(H)] has the same law as the MST of Shape[H ] constructed by
assigning exchangeable pairwise distinct weights to the edges in Conne(H) and any
arbitrary weights to the other edges.

Note that in the setting of Lemma 4.5, Shape[CBD∞(H)] is not the MST of the
weighted graph (Shape[H ], w)wherew(e) = len(e), even though they have the same
law provided the edge lengths are almost surely pairwise distinct.

Proof of Lemma 4.5 Let E ′
j be the j-th edge removed in the CBD process. Then by

Lemma 4.4 (b), E ′
1 is uniformly distributed over Conne(H). In general, conditional

on E ′
i , 1 ≤ i ≤ k − 1, E ′

k is uniformly distributed over Conne
(
H \ {E ′

1, . . . ,E
′
k−1}

)
.

Now, consider edge weights (w(e), e ∈ E), such that w(e), e ∈ Conne(H), are
exchangeable and almost surely pairwise distinct. Then using Observation 4.3, the
MST of (Shape[H ], w) can be constructed by sequentially removing the edges having
maximumweight among all edges whose removal do not disconnect the current graph.
By the assumptions on the weights, the edge to be removed at each step is uniformly
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distributed over the set of all edges whose removal do not disconnect the current
graph. In other words, the sequence of edges removed in the algorithm described in
Observation 4.3 has the same law as

(
E ′

k , k ≥ 1
)
. This completes the proof. ��

Recall the notation k(X), e(X), (len(e), e ∈ e(X)), sp(X), and L(X) introduced
below Definition 3.7. For r ∈ (0, 1) define Ar to be the set of all measured R-graphs
X that satisfy

sp(X) + L(X) ≤ 1/r , and min
e∈e(X)

len(e) ≥ r .

The following theorem will allow us to prove convergence of MSTs from GHP con-
vergence of the underlying graphs.

Theorem 4.6 Fix r ∈ (0, 1). Suppose (X , d, μ) and (Xn, dn, μn), n ≥ 1, are measured
R-graphs in Ar such that (Xn, dn, μn) → (X , d, μ) as n → ∞ w.r.t. GHP topology.

(a) Then CB∞(Xn)
d−→ CB∞(X) as n → ∞ w.r.t. GHP topology.

(b) Suppose for each n ≥ 1, (Xn, dn, μn) is the metric measure space associ-
ated with (Vn, En, len)—a finite connected multigraph with edge lengths. If

maxe∈En len(e) → 0 as n → ∞, then CBD∞(Xn)
d−→ CB∞(X) as n → ∞

w.r.t. GHP topology.

The result in Theorem 4.6 ((a)) is from [5, Theorem 3.3], while the claim in ((b))
follows from (4.1).

4.3 Alternate descriptions of the spaceM

Recall the construction of the process ER(n, ·) using the random variables Ui j from
Definition 1.2. Let C n,er

1 (λ) be the largest component of ER(n, λ) and let Mn,er
λ be

the MST of C n,er
1 (λ) constructed using the random weights Ui j , (i, j) ∈ E(C n,er

1 (λ)).
Then limλ→∞ Mn,er

λ = Mn,er∞ (in fact Mn,er
λ = Mn,er∞ for all large λ), where Mn,er∞

is the MST of Kn constructed using the random weights Ui j . Theorem 1.1 says that

n−1/3Mn,er∞
d−→ M as n → ∞ w.r.t. GHP topology. The natural question to ask here

is whether the order in which the limits are taken can be interchanged, i.e., can we first
take limit as n → ∞ for fixed λ, and then let λ → ∞? Now, by [5, Theorem 4.4],

n−1/3Mn,er
λ

d−→ CB∞(S1(λ)
)

as n → ∞ (4.3)

w.r.t. GHP topology. Then the following theorem answers the above question in the
affirmative.

Theorem 4.7 [5, Theorem 4.9] As λ → ∞,

CB∞(S1(λ)
) d−→ M

with respect to GHP topology.
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The space S1(λ) has a random number of cycles. The following theorem gives a
derandomized version of Theorem 4.7.

Theorem 4.8 Recall the space H (s) from Construction 3.9. Then

(
12s

)1/6 · CB∞(H (s)) d−→ M as s → ∞

with respect to GHP topology.

Theorem 4.8 plays a crucial role in our argument. The proof of this result can be
read independently of the rest and is deferred to Sect. 6.9.

5 Idea of proof

In this section, we outline the proof of the fact that the claimed convergence in Theo-
rem 2.1 holds w.r.t. the GH topology assuming Theorem 4.8. We explain the ideas at a
high level, and do our best to avoid getting into the technicalities. For any finite graph
H , we will write H exp to denote the graph obtained by assigning i.i.d. Exponential(1)
lengths to the edges of H . When H is random, the edge lengths are taken to be
independent of H .

Recall the notation from Construction 3.9. Then

(
X1, . . . , Xr

) d= (
�

(1)
1/2, . . . , �

(r)

1/2

)
/�r/2 ,

where �
( j)
1/2, j = 1, . . . , r , are i.i.d. Gamma(1/2, 1) random variables, and �r/2 :=

∑r
j=1 �

( j)
1/2 = r

2 · (1 + oP (1)
)
as s → ∞. Further, it is well-known that typical

distance in aBrownianCRTfollows aRayleighdistribution.Consequently,dTi (ρi , zi )·(
2�(i)

1/2

)1/2, i = 1, . . . , r , are i.i.d. Exponential(1) random variables. As noted below

Construction 3.9, Core(H (s)) can be represented by the multigraph Kn,3 with edge
lengths given by dTi (ρi , zi ) · √

Xi , i = 1, . . . , r . Hence, Core(H (s)) is simply γn ·
K

exp
n,3 , where γn = r−1/2

(
1+ oP (1)

)
as s → ∞. Now, the space (12s)1/6 ·H (s) can

be obtained from (12s)1/6 ·Core(H (s)) by attaching some random compact trees. As
s → ∞, the maximum diameter of these trees becomes negligible. In other words, the
result in Theorem 4.8 continues to hold if we replaceH (s) by Core(H (s)), which can

in turn be replaced by r−1/2 ·K exp
n,3 . Thus, (12s)1/6 · r−1/2 ·CB∞(K exp

n,3

) d−→ M , as
n → ∞, with respect to the GH topology. Using the relations s ∼ n/2 and r ∼ 3n/2

as n → ∞, we conclude that n−1/3 · CB∞(K exp
n,3

) d−→ (0.75)1/3 · M , as n → ∞,
with respect to the GH topology. Now using (4.1) to go from CB∞ to CBD∞ and
using (2.2), we get

n−1/3 · CBD∞
(
G

exp
n,3

) d−→ (0.75)1/3 · M , as n → ∞ , (5.1)

with respect to the GH topology.
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Now, observe that for any finite graph H , conditional on the event that the num-
ber of distinct edges sampled in the process

(
CBDi (H exp) , 1 ≤ i ≤ T

)
is m, the

collection of these edges has the same distribution as a uniform subset of size m sam-
pled from E(H). From this, one might guess that for an appropriately chosen random
T , Shape

[
Rem

(
CBDT (H exp)

)]
will have the same distribution as Perc(H , p) for a

deterministic p, where Perc(H , p) denotes the random subgraph of H obtained under
percolation with edge retention probability p. In fact, we have the following stronger
result: Fix t > 0, and let R(t) be a Poisson

(
t · �(H exp)

)
random variable, where �(·)

is as in (3.5). Then

(
Shape

[
Rem

(
CBDR(t)(H exp)

)]
, Rem

(
CBDR(t)(H exp)

))

d=
(
Perc

(
H ,

1

1 + t

)
,

1

1 + t
·
(
Perc

(
H ,

1

1 + t

))exp )
.

(5.2)

This is the content of Lemma 6.7 whose proof is rather short.
For fixed λ ∈ R and n large so that 2n1/3 > |λ|, let tn,λ be such that

(
1+ tn,λ

)−1 =
1/2 + λn−1/3. Write Gn,3(λ) for Perc

(
Gn,3, 1/2 + λn−1/3

)
. Let C1(λ) denote the

largest connected component of Gn,3(λ). Applying (5.2) with H = Gn,3 and t =
tn,λ will yield the following: Let G1(n, λ) be the largest connected component of
Rem

(
CBDR(tn,λ)

(
G

exp
n,3

))
, and set G1(n, λ) := Shape

[
G1(n, λ)

]
. Then

(
G1(n, λ) , G1(n, λ)

) d=
(
C1(λ) ,

(
1/2 + λn−1/3) · (C1(λ)

)exp
)

. (5.3)

Now, Gn,3(λ), conditional on its degree sequence, is distributed as a configuration
model with that degree sequence. Further, it is easy to show that the (random) degree
sequence of Gn,3(λ) satisfies Assumption 3.4 with limiting empirical distribution ν =
Binomial(3, 1/2). Using these observations together with Theorem 3.13, we can show
that

n−1/3 · C1(λ)
d−→ 61/3 · S1

(
(48)1/3 · λ

)
(5.4)

w.r.t. the GH topology. Now, consider any self-avoiding path π in C1(λ). Since the
edge lengths in

(
C1(λ)

)exp are i.i.d. Exponential(1) random variables, the length of
π in

(
C1(λ)

)exp will be concentrated around the length of π in C1(λ). Thus, lever-
aging the fact that C1(λ) has only OP (1) many surplus edges, we can show that
dGH

(
C1(λ) ,

(
C1(λ))exp

) = oP (n1/3). Combining this with (5.4), (5.3), Theorem 4.6,
and Theorem 3.14 will yield

n−1/3CBD∞
(
G1(n, λ)

) d−→ 61/3 · CB∞(S1
(
(48)1/3 · λ

))
, and

n−1/3CBD∞
(
G1(n, λ)

) d−→ (0.75)1/3 · CB∞(S1
(
(48)1/3 · λ

))
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w.r.t. the GH topology. Using Theorem 4.7, we see that for any Z>0-valued sequence
λn that tends to infinity sufficiently slowly,

n−1/3CBD∞
(
G1(n, λn)

) d−→ 61/3 · M , and (5.5)

n−1/3CBD∞
(
G1(n, λn)

) d−→ (0.75)1/3 · M (5.6)

w.r.t. the GH topology.
Now compare (5.6)with (5.1). Let Bn be as in (2.1). Then on the event Bn (which, by

(2.2), occurswith high probability), CBD∞
(
G1(n, λn)

)
is a subspace ofCBD∞(G

exp
n,3 ).

Since they have the same scaling limit,

n−1/3 · 1Bn · dH
(
CBD∞

(
G1(n, λn)

)
, CBD∞(G

exp
n,3 )

) d−→ 0 . (5.7)

This follows from a general property ofmetric spaces; see Proposition 6.5. Suppose, on
the event Bn , CBD∞(G

exp
n,3 ) is obtained by attaching the trees T( j)

n,λn
, 1 ≤ j ≤ kn(λn),

each via an edge to a vertex of CBD∞
(
G1(n, λn)

)
. Set kn(λn) = 0 on Bc

n . Then (5.7)

is equivalent to the assertion that n−1/3 max1≤ j≤kn(λn) diam
(
T

( j)
n,λn

) d−→ 0. From this,
it is not difficult to argue that

n−1/3 max
1≤ j≤kn(λn)

diam
(
Shape

[
T

( j)
n,λn

]) d−→ 0 . (5.8)

Finally, usingLemma4.4 (a), the processes
(
CBDi (G

exp
n,3 ), i ≥ 1

)
and

(
CBDt (Gn,3), t ≥

1
)
can be coupled so that the j-th distinct edge sampled is the same in both processes,

1 ≤ j ≤ 3n/2. In this coupling, on the event Bn , CBD∞(Gn,3) is CBD∞
(
G1(n, λn)

)

with the trees Shape
[
T

( j)
n,λn

]
, 1 ≤ j ≤ kn(λn), attached to its vertices via an edge. This

observation together with (2.2), (5.8), (5.5), and Lemma 4.5 shows that

n−1/3Mn
d= n−1/3CBD∞(Gn,3)

d−→ 61/3 · M

as n → ∞ w.r.t. the GH topology.

6 Proofs of Theorems 2.1, 2.2, 2.3, and 4.8

We divide the argument into several steps. In Sect. 6.1, we prove a weaker version of
Theorem 2.1 that only deals with convergence w.r.t. GH topology. The proof of this
result depends on several propositions whose proofs are given in Sections 6.2–6.5.
The proof of Theorem 2.1 is then completed in Sect. 6.6. The proof of Theorem 2.2
is given in Sect. 6.7. The proof of Theorem 2.3 is given in Sect. 6.8. Finally, the proof
of Theorem 4.8 is given in Sect. 6.9.
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6.1 GH convergence of theMST of Gn,3

In this section we prove the following weaker version of Theorem 2.1.

Theorem 6.1 Let Mn be as in Theorem 2.1. Then n−1/3 · Mn
d−→ 61/3 · M with

respect to GH topology.

This convergence will be strengthened to GHP convergence in Sect. 6.6. The proof
of the above theorem relies on the following four propositions.

Proposition 6.2 For all r ∈ N, there exists c > 0 small such that the following holds:
Let G = (V , E) be a finite graph with maximum degree at most r . Let �

(e)
1 , e ∈ E, be

i.i.d. Exponential(1) random variables. Then for all m ≥ 1,

P

(
G contains a self-avoiding path P with |P| ≥ m and

∑

e∈P

�
(e)
1 ≤ c|P|

)

≤ |V | · exp(−m),

where |P| denotes the number of edges in the path P.

Proposition 6.3 Assign i.i.d. Exponential(1) lengths to the edges of Gn,3 and denote
this multigraph with edge lengths by G

exp
n,3 . Then

n−1/3CBD∞
(
G

exp
n,3

) d−→ 1

2
· 61/3 · M =(0.75)1/3 · M , as n → ∞

with respect to GH topology.

Remark 3 By Lemma 4.5, Mn
d= Shape

[
CBD∞

(
G

exp
n,3

)]
. However, conditional on

Shape
[
CBD∞

(
G

exp
n,3

)]
, the edge lengths of CBD∞

(
G

exp
n,3

)
are not exchangeable, which

is why Theorem 6.1 cannot be proved by just using Proposition 6.3, and it takes quite
a bit of additional work. Note however that Proposition 6.3 implies that

diam
(
CBD∞

(
G

exp
n,3

)) = �P (n1/3).

This observation together with Proposition 6.2 implies that diam(Mn) = OP (n1/3).
As noted before in (1.2) in the case of the complete graph, using Observation 4.2 and
Theorem 3.13, it follows that diam(Mn) = �P (n1/3). Thus, we get that diam(Mn) =
�P (n1/3). By a standard conditioning argument (see (6.48) and (6.49)), this also
implies that diam(Mn) = �P (n1/3).

Recall the notation Shape[·] and Rem(·) introduced right before Lemma 4.5. Recall
also from (3.5) and the line below the meaning of �(H) for finite multigraphs with
edge lengths.
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Proposition 6.4 Let S1(·) and G
exp
n,3 be as in Construction 3.10 and Proposition 6.3

respectively. For λ ∈ R satisfying |λ| < n1/3/2, let tn,λ be given by

1

1 + tn,λ

= 1

2
+ λ

n1/3 .

Let Rn,λ be a Poisson
(
tn,λ · �(G

exp
n,3 )

)
random variable. Let G1(n, λ) be the largest

component of Rem
(
CBDRn,λ

(
G

exp
n,3

))
. Let G1(n, λ) := Shape

[
G1(n, λ)

]
. Then for any

fixed λ ∈ R,

n−1/3CBD∞
(
G1(n, λ)

) d−→ 61/3 · CB∞(S1
(
(48)1/3 · λ

))
, and (6.1)

n−1/3CBD∞
(
G1(n, λ)

) d−→ (0.75)1/3 · CB∞(S1
(
(48)1/3 · λ

))
(6.2)

as n → ∞ with respect to the GH topology.

Recall the marked topology from Sect. 3.2.

Proposition 6.5 Suppose
{
(X+

n , dn, Xn)
}

n≥1 is a sequence of random compact marked
metric spaces such that

X+
n

d−→ Z , and Xn
d−→ Z , as n → ∞

with respect to the GH topology for some random compact metric space Z. Then

dH (Xn, X+
n )

d−→ 0 as n → ∞.

We first prove Theorem 6.1 assuming the above four propositions. The proofs of
Propositions 6.2, 6.3, 6.4, and 6.5 will be given in the next four sections. We will
make use of the following elementary fact in the proof of Theorem 6.1; we omit its
proof.

Lemma 6.6 Suppose ai, j , i ∈ Z>0, j ∈ Z>0 ∪ {∞}, and a∞,∞ are elements of some
metric space such that lim j→∞ ai, j = ai,∞ for every i ∈ Z>0, and limi→∞ ai,∞ =
a∞,∞. Then there exists a Z>0-valued sequence

{
i�j
}

j∈Z>0
with i�j ↑ ∞ such that for

any Z>0-valued sequence
{
i j
}

j∈Z>0
satisfying i j ↑ ∞ and i j ≤ i�j , lim j→∞ ai j , j =

a∞,∞.

Proof of Theorem 6.1 Let Bn be as in (2.1). Note that on the event Bn , for any λ ∈ R,
the space CBDRn,λ (G

exp
n,3 ) is simplyG1(n, λ) together with some additional connected

multigraphs (with edge lengths and red points) each of which is attached to a vertex
of G1(n, λ) via a single edge that has at least one red point on it. Thus, by (4.2), on
the event Bn , CBD∞(G

exp
n,3 ) is CBD∞

(
G1(n, λ)

)
with some additional trees, say T( j)

n,λ,
1 ≤ j ≤ kn(λ), each of which is attached to a vertex of CBD∞

(
G1(n, λ)

)
via a single

edge. Define kn(λ) = 0 on Bc
n for all λ ∈ R.

Using Lemma 4.4(a), there exists a coupling of the processes
(
CBDi (G

exp
n,3 ), i ≥ 1

)

and
(
CBDt (Gn,3), t ≥ 1

)
such that the j-th distinct edge sampled is the same in
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both processes, 1 ≤ j ≤ 3n/2. In this coupling, on the event Bn , CBD∞(Gn,3) is

CBD∞
(
G1(n, λ)

)
with Shape

[
T

( j)
n,λ

]
, 1 ≤ j ≤ kn(λ), attached to its vertices via an

edge.
Now using (6.1), (6.2), Theorem 4.7, and Lemma 6.6, it follows that there exists a

Z>0-valued sequence {λ�
n}n≥1 with λ�

n ↑ ∞ such that for any Z>0-valued sequence
λn ↑ ∞ satisfying λn ≤ λ�

n ,

n−1/3CBD∞
(
G1(n, λn)

) d−→ 61/3 · M , and (6.3)

n−1/3CBD∞
(
G1(n, λn)

) d−→ (
0.75

)1/3 · M (6.4)

with respect to GH topology. Using (6.4) in conjunction with Proposition 6.3, Proposi-
tion 6.5, and (2.2), it follows that for any Z>0-valued sequence λn ↑ ∞with λn ≤ λ�

n ,

n−1/3 max
1≤ j≤kn(λn)

diam
(
T

( j)
n,λn

) d−→ 0. (6.5)

Denoting the edge lengths of G exp
n,3 by �

(e)
1 , e ∈ E(Gn,3), we have, for any ε > 0 and

any c > 0,

P

(
max

1≤ j≤kn (λn )
diam

(
Shape

[
T

( j)
n,λn

]) ≥ εn1/3
)

≤ P

(
max

1≤ j≤kn (λn )
diam

(
T

( j)
n,λn

) ≥ cεn1/3
)

+ P

(
Gn,3 contains a self-avoiding path P with |P| ≥ εn1/3 and

∑

e∈P

�
(e)
1 ≤ cεn1/3

)
.

Thus, using Proposition 6.2 together with (6.5), we get

n−1/3 max
1≤ j≤kn(λn)

diam
(
Shape

[
T

( j)
n,λn

]) d−→ 0, (6.6)

which in turn shows that

n−1/3dH

(
CBD∞

(
Gn,3

)
, CBD∞

(
G1(n, λn)

)) d−→ 0. (6.7)

Finally, by Lemma 4.5,

Mn
d= CBD∞(Gn,3). (6.8)

The result now follows from (6.3) and (6.7). ��
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6.2 Proof of Proposition 6.2

Fix m ≥ 1 and k ≥ m. Consider a self-avoiding path P in G with |P| = k. Then for
any c > 0 and any t > 0,

P

(∑

e∈P

�
(e)
1 ≤ ck

)
= P

(
Z ≥ k

) ≤ e−tk
E
[
exp(t Z)

] = exp
(

− k
(
t − c(et − 1)

))
,

(6.9)

where Z is a Poisson(ck) random variable. Hence,

P

(
G contains a self-avoiding path P with |P| ≥ m and

∑

e∈P

�
(e)
1 ≤ c|P|

)

≤
∑

k≥m

P

(
G contains a self-avoiding path P with |P| = k and

∑

e∈P

�
(e)
1 ≤ ck

)

≤
∑

k≥m

|V |rk exp
(

− k
(
t − c(et − 1)

))

= |V |
∑

k≥m

exp
(

− k
(
t − log r − c(et − 1)

)) ≤ |V |e−m,

where the second inequality uses (6.9) and the fact that there are at most |V |rk many
self-avoiding paths of length k in G, and the last step follows if we choose t sufficiently
large and c sufficiently small. This completes the proof.

6.3 Proof of Proposition 6.3

Recall Construction 3.9. Let s, n, r ,Kn,3, T1, . . . ,Tr , T ′
1 , . . . ,T ′

r , ρi , zi , and
(X1, . . . , Xr ) be as in Construction 3.9. Using (2.2), we can assume that Kn,3 and
Gn,3 are coupled in a way so that

lim
n→∞P

(
Kn,3 	= Gn,3

) = 0. (6.10)

Let
{
�

( j)
1/2

}
1≤ j≤r be a sequence of i.i.d. Gamma(1/2, 1) random variables. Then

(
X1, . . . , Xr

) d= (
�

(1)
1/2, . . . , �

(r)

1/2

)
/�r/2 , (6.11)

where �r/2 = ∑r
j=1 �

( j)
1/2. Note also that

r−1�r/2
d−→ 1/2, as r → ∞. (6.12)

Let Yi := dTi (ρi , zi ). Then Yi , 1 ≤ i ≤ r , are i.i.d. Rayleigh random variables

[8,9] with density f (y) = y exp(−y2/2), y > 0. Hence Y 2
i

d= 2�1, where �1 ∼
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580 L. Addario-Berry, S. Sen

Exponential(1). By [68], for i = 1, . . . , r , Z2
i := Y 2

i �
(i)
1/2

d= �2
1/2. Hence

{√
2Zi

}
1≤i≤r is an i.i.d. sequence of Exponential(1) random variables. (6.13)

Let Qn,3 = (
k(H (s)), e(H (s)), len

)
be the multigraph with edge lengths that

represents Core
(
H (s)

)
. As observed right below Construction 3.9, Qn,3 can be

constructed by assigning length Yi
√

Xi = Zi/
√

�r/2 to the i-th edge of Kn,3,
1 ≤ i ≤ r . There is a natural coupling between CB∞(Qn,3

)
and CB∞(H (s)

)

in which CB∞(H (s)
)
can be obtained by attaching countably many real trees to

CB∞(Qn,3
)
, and the diameter of each such real tree is at most max1≤i≤r diam

(
T ′

i

) =
max1≤i≤r

√
Xi · diam(Ti

)
. Thus, in this coupling,

(
12s

)1/6 · dH

(
CB∞(Qn,3

)
, CB∞(H (s))) ≤ (

12s
)1/6 max

1≤i≤r

√
Xi · diam(Ti

) d−→ 0,

(6.14)

where the last step is a consequence of the facts max1≤i≤r Xi = OP
(
log r/r

)
(which

can be seen from (6.11) and (6.12)), and max1≤i≤r diam
(
Ti
) = OP

(√
log r

)
.

Now, in the coupling used in (4.1),

(
12s

)1/6 · dH

(
CBD∞

(
Qn,3

)
, CB∞(Qn,3

)) ≤ (
12s

)1/6 · max
1≤i≤r

Zi/
√

�r/2
d−→ 0,

(6.15)

where the last step follows from (6.13) and (6.12). Combining (6.15) with (6.14) and
Theorem 4.8, we see that as n → ∞,

(
12s

)1/6CBD∞
(
Qn,3

) d−→ M w.r.t. GH topology. (6.16)

Finally, using (6.12) and the relation r = 3(s − 1), we see that the length of the i-th
edge in

(
12s

)1/6
Qn,3 is

(
12s

)1/6 Zi√
�r/2

= (
1 + oP (1)

) ·
(

4

3n

)1/3 √
2 · Zi ,

which together with (6.16) implies that as n → ∞,

(
4

3n

)1/3

· CBD∞
(
K

exp
n,3

) d−→ M w.r.t. GH topology, (6.17)

whereK exp
n,3 is the multigraph obtained by assigning lengths

√
2Zi , 1 ≤ i ≤ r (which,

by (6.13), are i.i.d. Exponential(1) random variables) lengths to the edges of Kn,3.
We complete the proof by combining (6.17) and (6.10). ��
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6.4 Proof of Proposition 6.4

As in Sect. 5, for any graph H and p ∈ [0, 1], we denote by Perc(H , p) the random
subgraph of H obtained by removing edges of H independently with probability 1− p.
The proof of Proposition 6.4 relies on the following three lemmas.

Lemma 6.7 Let H be a finite multigraph. Let H exp be the multigraph with edge lengths
obtained by assigning i.i.d. Exponential(1) lengths to the edges of H. Fix t > 0, and
let R(t) be a Poisson

(
t · �(H exp)

)
random variable. Then

(
Shape

[
Rem

(
CBDR(t)(H exp)

)]
, Rem

(
CBDR(t)(H exp)

))

has the same distribution as
(

Perc
(

H ,
1

1 + t

)
,

1

1 + t
·
(

Perc
(

H ,
1

1 + t

))exp )
,

where the last graph denotes the multigraph obtained by assigning i.i.d. Exponential(1)
lengths to the edges of Perc(H , 1/(1+t)), and then multiplying the lengths by 1/(1+t)
(or equivalently, assigning i.i.d.exponential lengths with mean 1/(1 + t) to the edges
of Perc(H , 1/(1 + t))).

Next we state two results about the behavior of the configuration model when
a uniform subset of edges of given size is removed. Recall the notation Gn,d from
Definition 1.4.

Lemma 6.8 Suppose d = (d1, . . . , dn) is a degree sequence and �n = ∑
v∈[n] di . Let

m ≤ �n/2 and define �′
n = �n − 2m. Out of the �n/2 edges of Gn,d, sample a subset of

m edges uniformly. Let G (m)
n,d be the graph obtained by removing those m edges. Then

(
Gn,d,G

(m)
n,d

) d= (
Q(2)

n,d,m,Q(1)
n,d,m

)
, (6.18)

where the pair
(
Q(2)

n,d,m,Q(1)
n,d,m

)
is constructed as follows: Start with the vertex set [n]

with di many half-edges attached to vertex i . Sample �′
n many half-edges uniformly,

and construct Q(1)
n,d,m by uniformly pairing up those �′

n half-edges. Conditional on this

step, uniformly pair the rest of the half-edges to form Q(2)
n,d,m.

Consequently, if p ∈ [0, 1] and m is a Binomial(�n/2, 1 − p) random variable
independent of Gn,d, then

Q(1)
n,d,m

d= Perc
(
Gn,d, p

)
. (6.19)

Equality in both coordinates in (6.18) will be used later in Sect. 6.6. In the proof of

Theorem 6.1 we will only need (6.19), which is a consequence of G (m)
n,d

d= Q(1)
n,d,m , i.e.,

just the equality of the second coordinates in (6.18). The relation G (m)
n,d

d= Q(1)
n,d,m was

already observed in [44, Lemmas 3.1 and 3.2]. See also [54] for a related construction.
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Lemma 6.9 Suppose m = m(n) satisfies

n−2/3(3n − 4m
) → λ0 as n → ∞, (6.20)

for some λ0 ∈ R. Let G (m)
n,3 be the graph obtained by removing a uniform subset of m

edges from Gn,3. Let d′ = d′(n) := (d ′
1, . . . , d ′

n), where d ′
v is the (random) degree of

v in G (m)
n,3 . Let ν be the Binomial(3, 1/2) distribution. Then as n → ∞,

ν′
n(i) := 1

n
#
{
v ∈ [n] : d ′

v = i
} d−→ ν(i), i = 0, 1, 2, 3, (6.21)

1

n

∑

v∈[n]
(d ′

v)
3 d−→

3∑

i=0

i3ν(i), and n1/3

(∑
v∈[n](d ′

v)
2

∑
v∈[n] d ′

v

− 2

)
d−→ λ0

3
. (6.22)

Remark 4 Loosely speaking, Lemma 6.9 says that the sequence
{
d′(n)

}
n=2,4,... of

random degree sequences satisfies Assumption 3.4 in probability. This in particular
implies that results for configuration models that only require Assumption 3.4 (e.g.,
Theorem3.13) apply directly to the randomgraphsG (m)

n,3 . This canbe argued as follows:
By Skorohod representation theorem, we can construct ν′′

n := (
ν′′

n (i) ; i = 0, 1, 2, 3
)
,

n = 2, 4, 6, . . ., on the same probability space such that ν′′
n

d= (
ν′

n(i) ; i = 0, 1, 2, 3
)

for n = 2, 4, 6, . . ., and that

ν′′
n (i)

a.s.−→ ν(i) , i = 0, 1, 2, 3, and n1/3

(∑3
i=0 i2ν′′

n (i)
∑3

i=0 iν′′
n (i)

− 2

)
a.s.−→ λ0

3

in this space. We can further assume that π2, π4, π6, . . . are also defined on this
space, where (a) πn is a uniform permutation of n elements for n = 2, 4, . . .;
(b) π2, π4, π6, . . . are independent; and (c)

(
πn; n = 2, 4, . . .

)
is independent of(

ν′′
n; n = 2, 4, . . .

)
. For n = 2, 4, 6, . . ., let d′′(n) be the random sequence of length n

obtained by applying πn to the sequence
(
0, . . . , 0, 1, . . . , 1, 2, . . . , 2, 3, . . . , 3

)
with

i appearing nν′′
n (i)many times, i = 0, 1, 2, 3. Then d′′(n)

d= d′(n) for n = 2, 4, 6, . . .,
and further, in this space, the convergences in (6.21) and (6.22) hold almost surely
if d′(n) is replaced by d′′(n). Conditional on

(
d′′(n) ; n = 2, 4, . . .

)
, construct

H2, H4, . . ., where Hn is distributed as a configuration model with degree sequence
d′′(n). (The exact way in which H2, H4, . . . are coupled is not important here. For def-
initeness, let us take them to be independent conditional on

(
d′′(n) ; n = 2, 4, . . .

)
.)

Then Theorem 3.13 applies to the sequence of random graphs Hn . Now, from the
equality in the second coordinate in (6.18), we see that G (m)

n,3 , conditional on d
′(n), is

distributed as a configuration model with degree sequence d′(n). Hence, G (m)
n,3

d= Hn ,

and consequently, Theorem 3.13 applies to the random graphs G (m)
n,3 .

We now prove Proposition 6.4 assuming the above three lemmas.

123



Geometry of the minimal spanning tree of a random… 583

Completing the proof of Proposition 6.4 We first note that if ν is the Binomial(3, 1/2)
distribution, then

σ1(ν) = 3/2, σ2(ν) = 3, and σ3(ν) = 27/4. (6.23)

Next, by Lemma 6.7,

Shape
[
Rem

(
CBDRn,λ

(
G

exp
n,3

))] d= Perc
(
Gn,3, 1/2 + λn−1/3). (6.24)

Now, for any p ∈ [0, 1], the number of edges removed from Gn,3 to construct
Perc(Gn,3, p) is a Binomial(3n/2, 1 − p) random variable. In particular, when p =
1/2 + λn−1/3, the number of edges removed is

m = 3n

2

(1
2

− λ

n1/3

)
+ OP (

√
n),

which satisfies (6.20) with λ0 = 6λ. Further, conditional on m, Perc(Gn,3, 1/2 +
λn−1/3) is distributed as G (m)

n,3, where the notation is as in Lemma 6.9. Thus, by
Lemma 6.9, the (random) degree sequence of Perc(Gn,3, 1/2+λn−1/3) satisfies (6.21)
and (6.22) with limiting parameter λ0/3 = 2λ. Finally, using (6.19), it follows that
Perc(Gn,3, 1/2+ λn−1/3), conditional on its degree sequence, is distributed as a con-
figuration model with that degree sequence. Hence by Theorem 3.5, Theorem 3.13,
(6.23), and (6.24),

V = �P (n2/3), E = �P (n2/3), S = OP (1), D = �P (n1/3), and (6.25)

n−1/3 · G1(n, λ)
d−→ 61/3 · S1

(
(48)1/3 · λ

)
w.r.t. GH topology, (6.26)

where V = |G1(n, λ)|, E = |E(G1(n, λ))|, S = sp(G1(n, λ)), and D denotes the
diameter of G1(n, λ). By Lemma 6.7, conditional on G1(n, λ), the lengths of the edges
of G1(n, λ) are

(
1/2 + λn−1/3) · (�(1)

1 , . . . , �
(E )

1

)
, (6.27)

where �
(1)
1 , . . . , �

(E )

1 are i.i.d. Exponential(1) random variables.
Now it is easy to see that for any two vertices in G1(n, λ), there are at most 2S

many self-avoiding paths connecting them, and the length of any such self-avoiding
path is at most 6(S + 1)D . For any such self-avoiding path P and any η > 0, by
standard concentration inequalities,

PG1

(∣∣
∑

j∈P

�
( j)
1 − 1

∣∣ ≥ (
6(S + 1)D

)1/2+η) ≤ exp
(

− c
(
6(S + 1)D

)2η)
, (6.28)
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584 L. Addario-Berry, S. Sen

where PG1 denotes probability conditional on G1(n, λ). Let Gexp
1 (n, λ) be the graph

with edge lengths obtainedby assigning lengths�(1)
1 , . . . , �

(E )

1 to the edges ofG1(n, λ).
Then by (6.28),

PG1

(
dGH

(
Gexp

1 (n, λ), G1(n, λ)
) ≥ (

6(S + 1)D
)1/2+η

)
≤ V 2 · 2S exp

(
− c

(
6(S + 1)D

)2η)
.

Thus, by (6.25) and (6.26), n−1/3 · Gexp
1 (n, λ)

d−→ 61/3 · S1
(
(48)1/3 · λ

)
w.r.t. GH

topology, which together with (6.27) implies

n−1/3 · G1(n, λ)
d−→ 1

2
· 61/3 · S1

(
(48)1/3 · λ

)
(6.29)

w.r.t.GH topology.The claimnow follows from (6.26) and (6.29) byusingTheorem4.6
and Theorem 3.14. ��

The rest of this section is devoted to the proofs of Lemmas 6.7, 6.8, and 6.9 .

Proof of Lemma 6.7 Let |E(H)| = r . Run two independent Poisson point processes
(PPP)–a ‘red’ PPP and a ‘blue’ PPP, with intensities t and 1 respectively. Let X1 <

. . . < Xr be the locations of the first r blue points. Enumerate the edges of H in any
way, and assign length (Xi − Xi−1) to the i-th edge, i = 1, . . . , r , where X0 = 0.
Call the resulting graph with edge lengths H1. Let R̃ be the number of red points in
[0, Xr ]. Identifying the i-th edge of H1 with the interval [Xi−1, Xi ], i = 1, . . . , r ,
place a red point on H1 corresponding to the location of each of the R̃ red points in
[0, Xr ]. Call the resulting graph with red points H2.

Now, note that H1
d= H exp. Next, conditional on the blue PPP, R̃ follows a

Poisson(t Xr ) ≡ Poisson(t · �(H1)) distribution. Thus,

(
H1, R̃

) d= (
H exp, R(t)

)
.

Finally, conditional on the blue PPP and R̃, the locations of the red points in [0, Xr ]
are i.i.d. Uniform[0, Xr ] random variables, which implies that

Rem
(
CBDR(t)(H exp)

) d= Rem(H2). (6.30)

NowRem(H2) can be generated in the following alternateway: Sample independent
random variables Z1, . . . , Zr , where Zi ∼ Poisson(t(Xi − Xi−1)), i = 1, . . . , r .
(Here Zi corresponds to the number of red points in [Xi−1, Xi ].) Remove the i-th
edge of H iff Zi ≥ 1, and assign independent lengths Yi to the remaining edges,

where Yi
d= (

(Xi − Xi−1)
∣∣Zi = 0

)
.

Combining (6.30) with the facts that 1Zi =0, i ≥ 1, are i.i.d. Bernoulli(1/(1 + t))
random variables, and

(
(Xi − Xi−1)

∣∣Zi = 0
)
has an exponential distribution with

mean 1/(1 + t), it follows that

Rem
(
CBDR(t)(H exp)

) d= 1

1 + t
·
(
Perc

(
H ,

1

1 + t

))exp
.
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Now the result follows immediately. ��

Proof of Lemma 6.8 Let G be a graph on [n] with degree sequence d. Let G ′ be a
subgraph of G. Let d′ = (d ′

1, . . . , d ′
n) be the degree sequence of G ′. Let xi j (resp. x ′

i j )
be the number of edges between i and j in G (resp. G ′), i 	= j , and let xii (resp. x ′

i i )
denote the number of loops attached to vertex i in G (resp. G ′). Using (1.3) it follows
that

P
(
Gn,d = G, G (m)

n,d = G ′) = 1

(�n − 1)!! ×
∏

i∈[n] di !∏
i∈[n] 2xii

∏
i≤ j xi j ! ×

∏
i≤ j

(
xi j

x ′
i j

)

(
�n/2

m

) ,

(6.31)

and

P
(
Q(1)

n,d,m = G′, Q(2)
n,d,m = G

) =
∏

i∈[n]
(

di

d ′
i

)

(
�n

�′
n

) × 1

(�′
n − 1)!! ×

∏
i∈[n] d ′

i !∏
i∈[n] 2x ′

i i
∏

i≤ j x ′
i j !

× 1

(�n − �′
n − 1)!! ×

∏
i∈[n](di − d ′

i )!∏
i∈[n] 2xii −x ′

i i
∏

i≤ j (xi j − x ′
i j )!

.

(6.32)

A direct computation shows that the right sides of (6.31) and (6.32) are equal. This
completes the proof. ��

Proof of Lemma 6.9 We use the alternate construction of G (m)
n,3 from Lemma 6.8. For

each v ∈ [n], let fv,i denote the i-th half edge attached to v, i = 1, 2, 3. Let Ev,i

denote the event that fv,i is one of the 3n − 2m selected half edges. Then

P
(
Ev,i

) = (3n − 2m)/3n, for 1 ≤ i ≤ 3.

and

P
(
Ev1,i1 ∩ Ev2,i2

) = (3n − 2m)(3n − 2m − 1)

3n(3n − 1)
, whenever (v1, i1) 	= (v2, i2).

Since d ′
v = ∑3

i=1 1
{

Ev,i
}
,

E

[ ∑

v∈[n]
d ′2
v

] = n · E[d ′2
1

] = n
[
3 × (3n − 2m)

3n
+ 6 × (3n − 2m)(3n − 2m − 1)

3n(3n − 1)

]
.
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Using this relation, (6.20), and the fact that
∑

v∈[n] d ′
v = 3n−2m, a direct computation

shows that

lim
n→∞ n1/3

(
E
[∑

v∈[n] d ′2
v

]
∑

v∈[n] d ′
v

− 2

)
= λ0

3
. (6.33)

Now it is straightforward to check that for any four distinct pairs (v j , i j ), 1 ≤ j ≤ 4,
each of the quantities Cov

(
1{Ev1,i1},1{Ev2,i2}

)
, Cov

(
1{Ev1,i1 ∩ Ev2,i2},1{Ev3,i3}

)
,

and Cov
(
1{Ev1,i1 ∩ Ev2,i2},1{Ev3,i3 ∩ Ev4,i4}

)
is negative. Thus, for any v1 	= v2,

Cov
(
d ′2
v1

, d ′2
v2

)
< 0, which implies that

Var
( ∑

v∈[n]
d ′2
v

) ≤
∑

v∈[n]
Var

(
d ′2
v

) = O(n).

This combined with (6.33) proves the second convergence in (6.22).
Next, for v ∈ [n] and k = 0, 1, 2, 3,

P
(
d ′
v = k

) =
(
3

k

)(
3n − 3

2m + k − 3

)/(3n

2m

)
,

which together with (6.20) yields

lim
n→∞

1

n
E
[
#
{
v ∈ [n] : d ′

v = k
}] = lim

n→∞P
(
d ′
1 = k

) = ν(k).

A little computation will show that Var
[
#
{
v ∈ [n] : d ′

v = k
}] = O(n) for k =

0, 1, 2, 3. This proves (6.21). Finally, the first convergence in (6.22) follows from
(6.21). This completes the proof. ��

6.5 Proof of Proposition 6.5

We will use the following lemmas in the proof:

Lemma 6.10 Suppose Y1 and Y2 are two real valued random variables defined on the

same probability space such that Y1 ≤ Y2 almost surely. Suppose further that Y1
d= Y2.

Then Y1 = Y2 almost surely.

This is an elementary lemma, and we omit the proof.

Lemma 6.11 Suppose
{
(Z+

n , dn, Zn)
}

n≥1 is a sequence in S∗
GH satisfying

(Z+
n , dn, Zn) → (Z+

0 , d, Z0) for some marked space (Z+
0 , d, Z0). Then

dH
(
Z+

n , Zn
) → dH (Z+

0 , Z0).
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Proof For any isometric embeddings φn : Z+
n → Z� and ψn : Z+

0 → Z� into some
common space Z�, we have

dH (Z+
n , Zn) ≤ dH

(
φn(Z+

n ), ψn(Z+
0 )
)+ dH (Z+

0 , Z0) + dH
(
ψn(Z0), φn(Zn)

)
.

Using symmetry, we see that

∣∣dH (Z+
n , Zn) − dH (Z+

0 , Z0)
∣∣ ≤ dH

(
φn(Z+

n ), ψn(Z+
0 )
)+ dH

(
ψn(Z0), φn(Zn)

)
.

(6.34)

Using the fact (Z+
n , dn, Zn) → (Z+

0 , d, Z0), we can choose φn, ψn in a way so that
the right side of (6.34) goes to zero as n → ∞. ��

We will now complete the proof of Proposition 6.5. For any compact metric space
(X , d) and δ > 0, let Nδ(X) be the minimum number of closed δ balls needed to cover
X .

Since X+
n

d−→ Z , the sequence
{
(X+

n , dn)
}

n≥1 is relatively compact w.r.t. GH

topology. Using Lemma 3.1(b), the sequence
{
(X+

n , dn, Xn)
}

n≥1 is relatively compact

w.r.t. the marked topology. Thus, there exists a subsequence
{
nk
}

k≥1 and a random

marked space (Z+
0 , d, Z0) such that

(
X+

nk
, dnk , Xnk

) d−→ (
Z+
0 , d, Z0

)

as k → ∞ with respect to the marked topology. Since X+
n

d−→ Z and Xn
d−→ Z , we

must have Z+
0

d= Z
d= Z0 as compact metric spaces. In particular, for all ε > 0,

Nε(Z+
0 )

d= Nε(Z0). (6.35)

Since Z0 is a closed subset of Z+
0 , for every ε > 0, Nε

(
Z0
) ≤ Nε

(
Z+
0

)
almost surely.

Then it follows from (6.35) and Lemma 6.10 that

P
(
Nε(Z+

0 ) = Nε(Z0)
) = 1

for every ε > 0. This implies thatP
(
dH (Z+

0 , Z0) = 0
) = 1. Thus, using Lemma 6.11,

we conclude that dH (X+
nk

, Xnk )
P−→ 0.

Now for any subsequence
{
m�

}
�≥1, using the above argument, we can extract a

further subsequence
{
m�k

}
k≥1 such that dH

(
X+

m�k
, Xm�k

) P−→ 0 as k → ∞. Thus the
claim follows.

6.6 GHP convergence of theMST of Gn,3

In this section we improve the convergence in Theorem 6.1 to GHP convergence,
thus completing the proof of Theorem 2.1. Let G1(n, λ) and G1(n, λ) be as in the
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588 L. Addario-Berry, S. Sen

statement of Proposition 6.4, and let kn(λ) and T( j)
n,λ, 1 ≤ j ≤ kn(λ), be as in the proof

of Theorem 6.1. For v ∈ G1(n, λ), let dv,λ be the degree of v in G1(n, λ), and define
davail
v,λ := 3 − dv,λ. Thus, davail

v,λ denotes the number of distinct edges sampled in the

process
(
CBDi (G

exp
n,3 ), 1 ≤ i ≤ Rn,λ

)
that were incident to v, and one can picture this

degree deficiency as ‘available half-edges’ attached to v.
On the event Bn , CBD∞(Gn,3) is CBD∞

(
G1(n, λ)

)
with Shape

[
T

( j)
n,λ

]
, 1 ≤ j ≤

kn(λ), attached to its vertices via a single edge; let T (i)
n,λ(v), 1 ≤ i ≤ rv,λ, be the

trees (arranged following some deterministic rule) attached to v ∈ CBD∞
(
G1(n, λ)

)
.

Clearly, 0 ≤ rv,λ ≤ davail
v,λ . Thus, the collection of trees T (i)

n,λ(v), 1 ≤ i ≤ rv,λ,

v ∈ CBD∞
(
G1(n, λ)

)
, is simply Shape

[
T

( j)
n,λ

]
, 1 ≤ j ≤ kn(λ), in some order. Recall

from the proof of Theorem 6.1 that we define kn(λ) = 0 for all λ ∈ R on Bc
n .

Accordingly, we set rv,λ = 0 for all v ∈ CBD∞
(
G1(n, λ)

)
on the event Bc

n .
Construct the spaces Mattach

n,λ and Mavail
n,λ by endowing CBD∞

(
G1(n, λ)

)
with the

tree distance and respectively assigning mass

pattachv,λ :=
⎧
⎨

⎩

1/|G1(n, λ)|, on Bc
n,

1
n

(
1 +∑rv,λ

i=1

∣∣T (i)
n,λ(v)

∣∣), on Bn,

and pavailv,λ :=
⎧
⎨

⎩

1/|G1(n, λ)|, if
∑

u∈G1(n,λ) davail
u,λ = 0,

davail
v,λ

/(∑
u∈G1(n,λ) davail

u,λ

)
, otherwise,

(6.36)

to v ∈ CBD∞
(
G1(n, λ)

)
. Note that

∑
v∈G1(n,λ) pattachv,λ = ∑

v∈G1(n,λ) pavailv,λ = 1. Note

also that the first and the third asymptotics in (6.25) imply that P
(∑

u∈G1(n,λ) davail
u,λ =

0
) → 0 as n → ∞. Thus, the value of pavailv,λ on the event

{∑
u∈G1(n,λ) davail

u,λ ≥ 1
}
is

the one relevant for distributional asymptotics of Mavail
n,λ . Similarly, using (2.2), only

the value of pattachv,λ on Bn is relevant for the asymptotic behavior of Mattach
n,λ .

Throughout Sect. 6.6, all sequences {λn}n≥1 will be Z>0-valued sequences, and we
will not mention this explicitly.

Lemma 6.12 Let λ�
n be as in the proof of Theorem 6.1. Then for all λn ↑ ∞ with

λn ≤ λ�
n,

n−1/3dGHP
(
CBD∞

(
Gn,3

)
, Mattach

n,λn

) P−→ 0.

Lemma 6.13 There exists a sequence λ
†
n ↑ ∞ such that for all λn ↑ ∞ with λn ≤ λ

†
n,

n−1/3Mavail
n,λn

d−→ 61/3 · M w.r.t. the GHP topology.

Lemma 6.14 There exists a sequence λ◦
n ↑ ∞ such that for all λn ↑ ∞ with λn ≤ λ◦

n,

n−1/3dGHP
(
Mattach

n,λn
, Mavail

n,λn

) P−→ 0.
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Completing the proof of Theorem 2.1 The result followsuponcombiningLemmas6.12,
6.13, 6.14, and (6.8). ��
Proof of Lemma 6.12 On the event Bn , define the correspondence C between Mattach

n,λn

and CBD∞
(
Gn,3

)
as follows:

C :=
{

(v, u) : v ∈ Mattach
n,λn

and u ∈ {v} ∪
(rv,λn⋃

i=1

T (i)
n,λn

(v)

)}
.

Let π be a measure on Mattach
n,λn

× CBD∞
(
Gn,3

)
given by π({(v, u)}) = 1/n for

(v, u) ∈ C . Then with this choice of C and π , the claim follows immediately if we
use (6.6). ��
Proof of Lemma 6.13 Assign mass pavailv,λ to v ∈ G1(n, λ) and call the resulting metric

measure space Gavail
1 (n, λ). Using Theorem 3.13 with f (k) = 3 − k, k = 0, . . . , 3,

and the arguments used to prove (6.26), we see that n−1/3Gavail
1 (n, λ)

d−→ 61/3 ·
S1
(
(48)1/3 · λ) w.r.t. GHP topology. Using Theorems 3.14 and 4.6, it follows that for

each λ ∈ R,

n−1/3Mavail
n,λ

d−→ 61/3 · CB∞(S1
(
(48)1/3 · λ

))
as n → ∞

w.r.t. GHP topology. The claim now follows from Theorem 4.7 and Lemma 6.6. ��
To prove Lemma 6.14 we will make use of Lemma 6.15 stated below. Let λ�

n be as
in the proof of Theorem 6.1.

Lemma 6.15 There exists a sequence λ♦
n ↑ ∞ such that

(i) λ♦
n ≤ λ�

n,
(ii) P

(∣∣G1(n, λ♦
n )
∣∣ > n/2

) → 0, and
(iii) for any λn ↑ ∞ with λn ≤ λ♦

n , the following holds: For every n, fix an enumeration
v1, v2, . . . of the vertices of G1(n, λn) measurable w.r.t. the σ -field generated by
CBD∞

(
G1(n, λn)

)
, and define

Zn := max
1≤ j1≤ j2≤|G1(n,λn)|

∣∣∣∣
j2∑

s= j1

rvs ,λn∑

i=1

|T (i)
n,λn

(vs)|
n − |G1(n, λn)| −

j2∑

s= j1

pavailvs ,λn

∣∣∣∣ ,

where pavailv,λ is as defined in (6.36). Then Zn
P−→ 0.

We first prove Lemma 6.14 assuming Lemma 6.15.

Proof of Lemma 6.14 On the event Bn , constructMmodi
n,λ byendowingCBD∞

(
G1(n, λ)

)

with the tree distance and assigning mass

pmodi
v,λ :=

∑rv,λ

i=1

∣∣T (i)
n,λ(v)

∣∣

n − ∣∣G1(n, λ)
∣∣
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590 L. Addario-Berry, S. Sen

to v ∈ CBD∞
(
G1(n, λ)

)
. On Bc

n , set M
modi
n,λ = Mattach

n,λ . As observed in (6.25),∣∣G1(n, λ)
∣∣ = �P (n2/3). Thus,

∑

v∈G1(n,λ)

∣∣pmodi
v,λ − pattachv,λ

∣∣ = OP (n−1/3).

It follows that for each λ ∈ R, dGHP
(
Mmodi

n,λ ,Mattach
n,λ

) P−→ 0 as n → ∞. Thus, we
can choose a sequence λ⊕

n ↑ ∞ such that P
(∣∣G1(n, λ⊕

n )
∣∣ > n/2

) → 0, and further,
for all λn ↑ ∞ with λn ≤ λ⊕

n ,

dGHP
(
Mmodi

n,λn
, Mattach

n,λn

) P−→ 0. (6.37)

Set λ◦
n := min{λ⊕

n , λ
†
n, λ♦

n }, where λ
†
n (resp. λ♦

n ) is as in Lemma 6.13 (resp.
Lemma 6.15). Fix a sequence λn ↑ ∞ with λn ≤ λ◦

n .
Fix δ > 0. Let N (n)

δ be the minimum number of closed δn1/3 balls needed to
cover CBD∞

(
G1(n, λn)

)
. By Lemma 6.13,

{
N (n)

δ

}
n≥1 is tight. WriteVn for the set of

vertices of CBD∞
(
G1(n, λn)

)
and d∞ for the tree distance in CBD∞

(
G1(n, λn)

)
. Let

A1, . . . , A
N (n)

δ

be a partition of Vn such that for 1 ≤ j ≤ N (n)

δ , d∞(v, v′) ≤ 2δn1/3 if

v, v′ ∈ A j .
Let v1, v2, . . . be an enumeration of Vn such that for each j ≤ N (n)

δ , all vertices
v ∈ A j appear successively. Note that this enumeration is measurable w.r.t. the σ -field
generated by CBD∞

(
G1(n, λn)

)
. By Lemma 6.15,

max
1≤ j≤N (n)

δ

∣∣∣
∑

v∈A j

(
pmodi
v,λn

− pavailv,λn

)∣∣∣ P−→ 0. (6.38)

Let μmodi
n be the measure on Xn := {A1, . . . , A

N (n)
δ

} given by μmodi
n (A j ) =

∑
v∈A j

pmodi
v,λn

. Define μavail
n on Xn analogously. Then the total variation distance

between μmodi
n and μavail

n satisfies

dTV
(
μmodi

n , μavail
n

) ≤ 1

2
× N (n)

δ × max
1≤ j≤N (n)

δ

∣∣∣
∑

v∈A j

(
pmodi
v,λn

− pavailv,λn

)∣∣∣ P−→ 0,

where the last step uses (6.38) and the fact that
{

N (n)

δ

}
n≥1 is tight. Thus, for each n,

we can construct Xn-valued random variables Xmodi
n and X avail

n distributed as μmodi
n

and μavail
n respectively such that P

(
Xmodi

n 	= X avail
n

) P−→ 0. Using Xmodi
n and X avail

n ,
there is a natural way to construct Vn-valued random variables Ymodi

n and Y avail
n such

that P
(
Ymodi

n = v
) = pmodi

v,λn
, and P

(
Y avail

n = v
) = pavailv,λn

for all v ∈ Vn , and further,

P
(
d∞(Ymodi

n , Y avail
n ) > 2δn1/3) P−→ 0.
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Since δ > 0was arbitrary, we get n−1/3dGHP
(
Mmodi

n,λn
, Mavail

n,λn

) P−→ 0,which combined
with (6.37) completes the proof. ��

The proof of Lemma 6.15 relies on the next two lemmas.

Lemma 6.16 There exist universal constants c1, c2 > 0 such that for any m ≥ 1 and
probability vector p := (p1, . . . , pm),

P

(
max
j∈[m]

∣∣∣∣
j∑

i=1

pπ(i) − j

m

∣∣∣∣ ≥ xσ( p)
)

≤ exp
(− c1x log log x

)
, for x ≥ c2 ,

where π is a uniform permutation on [m], and σ( p) :=
√

p21 + . . . + p2m. Conse-
quently, using the relation σ( p) ≤ max j

√
p j , we get, for x ≥ c2,

P

(
max
j1< j2

∣∣∣∣
j2∑

i= j1+1

pπ(i) − j2 − j1
m

∣∣∣∣ ≥ 2x · max
j

√
p j

)
≤ 2 exp

(− c1x log log x
)
.

(6.39)

This result gives a quantitative concentration inequality for the partial sums of
exchangeable random variables. The result can be found in the above form in [26,
Lemma 7.5], but was essentially already contained in [24, Lemma 4.9].

Lemma 6.17 (i) Fix λ ∈ R. For every v ∈ G1(n, λ), append (davail
v,λ −rv,λ) many zeros

to the sequence
(∣∣T (i)

n,λ(v)
∣∣, 1 ≤ i ≤ rv,λ

)
and let

(
α

(i)
n,λ(v), 1 ≤ i ≤ davail

v,λ

)
be

a uniform permutation of the resulting sequence; use independent permutations
for different v ∈ G1(n, λ) that are also independent of all the other random
variables being considered. Then conditional on Shape

[
Rem

(
CBDRn,λ (G

exp
n,3 )

)]

and CBD∞
(
G1(n, λ)

)
, the family

(
α

(i)
n,λ(v) ; 1 ≤ i ≤ davail

v,λ , v ∈ G1(n, λ)

)

of random variables is exchangeable.
(ii) Let λ�

n be as in the proof of Theorem 6.1. Then for any λn ↑ ∞ with λn ≤ λ�
n,

max
{ |T (i)

n,λn
(v)|

n
: 1 ≤ i ≤ rv,λn , v ∈ CBD∞

(
G1(n, λn)

)} P−→ 0. (6.40)

Proof of Lemma 6.15 By (6.25), |G1(n, λ)| = �P (n2/3). So, in particular, for every
λ ∈ R, P

(|G1(n, λ)| > n/2
) → 0. Hence, we can choose λ♦

n ↑ ∞ slowly enough
such that P

(|G1(n, λ♦
n )| > n/2

) → 0 as n → ∞. We can further take λ♦
n ≤ λ�

n .
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Fix λn ↑ ∞ with λn ≤ λ♦
n . Let v1, v2, . . . be an enumeration of the vertices of

G1(n, λn) measurable w.r.t. the σ -field generated by CBD∞
(
G1(n, λn)

)
. Define

p(i)
n,λn

(vs) := α
(i)
n,λn

(vs)

n − |G1(n, λn)| , 1 ≤ i ≤ davail
v,λn

, 1 ≤ s ≤ |G1(n, λn)| ,

where 0/0 is interpreted as 1. Since λn ≤ λ♦
n , P

(
n − |G1(n, λn)| ≥ n/2

) → 1
as n → ∞ by our choice of λ♦

n . Thus, using Lemma 6.17 (ii) and the fact that
λn ≤ λ♦

n ≤ λ�
n ,

max
{

p(i)
n,λn

(vs) : 1 ≤ i ≤ davail
v,λn

, 1 ≤ s ≤ |G1(n, λn)|} P−→ 0. (6.41)

Now, for any 1 ≤ j1 ≤ j2 ≤ |G1(n, λn)|,
j2∑

s= j1

rvs ,λn∑

i=1

|T (i)
n,λn

(vs)| =
j2∑

s= j1

davail
vs ,λn∑

i=1

α
(i)
n,λn

(vs) ,

and in particular, on the event Bn ,

|G1(n,λn)|∑

s=1

davail
vs ,λn∑

i=1

α
(i)
n,λn

(vs) = n − |G1(n, λn)| .

Thus, on the event Bn ∩ {|G1(n, λn)| < n}, (p(i)
n,λn

(vs) ; 1 ≤ i ≤ davail
v,λn

, 1 ≤ s ≤
|G1(n, λn)|) is a probability vector. By (2.2), P

(
Bn ∩ {|G1(n, λn)| < n}) → 1 as

n → ∞. Thus, the desired result follows from Lemma 6.17 (i), (6.39), and (6.41). ��
Proof of Lemma 6.17(i) Consider a finite (non-random) graph H and t > 0, and
let H exp and R(t) be as in the statement of Lemma 6.7. Then conditional on
Shape

[
Rem

(
CBDR(t)(H exp)

)] = H0, the order in which the edges in E(H) \ E(H0)

were sampled for the first time in the CBD process is a uniform permutation on
E(H) \ E(H0).

Using the above observation, Lemma 6.7, and Lemma 6.8, we can generate
Shape

[
Rem

(
CBDRn,λ (G

exp
n,3 )

)]
, Gn,3, and

(
α

(i)
n,λ(v); 1 ≤ i ≤ davail

v,λ , v ∈ G1(n, λ)
)

jointly as follows:

(a) Sample a Binomial
(
3n/2, 1/2 − λn−1/3

)
random variable. For simplicity, we

denote the realization by m.
(b) Conditional on step (a), sample Q(1)

n,3,m as in Lemma 6.8, where 3 = (3, . . . , 3).

By (6.19), Q(1)
n,3,m

d= Perc
(
Gn,3, 1/2 + λn−1/3

)
. Hence, using Lemma 6.7,

Q(1)
n,3,m

d= Shape
[
Rem

(
CBDRn,λ (G

exp
n,3 )

)]
. (6.42)

Thus, the largest component of Q(1)
n,3,m , say C1, has the same law as G1(n, λ).

Let dv be the degree of v ∈ C1. Then each v ∈ C1 has 3 − dv many ‘available’
half-edges; we denote them by fv,i , 1 ≤ i ≤ 3 − dv, v ∈ C1.
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(c) Conditional on steps (a) and (b), generateQ(2)
n,3,m as in Lemma 6.8. From (6.18) it

follows that

Q(2)
n,3,m

d= Gn,3 (6.43)

jointly with the equality in distribution in (6.42). Let E1, . . . ,Em be the edges that
are in Q(2)

n,3,m but not in Q(1)
n,3,m . For v ∈ C1 and 1 ≤ i ≤ 3 − dv , let f̃v,i denote

the edge that was formed by pairing fv,i with another half-edge.
(d) If Q(2)

n,3,m is not connected, go to the next step. If Q(2)
n,3,m is connected, let π be a

uniform permutation of m elements independent of steps (a), (b), and (c) above.
Consider the edges Eπ(1), . . . ,Eπ(m) sequentially in this order, and at each step,
remove the edge being considered fromQ(2)

n,3,m if its removal does not disconnect
the current graph. Denote the resulting graph by Q. Then Q has the same law as
Shape

[
CBDRn,λ (G

exp
n,3 )

]
.

(e) IfQ(2)
n,3,m is not connected, define Q(i)(v) to be the empty graph for 1 ≤ i ≤ 3−dv ,

v ∈ C1. If Q
(2)
n,3,m is connected, then note that Q as constructed in (d) is simply

C1 together with some connected multigraphs each of which is connected to a
vertex of C1 by a single edge; for v ∈ C1 and 1 ≤ i ≤ 3 − dv , set Q(i)(v) to be
the connected multigraph that is connected to v via f̃v,i , with the convention that
Q(i)(v) is the empty graph if f̃v,i was removed in step (d). Then

(
sort

(|Q(i)(v)| , 1 ≤ i ≤ 3 − dv

) ; v ∈ C1

)
d=
(
sort

(
α

(i)
n,λ(v) , 1 ≤ i ≤ davailv,λ

) ; v ∈ G1(n, λ)

)

jointly with the distributional equalities in (6.42) and (6.43), where sort(·) arranges
the entries of a finite sequence in decreasing order.

Conditional on steps (a) and (b) above, the rest of the procedure is symmetric with
respect to the available half-edges attached to the vertices of C1. Hence, conditional
onQ(1)

n,3,m , the family
(|Q(i)(v)| ; 1 ≤ i ≤ 3−dv, v ∈ C1

)
is exchangeable. Now, the

conditional distribution of
(|Q(i)(v)|; 1 ≤ i ≤ 3−dv, v ∈ C1

)
givenQ(1)

n,3,m is equal

to the conditional distribution of the same sequence given Q(1)
n,3,m and CBD∞(C1).

Thus,
(|Q(i)(v)| ; 1 ≤ i ≤ 3 − dv, v ∈ C1

)
is an exchangeable family given Q(1)

n,3,m
and CBD∞(C1). Thus the claim follows. ��

We need the following result before proceeding to the proof of Lemma 6.17((ii)).
Recall the notation m(·; ·) from Sect. 3.1.

Lemma 6.18 Suppose (Zn, dn, μn) → (Z , d, μ) as n → ∞ in SGHP. If μ is non-
atomic, then

lim
ε↓0 lim sup

n→∞
m(ε, Zn) = 0.

Proof Using the convergence (Zn, dn, μn) → (Z , d, μ), it is easy to see that for every
ε > 0 and sufficiently large n,

m(ε, Zn) ≤ m(2ε, Z) + ε.
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It follows easily from the compactness of (Z , d) and the non-atomicity of μ that

lim
ε↓0 m(2ε, Z) = 0.

Thus the claim follows. ��

We now continue with

Proof of Lemma 6.17((ii)) Recall the notation from Construction 3.9. Let �r/2 and
K

exp
n,3 be as in the proof of Proposition 6.3. As observed in the proof of Proposi-

tion 6.3, there is a natural isometric embedding of K exp
n,3 into

√
2�r/2 · H (s). In this

embedding,
√
2�r/2 ·H (s) can be obtained by attaching countably many real trees to

K
exp

n,3 . Let (K
exp

n,3 , μn) be the measured R-graph derived by endowing K
exp

n,3 by the

measure obtained by projecting the measure from
√
2�r/2 ·H (s) onto the attachment

points in K
exp

n,3 . Thus, the μn measure of the i-th edge of K exp
n,3 is Xi , 1 ≤ i ≤ r ,

where (X1, . . . , Xr ) ∼ Dirichlet(1/2, . . . , 1/2) as in Construction 3.9.
Arguing as in (6.14), it is easy to show that as n → ∞,

n−1/3dGHP
(
CB∞(√2�r/2 · H (s)), CB∞(K exp

n,3

)) P−→ 0.

Combining this with Theorem 4.8 and (6.12), we get

n−1/3CB∞(K exp
n,3

) d−→ (0.75)1/3 · M w.r.t. GHP topology. (6.44)

Suppose Gn,3 andKn,3 are coupled as in (6.10). On the event {Kn,3 = Gn,3}, the tree
CB∞(K exp

n,3

)
can be obtained by

(i) attaching each of the trees T( j)
n,λn

, 1 ≤ j ≤ kn(λn), to CBD∞
(
G1(n, λn)

)
via a

single edge, and then
(ii) attaching some additional line segments to the space thus obtained.

(Recall that in the CB process edges are cut open, while in the CBD process edges
are removed. Because of this difference these additional line segments need to be
attached.) Thus, using (6.44), Theorem 2.3, (6.5), together with Lemma 6.18, we see
that

max
1≤ j≤kn(λn)

1{Gn,3=Kn,3} × μn
(
T

( j)
n,λn

) P−→ 0. (6.45)

Consider the tree among T( j)
n,λn

, 1 ≤ j ≤ kn(λn), that has the maximum number of
edges (pick any one if there is more that one such tree), and let f1, . . . , fEmax be an
enumeration of its edges. On the event {Gn,3 = Kn,3},
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max
1≤ j≤kn(λn)

μn
(
T

( j)
n,λn

) ≥
Emax∑

j=1

μn
(

f j
) ≥

Emax∑

i=1

X (i) , (6.46)

where X (1) < . . . < X (r) are the order statistics corresponding to (X1, . . . , Xr ). Now
for any ε ∈ (0, 1),

εr∑

i=1

X (i)
P−→ 2 · E[�1/21{�1/2≤Qε}

]
, (6.47)

where �1/2 ∼ Gamma(1/2, 1) and P
(
�1/2 ≤ Qε

) = ε. It now follows from (6.45),
(6.46) and (6.47) that

Emax/r
P−→ 0,

which in turn implies (6.40). This completes the proof. ��

6.7 GHP convergence of theMST of G n,3

In this section we prove Theorem 2.2. We first state two fundamental results about the
configuration model and uniform simple graphs with prescribed degree.

(a) From (1.3) (see also [29,70]), it follows that conditional on being simple, the
configuration model has the same distribution as G n,d, i.e.,

P
(
G n,d ∈ ·) = P

(
Gn,d ∈ · ∣∣ Gn,d is simple

)
. (6.48)

(b) By [55, Theorem 1.1], if
∑

v∈[n] dv → ∞ and
∑

v∈[n] d2
v = O(

∑
v∈[n] dv), then

lim inf
n→∞ P

(
Gn,d is simple

)
> 0. (6.49)

Let Mavail
n,λ and Mattach

n,λ be as defined around (6.36). Define the spaces M
avail
n,λ and

M
attach
n,λ analogously for G n,3. Using (6.48) and (6.49), it follows that the analogues

of Lemma 6.12 and Lemma 6.14 hold for G n,3: Fix δ > 0 and consider a Z>0-valued
sequence λn ↑ ∞ with λn ≤ min{λ�

n, λ
◦
n}. Then

P
(
dGHP

(
CBD∞

(
G n,3

)
, M

attach
n,λn

)
> δn1/3)

= P
(
dGHP

(
CBD∞(Gn,3), Mattach

n,λn

)
> δn1/3

∣∣ Gn,3 is simple
) → 0,

as n → ∞. Similarly

n−1/3dGHP
(
M

attach
n,λn

, M
avail
n,λn

) P−→ 0.
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596 L. Addario-Berry, S. Sen

To complete the proof, we have to show that the analogue of Lemma 6.13 remains

true for M
avail
n,λn

. Thus, it suffices to prove that for each fixed λ ∈ R,

n−1/3 · Mavail
n,λ

d−→ 61/3 · CB∞(S1
(
(48)1/3 · λ

))
, as n → ∞

w.r.t. GHP topology. Let f : SGHP → R be bounded continuous. Then it suffices to
show that as n → ∞,

E
[

f
(
n−1/3Mavail

n,λ

∣∣ Gn,3 is simple
)]− E

[
f
(
n−1/3Mavail

n,λ

)] → 0,

or equivalently

E
[

f
(
n−1/3Mavail

n,λ · 1{Gn,3 is simple
})]− E

[
f
(
n−1/3Mavail

n,λ

)]× P
(
Gn,3 is simple

) → 0.

This can be proved by using techniques similar to the ones used in the proof of [40,
Theorem 3]; see the argument given in [40, Section 7]. We omit the details.

6.8 Proof of Theorem 2.3

Let Mn,er
λ be as defined at the beginning of Sect. 4.3. Using Observation 4.2, Mn,er

λ is
a subtree of Mn,er∞ . Consider the forest obtained from Mn,er∞ by deleting all edges in
Mn,er

λ , and for every v ∈ V (Mn,er
λ ), let T n,er

v,λ be the tree in this forest that contains v.
Define pn,er

v,λ := |T n,er
v,λ |/n. We now state two lemmas that will be needed in the proof.

Lemma 6.19 For every λ ∈ R, conditional on ER(n, λ), the family
(

pn,er
v,λ ; v ∈

V (Mn,er
λ )

)
of random variables is exchangeable.

Remark 5 At the beginning of [5, Section 4.4], it is stated that
(|T n,er

v,λ |, v ∈ V (Mn,er
λ )

)

is exchangeable conditional on V (Mn,er
λ ). (Here, we have translated the claim in [5]

using our notation.) However, in [5, Page 3114], the vertices of Mn,er
λ are relabeled

so that the vertices in each element of a given cover (Bn,i
λ , 1 ≤ i ≤ N n

ε ) of Mn,er
λ

by small-diameter sets appear successively. This labeling contains some information
about the relative positioning of the vertices in the tree, because if two vertices are
close in this arrangement of the vertices, then their tree distance is likely to be small
as well. In other words, the symmetry between the roles of a pair of vertices appearing
consecutively and a pair of vertices that are far fromeach other in this arrangement does
not follow directly. Exchangeability of

(|T n,er
v,λ |, v ∈ V (Mn,er

λ )
)
is needed conditional

on this labeling. Thus, the result implicitly being used in the proof of [5, Proposition
4.8] is the following:

(|T n,er
v,λ |, v ∈ V (Mn,er

λ )
)
is exchangeable conditional on Mn,er

λ .
This stronger form of exchangeability follows from Lemma 6.19.

Proof of Lemma 6.19 We outline the proof briefly. Using Lemma 4.1, conditional on
the graph ER(n, λ), Mn,er∞ can be generated as follows:
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Geometry of the minimal spanning tree of a random… 597

(i) Let Eout denote the set of edges of the complete graph Kn whose endpoints
are in two different components of ER(n, λ). Let Ein denote the set of edges
of ER(n, λ). Construct the graph ER(n, λ) ∪ Eout. Assign i.i.d. Uniform[n−1 +
λn−4/3, 1] weights to the edges in Eout, and independently of this, assign i.i.d.
Uniform[0, n−1+λn−4/3]weights to the edges inEin. Denote theweight assigned
to an edge e by we.

(ii) From the graph ER(n, λ) ∪ Eout, delete all edges e ∈ Eout that are part of a cycle
π (with no repeated edges) in ER(n, λ) ∪ Eout and we is the maximum among
all edge weights in π .

(iii) For each i ≥ 1, delete all edges e ∈ E(C n,er
i (λ)) that are part of a cycle π (with

no repeated edges) in C n,er
i (λ) and we is the maximum among all edge weights

in π .

The marginal distribution of the resulting tree will be the same as that of Mn,er∞ .
Consider two distinct vertices v1, v2 ∈ V (C n,er

1 (λ)). If we interchange the values
w{v1,u} and w{v2,u} for every vertex u /∈ V (C n,er

1 (λ)), then it is easy to check that in
the above procedure, the set of edges removed in step (iii) remains the same, and the
set of edges in Eout that are not incident to v1 or v2 and are removed in step (ii) remains
the same. Further, if {v1, u} ∈ Eout was removed in step (ii) before the interchange of
edge weights, then the edge {v2, u} will be removed in step (ii) after the interchange
and vice versa. Consequently, the values of pn,er

v1,λ
and pn,er

v2,λ
would be swapped as a

result of the interchange of edge weights. This shows that conditional on ER(n, λ), the
law of

(
pn,er
v,λ , v ∈ V (Mn,er

λ )
)
is invariant under transpositions.We can repeat the same

argument with any permutation of V (C n,er
1 (λ)) to get the claimed exchangeability. ��

Lemma 6.20 (Lemma 4.11 of [5]) Let �n,λ := maxv∈V (Mn,er
λ ) pn,er

v,λ . Then for every
δ > 0,

lim sup
λ→∞

lim sup
n→∞

P
(
�n,λ > δ

) = 0

We are now ready to prove Theorem 2.3. Observe the following facts:

(a) Fix s ≥ 2 and let r = 3(s − 1). Let e1, . . . , er be an enumeration of e(H (s)).
Then

(
len(ei ), 1 ≤ i ≤ r

) d=
(

Yi ·
(

�
(i)
1/2

∑r
j=1 �

( j)
1/2

)1/2

, 1 ≤ i ≤ r

)
,

where Yi , 1 ≤ i ≤ r , are i.i.d. Rayleigh random variables independent of �
(i)
1/2,

1 ≤ i ≤ r , which are i.i.d. Gamma(1/2, 1) random variables. As observed in

(6.13),
√
2 ·Yi

√
�

(i)
1/2, 1 ≤ i ≤ r , are i.i.d. Exponential(1) random variables. Thus,

for all δ > 0,

lim
s→∞ P

(
min

e∈e(H (s))
len(e) ≥ s− 3

2−δ
)

= 1.
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598 L. Addario-Berry, S. Sen

(b) By (3.8), for any s ≥ 2,

1√
m

min
e∈e(Hm,s)

len(e)
d−→ min

e∈e(H (s))
len(e) as m → ∞.

(c) C n,er
1 (λ) can be generated as follows:

(i) Sample |C n,er
1 (λ)| and sp(C n,er

1 (λ)). Denote the realizations bym and s respec-
tively.

(ii) Conditional on the previous step, generate Hm,s and set this graph to be
C n,er
1 (λ).

(d) By Lemma 3.3, P
(
ξ1(λ) ≤ λ

)+ P
(
N1(λ) < λ3/2

) → 0 as λ → ∞.

(e) By Theorem 3.2,
(

n−2/3|C n,er
1 (λ)|, sp

(
C n,er
1 (λ)

)) d−→ (
ξ1(λ), N1(λ)

)
as n →

∞.

Combining the above, we see that

lim sup
n→∞

P

(
min

e∈e
(
C n,er
1 (λ)

) len(e) ≤ n1/3/λ5
)

=: ε1(λ) → 0, as λ → ∞. (6.50)

Using the convergences sp(C n,er
1 (λ))

d−→ N1(λ) as n → ∞ and N1(λ)/λ3
P−→

2/3 as λ → ∞ together with (3.6), we see that

lim
n→∞ P

(
k
(
C n,er
1 (λ)

)
is not a 3-regular multigraph

)

= P
(
N1(λ) ≤ 1

) =: ε2(λ) → 0, as λ → ∞. (6.51)

Let en,er
i (λ), 1 ≤ i ≤ |e(C n,er

1 (λ))|, be an enumeration of e(C n,er
1 (λ)). Let V n,er

i (λ)

be the set of vertices inC n,er
1 (λ) that are connected to Core

(
C n,er
1 (λ)

)
via en,er

i (λ). (As
before, the common endpoints of multiple e ∈ e(C n,er

1 (λ)) and their pendant subtrees
are assigned to only of the V n,er

i (λ)’s in an arbitrary way.) From (3.11) and arguments
as above,

lim sup
n→∞

P

(
max

i

|V n,er
i (λ)|

|C n,er
1 (λ)| ≥ (log λ)2/λ3

)
=: ε3(λ) → 0, as λ → ∞. (6.52)

Denote the complements of the events in (6.50), (6.51), and (6.52) by E (1)
n,λ, E (2)

n,λ,

and E (3)
n,λ respectively. Let En,λ := ∩3

j=1E ( j)
n,λ. Note that on the event En,λ, any U ⊆

V (C n,er
1 (λ))with diam(U ;C n,er

1 (λ)) ≤ n1/3/(2λ5) can intersect V n,er
i (λ) for at most

three values of i .
Let Z n,er

λ be the graph obtained by attaching, for each v ∈ C n,er
1 (λ), the tree

T n,er
v,λ to C n,er

1 (λ) via identification of the vertices labeled v. Consider Ũ ⊆ [n] with
diam(Ũ ;Z n,er

λ ) ≤ n1/3/(2λ5). Let

U = {
v ∈ C n,er

1 (λ) : T n,er
v,λ ∩ Ũ 	= ∅}.
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Then diam(U ;C n,er
1 (λ)) ≤ n1/3/(2λ5). Consequently, on the event En,λ,

1

n
· |Ũ | ≤

∑

v∈U

|T n,er
v,λ |
n

≤ 3 × max
i

( ∑

v∈V n,er
i (λ)

pn,er
v,λ

)

≤ 3 · max
i

∣∣∣∣
∑

v∈V n,er
i (λ)

pn,er
v,λ − |V n,er

i (λ)|
|C n,er

1 (λ)

∣∣∣∣+ 3(log λ)2
1

λ3
. (6.53)

Arrange the vertices in C n,er
1 (λ) in a sequence so that for each i , the vertices

in V n,er
i (λ) appear consecutively. This arrangement is measurable w.r.t. the sigma

field generated by ER(n, λ). By Lemma 6.19, conditional on this arrangement,{
pn,er
v,λ

}
v∈V (C n,er

1 (λ))
is an exchangeable sequence. Using (6.39) with x = �

−1/4
n,λ , we

see that

ε
(n)

4 (λ) := P

(
max

i

∣∣∣
∑

v∈V n,er
i (λ)

pn,er
v,λ − |V n,er

i (λ)|
|C n,er

1 (λ)

∣∣∣∣ ≥ 2�1/4
n,λ

)

≤ P

(
�

−1/4
n,λ ≤ c2

)
+ 2 · E

[
exp

(
− c�−1/4

n,λ log log�
−1/4
n,λ

)]
, (6.54)

where c2 is as in Lemma 6.16. Combining (6.53) and (6.54), we see that

P

(
m
(
(2λ5)−1 ; n−1/3Z n,er

λ

) ≥ 6�1/4
n,λ + 3 · (log λ)2 · λ−3

)
≤ P(Ec

n,λ) + ε
(n)

4 (λ).

Since Mn,er∞ is a subtree ofZ n,er
λ , m(δ; Mn,er∞ ) ≤ m(δ;Z n,er

λ ) for every δ > 0. Thus,
using Theorem 1.1, we conclude that for every η > 0 and λ > 1,

P

(
m
(
(4λ5)−1 ; M

) ≥ η + 3 · (log λ)2 · λ−3
)

≤ lim sup
n→∞

P
(
6�1/4

n,λ > η
)+

3∑

i=1

εi (λ) + lim sup
n→∞

ε
(n)

4 (λ). (6.55)

The result follows upon using Lemma 6.20 and noting that the right side of (6.55)
tends to zero as λ → ∞.

6.9 Proof of Theorem 4.8

For p ∈ (0, 1) and m ∈ N, let Gm
p be distributed as follows: For any connected graph

H on [m] having r edges,

P(Gm
p = H) ∝ pr (1 − p)−r .

That is, Gm
p is an Erdős–Rényi random graph conditioned to be connected. We start

with the following lemma:
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Lemma 6.21 If pm3/2 ≤ 1, then

P
(
sp(Gm

p ) ≥ 2
) ≤ Cp2m3 (6.56)

for some universal constant C. Consequently, for any ε > 0 there exists λ(ε) > 0
such that for all λ ≥ λ(ε),

lim sup
n→∞

P
(
sp
(
C n,er

i (λ)
) ≥ 2 for some i ≥ 2

) ≤ ε. (6.57)

Proof Suppose t is a rooted tree on [m]. For v ∈ [m] define

R
( ←(k)

v , v, t
) := {

u ∈ [m] : ←−u =←(k)
v and u >

←(k−1)
v

}
, for 1 ≤ k ≤ ht(v, t), and

(6.58)

R(v, t) :=
ht(v,t)⋃

k=1

R
( ←(k)

v , v, t
)
. (6.59)

Let g(t) := ∑
v∈[m]

∣∣R(v, t)
∣∣ and M R(t) = maxv∈[m]

∣∣R(v, t)
∣∣. Let Tm denote a

uniform rooted tree on [m] and let T̃m be distributed as

P
(
T̃m = t

) = (1 − p)−g(t)
P
(
Tm = t

)

E
[
(1 − p)−g(Tm )

] . (6.60)

Then by [3, Proposition 8], Gm
p has the same law as the random graph obtained from

T̃m by placing an edge with probability p independently between every pair of vertices
v and u, where v ∈ [m] and u ∈ R(v, T̃m), and then forgetting the identity of the root

of T̃m . In particular, sp(Gm
p ) is distributed as Binomial(N , p) where N

d= g(T̃m).
Hence

P
(
sp(Gm

p ) ≥ 2
) ≤ p2E

[
g(T̃m)2

] ≤ p2m2
E
[
M R(T̃m)2

]
. (6.61)

It follows from (6.60) that for any x > 0,

P

(
M R(T̃m ) ≥ x

√
m
)

≤ E

[
(1 − p)−g(Tm )1{

M R(Tm )≥x
√

m
}
]

≤
[
P

(
M R(Tm ) ≥ x

√
m
)] 1

2
[
E(1 − p)−2g(Tm )

] 1
2 ≤ Ce−C ′x2eC ′′ p2m3

,

where the last step uses [3, Lemmas 13 and 14]. Using the fact that p2m3 ≤ 1, it
follows that E

[
M R(T̃m)2

] ≤ Cm. This in conjunction with (6.61) yields (6.56).
Next note that by [57, Theorem A.1], for any ε ∈ (0, 1), there exists λ(ε) > 0 such

that for all λ ≥ λ(ε),

lim sup
n→∞

P

(∑

i≥2

∣∣C n,er
i (λ)

∣∣2 ≥ εn4/3
)

≤ ε. (6.62)
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Denote the event on the left side of (6.62) by F(n, λ; ε). Now conditional on the
component sizes of ER(n, λ) being equal to m1, m2, . . . , mr , the components are
distributed as Gm1

p , . . . , Gmr
p with p = n−1 + λn−4/3. Further, for any ε ∈ (0, 1/4)

and large n, pm3/2
i ≤ 1 if m2

i ≤ εn4/3. Hence, using (6.56),

P
(
sp
(
C n,er

i (λ)
) ≥ 2 for some i ≥ 2

)

≤ P
(
F(n, λ; ε)

)+ C E

[
1
{

F(n, λ; ε)c} · n−2
∑

i≥2

∣∣C n,er
i (λ)

∣∣3
]

≤ P
(
F(n, λ; ε)

)+ Cε. (6.63)

(6.63) together with (6.62) yields (6.57). ��
Our next lemma roughly states that inside the critical window, the number of surplus

edges in the largest component of the Erdős–Rényi random graph takes all large
integer values with high probability, and during this time of the evolution, every other
component is either a tree or is unicyclic.

Lemma 6.22 For every ε > 0, there exists sε ∈ N such that for all integers s ≥ sε,

lim inf
n

P
(
A [sε, s]) ≥ 1 − ε, (6.64)

where A [sε, s] denotes the event that there exist λ1 ≤ λ2 such that in the inter-
val [λ1, λ2], the process sp

(
C n,er
1 (·)) assumes all values in

{
sε, sε + 1, . . . , s

}
, and

sp
(
C n,er

i (λ)
) ≤ 1 for all i ≥ 2 and λ ∈ [λ1, λ2].

Proof For k ≥ 1, define

β(k) = k(k + 1)(
k + 1/6

)(
k + 5/6

) .

We say that the “leader changes in ER(n, ·) after time λ” if there exists λ′ > λ such
that the component in ER(n, λ′) containing C n,er

1 (λ) is not C n,er
1 (λ′). Fix η > 0 and

choose λ(η) large such that the following hold:

lim sup
n→∞

P

(
The leader does not change in ER(n, ·) after time λ(η)

)
≥ 1 − η,

(6.65)
∏

j≥0

β
([

λ(η)3/3
]+ j

)
≥ 1 − η, (6.66)

lim sup
n→∞

P

(
sp
(
C n,er

i (λ(η))
) ≤ 1 for all i ≥ 2

)
≥ 1 − η, and (6.67)

lim sup
n→∞

P

(
λ(η)3/3 < sp

(
C n,er
1 (λ(η))

)
< λ(η)3

)
≥ 1 − η. (6.68)

(6.65) uses [65, Theorem 7] (see also [4]). (6.66) uses the fact that
∏

k≥1 β(k) > 0.
(6.67) uses (6.57). (6.68) uses Lemma 3.3 and Theorem 3.2.
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Let Fn
k denote the event that there exists λ ∈ R such that the random graph ER(n, λ)

has exactly one componentwith surplus k+1 and the surplus of every other component
is at most one. Then by (6.67) and (6.68),

lim inf
n→∞ P

(⋃ [λ(η)3]
k=[λ(η)3/3]F

n
k

)
≥ 1 − 2η. (6.69)

By [58, Theorem 5.28], for [λ(η)3/3] ≤ k ≤ [λ(η)3] and any s ≥ [λ(η)3] + 1,

lim
n→∞P

( s⋂

j=k+1

Fn
j

∣∣∣ Fn
k \ (

k−1⋃

j=[λ(η)3/3]
Fn

j

)) =
s∏

j=k+1

β( j). (6.70)

Note that

P

( s⋂

j=[λ(η)3]
Fn

j

)
≥

[λ(η)3]∑

k=[λ(η)3/3]
P

(( s⋂

j=k

Fn
j
) \ (

k−1⋃

j=[λ(η)3/3]
Fn

j
))

≥
[λ(η)3]∑

k=[λ(η)3/3]
P

( s⋂

j=k+1

Fn
j

∣∣∣ Fn
k \ (

k−1⋃

j=[λ(η)3/3]
Fn

j
)) · P

(
Fn

k \ (
k−1⋃

j=[λ(η)3/3]
Fn

j
))

≥ P

( [λ(η)3]⋃

k=[λ(η)3/3]
Fn

k

)
× min � P

( s⋂

j=k+1

Fn
j

∣∣∣ Fn
k \ (

k−1⋃

j=[λ(η)3/3]
Fn

j
))

,

where min� is minimum taken over [λ(η)3/3] ≤ k ≤ [λ(η)3]. Thus, (6.69), (6.70),
and (6.66) give

lim inf
n→∞ P

( s⋂

j=[λ(η)3]
Fn

j

)
≥ (1 − 2η)(1 − η).

Combining this with (6.67) and (6.68), we see that

lim inf
n→∞ P

({ s⋂

j=[λ(η)3]
Fn

j

}⋂{
sp
(
C n,er

i

(
λ(η)

)) ≤ 1 for all i ≥ 2
}

⋂{
λ(η)3/3 < sp

(
C n,er
1 (λ(η))

)
< λ(η)3

})
> 1 − 5η.

Thus, for all large n, in the process
(
ER(n, λ), λ ≥ λ(η)

)
, with probability at least

1 − 5η, the surplus of the component containing C n,er
1 (λ(η)) assumes all values in{[λ(η)3] + 1, . . . , s

}
, and during this part of the evolution, the surplus of the other

components remains at most one. By (6.65), the component containing C n,er
1 (λ(η))

remains the largest component after time λ(η) with probability at least 1 − η. Thus,
(6.64) follows if we take sε = [λ(η)3] + 1 with η = ε/6. ��
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LetHn,s be as in Theorem 3.11 and let L(·) be as in (3.4). Define H̃n,s and H̃ (s)

via

E
[

f (H̃n,s)
] = E

[
f (Hn,s)L(Hn,s)

]

E
[
L(Hn,s)

] and E
[

f (H̃ (s))
] = E

[
f (H (s))L(H (s))

]

E
[
L(H (s))

]

for every bounded measurable f : SGHP → R. For s ≥ 2 define

τs = inf
{
λ : sp(C �) = s for some component C � of ER(n, λ)

and sp(C ) ≤ 1 for every other component C of ER(n, λ)
}
. (6.71)

If τs < ∞, define C n,�
τs

to be the (unique) component of ER(n, τs) with sp(C n,�
τs

) = s.
If τs = ∞, define C n,�

τs
to be the one-point space.

Lemma 6.23 Fix s ≥ 2. Let Ui j , 1 ≤ i < j ≤ n, be the i.i.d. Uniform[0, 1] random
variables used in the construction of ER(n, ·). Let H̃n,s be independent of (Ui j , 1 ≤
i < j ≤ n). Define Mn,�

τs
to be the MST of C n,�

τs
constructed using the weights Ui j

if τs < ∞ and |C n,�
τs

| ≥ log n, and set Mn,�
τs

= CBD∞
(
H̃n,s

)
otherwise. Then as

n → ∞,

(|Mn,�
τs

|)−1/2
Mn,�

τs

d−→ CB∞(H̃ (s)) w.r.t. GHP topology.

Proof For convenience, we will assume that the random vector (Ui j , 1 ≤ i < j ≤ n)

is given by the identity map on the canonical probability space [0, 1](n
2) endowed with

the
(n
2

)
-fold product of the uniform measure on [0, 1].

For any subgraph H of the complete graph on [n], define the event

FH := {
τs < ∞, ER(n, τs) \ C n,�

τs
= H

}
.

Fix any H with P(FH ) > 0. Then P
(
FH ∩ {C n,�

τs
= H1}

)
> 0 for any connected

graph H1 with

V (H1) = [n] \ V (H), and sp(H1) = s. (6.72)

Now for any H1 satisfying (6.72), the realizations (ui j ; 1 ≤ i < j ≤ n) of the
random variables Ui j for which FH ∩ {C n,�

τs
= H1} holds are given by

FH ∩ {C n,�
τs = H1} =

{
max

{
ui j : (i, j) ∈ E(H1) ∪ E(H)

}

= max
{
ui j : (i, j) ∈ E(Core(H1))

}

< min
{
ui j : (i, j) /∈ E(H1) ∪ E(H)

}}
,

and for any such realization (ui j ), we have
(
uπ(i, j) ; 1 ≤ i < j ≤ n

) ∈ FH ∩{C n,�
τs

=
H1} for any permutation π of {(i, j) : 1 ≤ i < j ≤ n} satisfying π(i, j) = (i, j) for
all (i, j) /∈ E(Core(H1)). Hence, conditional on τs < ∞ and ER(n, τs), the random
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variables Ui, j , (i, j) ∈ Core(C n,�
τs

), are exchangeable. Using Lemma 4.5, we see that
the following equality of conditional distributions hold for any m ≥ log n:

(
Mn,�

τs

∣∣ τs < ∞, |C n,�
τs

| = m
) d= (

CBD∞
(
C n,�

τs

) ∣∣ τs < ∞, |C n,�
τs

| = m
)

(6.73)

Next, for any two graphs G1, G2 on [n], writePer(G1, G2) to denote the probability
that there exist λ1 ≤ λ2 such that ER(n, λ1) = G1 and ER(n, λ2) = G2. Thus, if G1
is a subgraph of G2, then

P
er(G1, G2) = 1

N ! · |E(G1)|! ·
(|E(G2)| − |E(G1)|

)! · (N − |E(G2)|
)! , (6.74)

where N = (n
2

)
. Now for any H1 satisfying (6.72),

P
(
C n,�

τs
= H1

∣∣ FH
) = 1

P(FH )
P
(
τs < ∞, ER(n, τs) = H1 ∪ H

)

= 1

P(FH )

∑

e∈E(Core(H1))

P
er ((H1 \ e) ∪ H , H1 ∪ H

) ∝ ∣∣E(Core(H1))
∣∣ = L(H1),

where in the penultimate step we have used (6.74) to deduce that the summands are the
same for any H1 satisfying (6.72). Thus, for anym ≥ log n, the conditional distribution
of C n,�

τs
given τs < ∞ and |C n,�

τs
| = m satisfies

(
C n,�

τs

∣∣ τs < ∞, |C n,�
τs

| = m
) d= H̃m,s . (6.75)

Now for any bounded continuous f : SGHP → R,

lim
m→∞E

[
f
( 1√

m
H̃m,s

)] = lim
m→∞

E
[

f
( 1√

m
Hm,s

)
L(Hm,s )

]

E
[
L(Hm,s )

] = E
[

f
(
H (s))L(H (s))

]

E
[
L(H (s))

] = E
[

f
(
H̃ (s))],

where the second step uses (3.8) and (3.9). Hence m−1/2H̃m,s
d−→ H̃ (s) as m → ∞

w.r.t. GHP topology. Using Theorem 4.6 and (3.10), it follows that as m → ∞,

m−1/2CBD∞
(
H̃m,s

) d−→ CB∞(H̃ (s))

w.r.t. GHP topology. Now the claim follows from (6.73) and (6.75). ��
Proof of Theorem 4.8 Fix 0 < ε < 1/2. For s ≥ 3, define λs by the relation 2λ3s = 3s.
Define

Es :=
{
A [s, s]

⋂{
the leader does not change in ER(n, ·) after time λs/2

}}
,

(6.76)
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where A [· , ·] is as in Lemma 6.22. Using (6.64) and (6.65), choose s1 large so that

lim sup
n→∞

P
(
Ec

s

) ≤ ε for all s ≥ s1.

Let Mn,er
λ denote the MST of C n,er

1 (λ) constructed using the same i.i.d.
Uniform[0, 1] random variables Ui j used to construct the process ER(n, ·). If the
leader does not change after time λ, then using Observation 4.2, we see that Mn,er

λ is a
subtree of Mn,er

λ′ for any λ′ > λ. Thus, using [5, Lemma 4.5], we can choose s2 large
enough so that

lim sup
n→∞

P

(
dH
(
Mn,er

λ , Mn,er
λ′

)
> εn1/3

)
≤ ε for all λ, λ′ ≥ λs2 . (6.77)

Next, define λs = λs(1+ ε) and λs = λs(1− ε), and using Lemma 3.3, Theorem 3.2,
(6.57), and (6.76), choose s3 large enough so that

lim sup
n→∞

P
(
Fc

s,ε

) ≤ 2ε for all s ≥ s3 , (6.78)

where

Fs,ε := Es

⋂{∣∣C n,er
1 (λs)

∣∣ ≥ 2λs(1 − ε)n2/3 and
∣∣C n,er

1 (λs)
∣∣ ≤ 2λs(1 + ε)n2/3

}

⋂ {
2 ≤ sp

(
C n,er
1 (λs)

) ≤ s − 1 and sp
(
C n,er
1 (λs)

) ≥ s + 1
}

⋂ {
∀i ≥ 2 , sp

(
C n,er

i (λs)
) ≤ 1 and sp

(
C n,er

i (λs)
) ≤ 1

}
.

Set s0 := max
{
s2, s3

}
. From now on, we will only consider s ≥ s0.

Let τs be as in (6.71). If τs < ∞, let Mn,er
τs

be the MST of C n,er
1 (τs) constructed

using the edge weights Ui j . If τs = ∞, set C n,er
1 (τs) to be the complete graph Kn ,

and let Mn,er
τs

= Mn,er∞ –the MST of Kn constructed using the edge weights Ui j . Note
that on the event Fs,ε, λs < τs < λs , C

n,er
1 (τs) = C n,�

τs
, and Mn,er

τs
= Mn,�

τs
, where

the notation is as in Lemma 6.23. Thus, writing L (·) and dPR(·, ·) to denote the law
of a random metric measure space and the Prokhorov distance between two measures
respectively, it follows from Lemma 6.23 that

lim sup
n→∞

dPR

(
L

(
(12s)1/6

(|C n,er
1 (τs)

∣∣)1/2
Mn,er

τs

)
, L

((
12s

)1/6 · CB∞(H̃ (s))
))

≤ 2ε.

(6.79)

Next note that on Fs,ε, Mn,er
λs

⊆ Mn,er
τs

⊆ Mn,er
λs

. On Fs,ε, for every i ∈ Mn,er
τs

, let

Vi := {
j ∈ Mn,er

λs
: the path connecting j and i in Mn,er

λs
intersects Mn,er

τs
only at i

}
.
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Note that i ∈ Vi . Let C be the correspondence between Mn,er
τs

and Mn,er
λs

given by

C = {(i, j) : i ∈ Mn,er
τs

, j ∈ Vi }. Define a measure π on Mn,er
τs

× Mn,er
λs

via

π{(i, j)} = 1/|C n,er
1 (λs)| for (i, j) ∈ C . Then on the event Fs,ε,

dis(C) ≤ 1

2
dH
(
Mn,er

λs
, Mn,er

λs

)
, and π(Cc) = 0.

Further, writing μ1 and μ2 for the uniform probability measures on Mn,er
τs

and Mn,er
λs

respectively, on the event Fs,ε,

D(π;μ1, μ2) ≤
∑

i∈C n,er
1 (τs )

∣∣∣∣
1∣∣C n,er

1 (τs)
∣∣ − |Vi |∣∣C n,er

1 (λs)
∣∣

∣∣∣∣

≤
∑

i∈C n,er
1 (τs )

(
1

|C n,er
1 (τs)| − 1∣∣C n,er

1 (λs)
∣∣

)
+

∑

i∈C n,er
1 (τs )

|Vi | − 1∣∣C n,er
1 (λs)

∣∣

≤
∑

i∈C n,er
1 (τs )

(∣∣C n,er
1 (λs)

∣∣− ∣∣C n,er
1 (λs)

∣∣

|C n,er
1 (λs)| · ∣∣C n,er

1 (λs)
∣∣

)
+
∣∣C n,er

1 (λs)
∣∣− ∣∣C n,er

1 (λs)
∣∣

∣∣C n,er
1 (λs)

∣∣

≤ 2 ×
∣∣C n,er

1 (λs)
∣∣− ∣∣C n,er

1 (λs)
∣∣

∣∣C n,er
1 (λs)

∣∣ ≤ 2
(1 + ε)2 − (1 − ε)2

(1 − ε)2
≤ 32ε ,

(6.80)

where the last step uses ε < 1/2. By (6.77), (6.78), and (6.80), it follows that

lim sup
n→∞

P

(
dGHP

(
n− 1

3 · Mn,er
τs

, n− 1
3 · Mn,er

λs

)
> 32ε

)
≤ 3ε. (6.81)

Note that

{
2λs(1 − ε)n2/3 ≤ ∣∣C n,er

1 (τs)
∣∣ ≤ 2λs(1 + ε)n2/3

}
⊇ Fs,ε . (6.82)

Hence, on the event Fs,ε,

dGHP

(
(12s)1/6

(|C n,er
1 (τs)

∣∣)1/2
Mn,er

τs
,

1

n1/3 Mn,er
τs

)
≤ diam

(
Mn,er

τs

)
∣∣∣∣∣

(12s)1/6
(|C n,er

1 (τs)
∣∣)1/2

− 1

n1/3

∣∣∣∣∣

≤ 1

n1/3 × diam
(
Mn,er∞

)× 3ε , (6.83)

where the last step uses (6.82) and the relation 2λ3s = 3s. ByTheorem1.1, the sequence
of random variables

(
n−1/3diam

(
Mn,er∞

) ; n ≥ 1
)
is tight. It thus follows from (6.78),
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(6.81), and (6.83) that

lim sup
n→∞

P

(
dGHP

(
(12s)1/6

(|C n,er
1 (τs)

∣∣)1/2
Mn,er

τs
,

1

n1/3 Mn,er
λs

)
≥ √

ε

)
=: δε (6.84)

satisfies δε ↓ 0 as ε ↓ 0.

By (4.3), n−1/3Mn,er
λs

d−→ CB∞(S1(λs)
)
as n → ∞ w.r.t. GHP topology. Com-

bining this with (6.84) and (6.79), we see that

dPR

(
L

((
12s

)1/6 · CB∞(H̃ (s))
)

, L

(
CB∞(S1(λs)

))) ≤ 2ε + δε + √
ε.

(6.85)

Finally, by Theorem 4.7, CB∞(S1(λs)
) d−→ M as s → ∞ w.r.t. GHP topology.

Combining this observation with (6.85) implies that

(
12s

)1/6 · CB∞(H̃ (s)) d−→ M as s → ∞

w.r.t. GHP topology. Now the proof is completed by using Lemma 6.24 stated below.
��

Lemma 6.24 For any bounded measurable f : SGHP → R,

E
[

f
((
12s

)1/6 · CB∞(H̃ (s)))]− E
[

f
((
12s

)1/6 · CB∞(H (s)))] → 0 as s → ∞ .

Proof Let r = 3(s − 1). Let (X1, . . . , Xr ) be as in Construction 3.9 and Yi , Zi ,
1 ≤ i ≤ r , and�r/2 be as in the proof of Proposition 6.3. Then�r/2 ∼ Gamma(r/2, 1),
and as observed in (6.13),

√
2Zi , 1 ≤ i ≤ r , are i.i.d. Exponential(1) randomvariables.

Hence

L(H (s)) =
r∑

i=1

Yi

√
Xi =

r∑

i=1

Zi√
�r/2

= √
r · (1 + oP (1)

)
. (6.86)

Further, for any s ≥ 3,

E

[ L(H (s))2

r

]
≤ 1

r
·
(
E
[( r∑

i=1

Zi
)4])1/2 ·

(
E
[
�−2

r/2

])1/2 ≤ C (6.87)

for a universal constant C . It follows from (6.86) and (6.87) that

lim
s→∞

1√
r

· E[L(H (s))
] = 1, (6.88)
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which in turn implies that r−1/2
(

L(H (s)) − E
[
L(H (s))

]) P−→ 0 as s → ∞. Now

E

[(
L(H (s)) − E

[
L(H (s))

])2] ≤ E
[
L(H (s))2

] ≤ Cr

by using (6.87). It thus follows that

lim
s→∞ r−1/2

E
∣∣L(H (s)) − E

(
L(H (s))

)∣∣ = 0. (6.89)

Hence
∣∣∣E
(

f
((
12s

)1/6 · CB∞(H̃ (s))))− E

(
f
((
12s

)1/6 · CB∞(H (s))))
∣∣∣

≤ ‖ f ‖∞ · E
∣∣L(H (s)) − E

(
L(H (s))

)∣∣

E
[
L(H (s))

] → 0

as s → ∞, where the last step follows from (6.88) and (6.89). ��

7 Discussion

Here we briefly discuss universality of the scaling limit of the MST and related open
problems.
(a) Universality of MST scaling limit for models exhibiting mean-field behavior:
The geometry of the MST of an underlying discrete structure is closely related to the
geometry of the structure under critical percolation. The behavior under critical per-
colation of several models exhibiting mean-field behavior is well-understood. In [3],
the metric space scaling limit of the critical Erdős–Rényi random graph was estab-
lished. Soon after this work, an abstract universality principlewas developed in [22,27]
which was used to establish Erdős–Rényi type scaling limits for a wide array of criti-
cal random graphmodels including the configuration model under critical percolation,
various models of inhomogeneous random graphs, and the Bohman-Frieze process.
In [26], the metric space scaling limit of random graphs with critical degree sequence
having finite third moment was established. Further, existing literature suggests that
the components of the high-dimensional discrete torus [51,52,85] and the hypercube
[83] under critical percolation, and the critical quantum random graph model [38] also
share the Erdős–Rényi scaling limit. It is believed that the scaling limit of the MST of
each of these models exists and has the same law as M up to a scaling factor.

We briefly discuss here how such a result might be proved for general random
graphs with given degree sequences.

Assumption 7.1 Suppose d = d(n) = (d (n)
v , v ∈ [n]) is a degree sequence for each

n ≥ 1, and write νn := n−1∑
v∈[n] δdn

v
for the empirical degree distribution. Assume

the following hold:

(i) There exists a measure ν on Z≥0 such that νn → ν as n → ∞ w.r.t. the W3
distance.
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(ii) We have νn(0) = 0 for all n ≥ 1, limn→∞ n1/2 · νn(1) = 0, and ν(2) = 0.

Assumption 7.1 ((ii)) ensures that P
(
Bn

) → 1, where Bn denotes the event that
Gn,d is connected [43, Theorem 2.2]. Note that Assumption 7.1 ((ii)) in particular
implies that σ2(ν) ≥ 3σ1(ν), which is stronger than the condition for supercriticality
of Gn,d, namely, σ2(ν) > 2σ1(ν).

Conjecture 7.2 Let Md (resp. M
d
) denote the MST of Gn,d (resp. G n,d), and let M

be as in Theorem 1.1. Then under Assumption 7.1,

n−1/3 · Md d−→ β(ν) · M as n → ∞ (7.1)

with respect to the GHP topology, where the constant β(ν) is given by the following
prescription: Let D and Y be random variables such that D has law ν and, conditional
on D, Y is Binomial

(
D, p

)
-distributed,

where p = σ1(ν)/
(
σ2(ν) − σ1(ν)

)
. Then

β(ν) := E
[
Y
] ·
(
E
[
Y 3]− 4 · E[Y ]

)−2/3
.

Further, (7.1) continues to hold if we replace Md by M
d
.

In the context of the 3-regular configuration model, ν = δ{3}. A simple calculation
shows that β

(
δ{3}

) = 61/3, which is exactly the constant in Theorem 2.1. Let Ue,
e ∈ E(Gn,d), be i.i.d. Uniform[0, 1] random variables conditional on Gn,d. Suppose
Md is constructed using these edge weights. For λ ≥ 0, let

pn
λ := σ1(ν

n)

σ2(νn) − σ1(νn)
+ λ

n1/3 .

Let Gn,d(λ) be the graph with vertex set [n] and edge set
{
e ∈ E(Gn,d) : Ue ≤ pn

λ

}
.

Write C d
1 (λ) for the largest connected component of Gn,d(λ), and let Md

λ denote the
MST of C d

1 (λ) constructed using the edge weights Ue, e ∈ E
(
C d
1 (λ)

)
.

Using Observation 4.2, on the event Bn , Md
λ is the restriction of Md to C d

1 (λ).
OnBn , consider the forest obtained by removing from Md the vertices in Md

λ and all
edges incident to the vertices in Md

λ ; let T
d
i,λ, i = 1, . . . , kdλ , denote the trees in this

forest, and set Xd
λ := maxi |Td

i,λ|. On Bc
n , set Xd

λ = 0.
To prove Conjecture 7.2, it is enough to prove the following two estimates: For all

ε > 0,

lim
λ→∞ lim sup

n→∞
P

(
Bn ∩

{
dH
(
Md

λ , Md) > εn1/3
})

= 0 , and (7.2)

lim
λ→∞ lim sup

n→∞
P
(
Xd

λ > εn
) = 0 . (7.3)

Note that on the event Bn , Md
λ is a subtree of Md, so it makes sense to measure

the Hausdorff distance between them; moreover, this distance is bounded from above
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by the maximum of the diameters of the trees Td
i,λ, i = 1, . . . , kdλ . In the setting of

the complete graph, results analogous to (7.2) and (7.3) were established in [6] and
[5, Lemma 4.11] respectively. For inhomogeneous random graphs in the heavy-tailed
regime, the analogue of (7.2) is proved in [25, Theorem 6.1].

The bound in (7.2) together with Lemma 4.5, Theorems 3.13, 3.14, and 4.6 would
imply that (7.1) holds with respect to the GH topology. This could be strengthened
to GHP convergence with the help of the following exchangeability result: For each
v ∈ V (C d

1 (λ)), let d (n)

v,λ denote the degree of v inC
d
1 (λ), and define davail

v,λ := d (n)
v −d (n)

v,λ.

On the event Bn , for every v ∈ V (Md
λ ), let Td

i,λ(v), 1 ≤ i ≤ rv,λ, be the trees

among Td
i,λ, 1 ≤ i ≤ kdλ , that are attached to v in Md. For every v ∈ V (Md

λ ),

append (davail
v,λ − rv,λ) many zeros to the sequence

(∣∣Td
i,λ(v)

∣∣, 1 ≤ i ≤ rv,λ

)
and let

(
α

(i)
d,λ(v), 1 ≤ i ≤ davail

v,λ

)
be a uniform permutation of the resulting sequence; use

independent permutations for different v ∈ V (Md
λ ) that are also independent of all the

other random variables being considered. OnBc
n , set α

(i)
d,λ(v) := 0 for v ∈ V (C d

1 (λ))

and i = 1, . . . , davail
v,λ . Then conditional on Gn,d(λ) and Md

λ , the family

(
α

(i)
d,λ(v) ; 1 ≤ i ≤ davail

v,λ , v ∈ C d
1 (λ)

)
of random variables is exchangeable . (7.4)

The proof of (7.4) is similar to those of Lemma 6.17 (i) and Lemma 6.19.We outline
the argument here for the readers’ convenience. We can generate Gn,d(λ), Md

λ , and(
α

(i)
d,λ(v) ; 1 ≤ i ≤ davail

v,λ , v ∈ C d
1 (λ)

)
jointly as follows:

(a) Sample aBinomial
(∑

v d (n)
v /2 , 1−pn

λ

)
randomvariable. For simplicity,we denote

the realization by m.
(b) Consider the vertex set [n] with d (n)

v many half-edges attached to the vertex v.
Conditional on step (a), sample Q(1)

n,d,m as in Lemma 6.8. By (6.19),

Q(1)
n,d,m

d= Gn,d(λ) . (7.5)

Thus, the largest component of Q(1)
n,d,m , say C •

1 , has the same law as C d
1 (λ). Let

d•
v be the degree of v ∈ C •

1 . Then each v ∈ C •
1 has d (n)

v − d•
v many ‘available’

half-edges; we denote them by fv,i , 1 ≤ i ≤ d (n)
v − d•

v , v ∈ C •
1 .

(c) Assign i.i.d. Uniform[0, pn
λ] weights to the edges of Q(1)

n,d,m . Let M•
1 be the MST

of C •
1 constructed using these edge weights. Then

M•
1

d= Md
λ (7.6)

jointly with the equality in distribution in (7.5).
(d) Conditional on steps (a), (b), and (c), sample Q(2)

n,d,m as in Lemma 6.8, i.e., by
uniformly pairing the previously unpaired half-edges attached to the vertices in

Q(1)
n,d,m . ThenQ

(2)
n,d,m

d= Gn,d jointly with (7.5) and (7.6). Let Enew := E(Q(2)
n,d,m)\

E(Q(1)
n,d,m).
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(e) IfQ(2)
n,d,m is not connected, go to the next step. IfQ(2)

n,d,m is connected, assign i.i.d.
Uniform[pn

λ, 1] weights to the edges in Enew. Let we denote the weight assigned
to the edge e. Delete all edges e ∈ Enew for which there exists a cycle π (with
no repeated edges) in Q(2)

n,d,m such that e is an edge in π and we is the maximum
among all edge weights in π . This will yield a connected multigraph which we
denote by Q.

(f) If Q(2)
n,d,m is not connected, define Q(i)(v) to be the empty graph for 1 ≤ i ≤

d (n)
v − d•

v , v ∈ C •
1 . IfQ

(2)
n,d,m is connected, then note thatQ as constructed in (e) is

simply C •
1 together with some connected multigraphs each of which is connected

to a vertex ofC •
1 by a single edge; for v ∈ C •

1 and 1 ≤ i ≤ d (n)
v −d•

v , set Q(i)(v) to
be the connected multigraph that is connected to v via the edge formed by pairing
fv,i with another half edge in step (d), with the convention that Q(i)(v) is the
empty graph if this edge was removed in step (e). Then

(
sort

(|Q(i)(v)| , 1 ≤ i ≤ d(n)
v − d•

v

) ; v ∈ C •
1

)
d=
(
sort

(
α

(i)
d,λ

(v) , 1 ≤ i ≤ davailv,λ

) ; v ∈ C d
1 (λ)

)

jointly with the distributional equalities in (7.5) and (7.6), where sort(·) arranges
the entries of a finite sequence in decreasing order.

Conditional on steps (a), (b), and (c) above, the rest of the procedure is symmetric with
respect to the available half-edges attached to the vertices ofC •

1 . Hence, conditional on
Q(1)

n,d,m and M•
1 , the family

(|Q(i)(v)| ; 1 ≤ i ≤ d (n)
v − d•

v , v ∈ C •
1

)
is exchangeable.

Thus, (7.4) follows.
The GH convergence in (7.1) can be lifted to GHP convergence using (7.3), (7.4),

and arguments similar to the ones used in this paper. To carry out this argument, one
would need to consider the metric measure space obtained by assigning mass davail

v,λ to

each v ∈ V (C d
1 (λ)) and normalizing it to make it a probability measure. This does

not quite fit into the framework of Theorem 3.13 (i) where the same function f is used
for all vertices. This was done to keep the statement of that theorem simple. However,
the proof of Theorem 3.13 outlined in Sect. A.2 goes through without any change for
the measure being considered in this setting.
(b) MST scaling limit in the heavy-tailed regime: This regime seems more interest-
ing. Consider scale-free random graphs on n vertices where the tail of the empirical
degree distribution νn asymptotically decays like νn([x,∞)) ∼ x1−τ for some
τ ∈ (3, 4). (In particular, the degree distribution asymptotically has infinite third
moment and finite second moment.) It is predicted [31,32] that typical distance on the

MST of such graphs scale like n
τ−3
τ−1 . In this regime, the scaling limit at criticality was

first established in [24] for inhomogeneous random graphs, and in [23] for random
graphs with given degree sequences. The recent preprint [33] studies scaling limits of
critical inhomogeneous random graphs in greater generality. The works [37,50] study
scaling limits of critical random graphs with i.i.d. heavy-tailed degree sequences and
alternate constructions of the limiting spaces. Very recently in [25], the scaling limit
of the MST on the giant component in a supercritical inhomogeneous random graph
with tail expoenent τ ∈ (3, 4) has been established. Almost surely, the limiting space
in [25] is compact, every point in this space either has degree one (leaf), or two, or
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612 L. Addario-Berry, S. Sen

infinity (hub), both the set of leaves and the set of hubs are dense in this space, and
the Minkowski dimension of this space equals (τ − 1)/(τ − 3). We expect this space
to be the candidate for the scaling limit of the MST of a wide array of heavy-tailed
random graphs under some general assumptions.
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Appendix A

Our aim in this section is to briefly describe the ideas needed to prove Theorems 3.11
and 3.13 .

A.1 Sketch of proof of Theorem 3.11

Suppose t is a rooted tree with vertices labeled by [m] and let R(·, t) be as in (6.59).
For s ≥ 1, let

As(t) := {(
v1, u1, . . . , vs, us

) : 1 ≤ v1 ≤ . . . ≤ vs ≤ m, ui ∈ R(vi , t),

if i < j and vi = v j then ui < u j
}
.

Note that s!× |As(t)| ≤ |A1(t)|s . Let Tm denote a uniform rooted labeled tree on [m],
and let T m be distributed as

P
(
T m = t

) = P
(
Tm = t

) · |As(t)|
E
(|As(Tm)|) .

Then we have the following decomposition of Hm,s :

Theorem A.1 Fix s ≥ 1. Sample T m, and conditional on the realization, sample(
v1,m, u1,m, . . . , vs,m, us,m

)
from As(T m) uniformly. Place an edge between vi,m

and ui,m for 1 ≤ i ≤ s, and then forget about the root of T m. Call the resulting graph

H m,s . Then H m,s
d= Hm,s .

This can be seen as follows: Consider a simple, connected, rooted graph G on [m]
with sp(G) = s. Let t be the tree constructed by following a depth-first exploration
of G starting at its root, and let vi , ui , 1 ≤ i ≤ s, be the endpoints of the s edges that
need to be added to t to recover G. We can arrange v1, u1, . . . , vs, us in a unique way
so that the resulting sequence becomes an element of As(t). It thus follows that the
set of simple, connected, rooted graphs on [m] having s surplus edges is in bijective
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correspondence with the set

{
(t, v1, u1, . . . , vs, us) : t rooted tree on [m], (v1, u1, . . . , vs, us) ∈ As(t)

}
.

(A.1)

Then one can show that if we root Hm,s at a uniform vertex, then its corresponding
element in the set (A.1) will be distributed as

(
T m, v1,m, u1,m, . . . , vs,m, us,m

)
. We

omit the details as similar ideas have already been used in [3,26,27].
For any tree t on [m] rooted at ρ, endow the children of each vertex in t with the

linear order induced by their labels. Let ρ = w0, w1, . . . , wm−1 be the vertices of
t in order of appearance in a depth-first exploration of t using the above order. Let
Htt : [0, m] → R be the height function of t given by Htt(m) = 0, and

Htt(x) = ht(w�x�, t), x ∈ [0, m).

The following lemma is a collection of some standard results about Tm :

Lemma A.2 (i) The following convergences hold:

m−1/2 HtTm

(
m · ) d−→ 2e(·), and

m−1/2 max
v∈[m]

∣∣2
∣∣R(v, Tm)

∣∣− ht(v, Tm)
∣∣ P−→ 0, (A.2)

where the convergence in (A.2) is w.r.t. the Skorohod J1 topology.
(ii) For all m ≥ 1, P

(
ht(Tm) ≥ x

√
m
) ≤ cx3 exp

(− x2/2
)
.

(iii) For all x ≥ 0 and m ≥ 1,

P
(
max
v∈[m] |R(v, Tm)| ≥ x

√
m
) ≤ c exp(−c′x2).

Using the bounds |As(Tm)|×s! ≤ |A1(Tm)|s and |A1(Tm)| ≤ m·maxv∈[m] |R(v, Tm)|,
we further have

P
(|As(Tm)| ≥ xm3s/2) ≤ c exp

(− c′x2/s)

for any s ≥ 1, x ≥ 0, and m ≥ 1.

(iv) For any s ≥ 1, m−3s/2
(|A1(Tm)|s − |As(Tm)| × s!) P−→ 0.

Lemma A.2((i)) follows from [69]. ((ii)) follows from [66, Corollary 1]. ((iii)) is the
content of [3, Lemma 13]. The proof of ((iv)) is similar to that of [26, Lemma 7.3 (iii)].

Sketch of proof of (3.9) In view of Theorem A.1, s · (ht(T m) + 1
)
dominates L(Hm,s)

stochastically for any s ≥ 1. Thus, (3.9) follows from Lemma A.2 ((ii)) and ((iii)). ��
To prove the other assertions in Theorem 3.11 it will be convenient to work with

two slightly different spacesH ◦
m,s andH

†
m,s which we define next. Recall the notation
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R(·, ·, ·) from (6.58). Sample T ◦
m according to distribution

P
(
T ◦

m = t
) = P(Tm = t) · |A1(t)|s

E
[|A1(Tm)|s] , t rooted tree on [m]. (A.3)

Conditional on T ◦
m , sample an i.i.d. sequence of triples (v◦

i,m, u◦
i,m, f ◦

i,m), 1 ≤ i ≤ s,
where

P
(
v◦

i,m = v | T ◦
m
) = |R(v, T ◦

m )|/|A1(T
◦
m )|, v ∈ [m],

P
(
u◦

i,m = u | T ◦
m , v◦

i,m
) = |R(u, v◦

i,m , T ◦
m )|/|R(v, T ◦

m )|, u ∈ { ←−(k)

(v◦
i,m ) : 1 ≤ k ≤ ht(v◦

i,m )
}
, and

P
(

f ◦
i,m = f | T ◦

m , v◦
i,m , u◦

i,m
) = 1

/|R(u◦
i,m , v◦

i,m , T ◦
m )|, f ∈ R(u◦

i,m , v◦
i,m , T ◦

m ).

LetH †
m,s (resp.H ◦

m,s) be the space obtained by adding an edge between v◦
i,m and f ◦

i,m
(resp. between v◦

i,m and u◦
i,m) for 1 ≤ i ≤ s, and then forgetting about the root of T ◦

m .
It follows from Lemma A.2 ((iii)) and ((iv)) that the total variation distance between
the laws ofH m,s (as defined in Theorem A.1) andH †

m,s tends to zero as m → ∞. It
thus follows from Theorem A.1 that there exists a coupling of Hm,s and H †

m,s such
that

P
(
Hm,s 	= H †

m,s

) → 0, as m → ∞. (A.4)

We will now recall an alternate construction of H (s) which is essentially given in
[3]; see also the discussion below [2, Equation (1)]. We first introduce some notation.
For any f : [0, 1] → R, x ∈ [0, 1], and h > 0, let

prev(x, h; f ) = sup
{

y ∈ [0, x) : f (y) = h
}
, and next(x, h; f ) = inf

{
y ∈ (x, 1] : f (y) < h

}
,

where sup{ } = −∞ and inf{ } = ∞ by convention.

Construction A.3 (Alternate construction of H (s)) Fix an integer s ≥ 2.

(a) Sample e◦ with law given by

E
[

f (e◦)
] = E

[
f (e)

( ∫ 1
0 e(t)dt

)s]

E
[( ∫ 1

0 e(t)dt
)s] .

(b) Conditional on e◦, sample i.i.d. points y◦
1 , . . . , y◦

s having density e◦(y)
/ ∫ 1

0 e◦(t)dt.
(c) Conditional on the above, sample h◦

1, . . . , h◦
s independently, where h◦

i ∼
Unif[0, e◦(y◦

i )]. Set x◦
i = prev(y◦

i , h◦
i ; e◦).

(d) Form the quotient space Te◦/ ∼, where ∼ is the equivalence relation under which
qe◦(x◦

i ) ∼ qe◦(y◦
i ), 1 ≤ i ≤ s.

Then H (s) d= 2 · (Te◦/ ∼ )
.
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Now observe that H ◦
m,s has a similar alternate construction: First sample T ◦

m as in
(A.3). Let w0, . . . , wm−1 be the vertices of T ◦

m in order of appearance in a depth-first
exploration of T ◦

m . Let Ht
◦ be the height function of T ◦

m . Conditional on T ◦
m , sample

i.i.d. random variables y◦
1,m, . . . , y◦

s,m , where

P
(
y◦

i,m = j | T ◦
m

) = |R(w j , T ◦
m)|/|A1(T

◦
m)|, 1 ≤ j ≤ m − 1.

Conditional on the above, sample h◦
1,m, . . . , h◦

s,m independently via

P
(
h◦

i,m = Ht◦(y◦
i,m) − k

∣∣ T ◦
m, y◦

1,m, . . . , y◦
s,m

)

= |R( ←(k)
v , v, T ◦

m

)|
|R(v, T ◦

m)| , 1 ≤ k ≤ Ht◦(y◦
i,m),

where v = wy◦
i,m
. Let x◦

i,m = prev(y◦
i,m, h◦

i,m;Ht◦) − 1. Then H ◦
m,s has the same

distribution as the space obtained by placing an edge in T ◦
m between wy◦

i,m
and wx◦

i,m
for 1 ≤ i ≤ s.

Sketch of proof of (3.8) Using Lemma A.2 ((i)) and ((iii)), it can be shown that the
following convergences hold jointly:

1√
m

Ht◦
(
m · ) d−→ 2e◦(·), and

( x◦
i,m

m
,

y◦
i,m

m
,

h◦
i,m√
m

)
d−→ (

x◦
i , y◦

i , 2h◦
i

)
, 1 ≤ i ≤ s

(A.5)

as m → ∞. Using Construction A.3 and the above alternate construction of H ◦
m,s , it

is now routine to prove the assertion in (3.8) forH ◦
m,s , from which it follows that the

same is true for H †
m,s . The desired result now follows from (A.4). ��

Let y◦
(i),m (resp. y◦

(i)), 1 ≤ i ≤ s, be y◦
i,m (resp. y◦

i ), 1 ≤ i ≤ s, arranged in an
increasing order. For 1 ≤ i ≤ s − 1 define z◦

i,m and z◦
i via

z◦
i,m = min

{
t ∈ [y◦

(i),m , y◦
(i+1),m ] : Ht◦(t) = min

{
Ht◦(a) : y◦

(i),m ≤ a ≤ y◦
(i+1),m

}}
, and

e◦(z◦
i ) = inf

{
e◦(t) : y◦

(i) ≤ t ≤ y◦
(i+1)

}
.

Further, define

x◦,+
i,m = next

(
x◦

i,m , h◦
i,m + 1; Ht◦

)
, x◦,+

i = next
(
x◦

i , h◦
i ; e◦), 1 ≤ i ≤ s,

z◦,−
i,m = prev

(
z◦
i,m ,Ht◦(z◦

i,m ) − 1; Ht◦
)− 1, z◦,−

i = prev
(
z◦
i , e◦(z◦

i ); e◦), 1 ≤ i ≤ s − 1,

z◦,+
i,m = next

(
z◦
i,m ,Ht◦(z◦

i,m ); Ht◦
)− 1, z◦,+

i = next
(
z◦
i , e◦(z◦

i ); e◦), 1 ≤ i ≤ s − 1.

Sketch of proof of (3.11) From (A.5) it follows that the following convergence holds
jointly with the convergence in (A.5): As m → ∞,

x◦,+
i,m

m
d−→ x◦,+

i , 1 ≤ i ≤ s, and
1

m

(
z◦
i,m , z◦,−

i,m , z◦,+
i,m

) d−→ (
z◦
i , z◦,−

i , z◦,+
i

)
, 1 ≤ i ≤ s − 1. (A.6)
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Arrange x◦
i , x◦,+

i , y◦
i , 1 ≤ i ≤ s, and z◦

i , z◦,−
i , z◦,+

i , 1 ≤ i ≤ s − 1, (resp.
x◦

i,m, x◦,+
i,m , y◦

i,m , 1 ≤ i ≤ s, and z◦
i,m, z◦,−

i,m , z◦,+
i,m , 1 ≤ i ≤ s − 1) in increasing

order as a1, . . . , a6s−3 (resp. as a1,m, . . . , a6s−3,m). Let

� j = a j+1 − a j , and � j,m = a j+1,m − a j,m, 1 ≤ j ≤ 6s − 4.

Then it follows from (A.6) and the second convergence in (A.5) that

(
� j,m, 1 ≤ j ≤ 6s − 4

) d−→ (
� j , 1 ≤ j ≤ 6s − 4

)
, as m → ∞ (A.7)

jointly with (A.5) and (A.6).
Recall the notation used in (3.11), and note that there exists a partition P =

{P1, . . . ,Pr } of [6s − 4] that depends only on the realizations of e◦ and x◦
i , y◦

i ,
1 ≤ i ≤ s, such that

(
μ(s)(T ′

i

)
, 1 ≤ i ≤ r

) d= ( ∑

j∈Pi

� j , 1 ≤ i ≤ r
)
. (A.8)

Further, it follows from (A.5) that for large m, the vector consisting of the numbers of
vertices in H ◦

m,s that are connected to the different elements of e(H ◦
m,s) is given by(∑

j∈Pi
� j,m, 1 ≤ i ≤ r

)
, where the common endpoints of multiple e ∈ e(H ◦

m,s)

and the vertices in their pendant subtrees have been accounted for in
∑

j∈Pi
� j,m for

exactly one value of i in a specific way. Using (A.7) and (A.8), we get the analogue
of (3.11) for H ◦

m,s for the above specific way of assigning the common endpoints of
multiple e ∈ e(H ◦

m,s) and the vertices in their pendant subtrees to the different terms∑
j∈Pi

� j,m .
This together with (A.4) would complete the proof if we can show that the sizes of

the pendant subtrees of the common endpoints of multiple e ∈ e(H ◦
m,s) are asymp-

totically negligible. This negligibility claim follows from the following facts:

(A) Yi,m = oP (m), 1 ≤ i ≤ s, where Yi,m denotes the number of descendants of
v◦

i,m in T ◦
m .

(B) Xi,m = oP (m), 1 ≤ i ≤ s, where Xi,m denotes the number of descendants of
u◦

i,m in T ◦
m that are not in the subtree that contains v◦

i,m .
(C) For every ε > 0,

P
(∃v ∈ T ◦

m : v has at least three subtrees in T ◦
m each of size ≥ εm

) → 0 as m → ∞.

(A) and (C) follow from (A.5) and the facts that qe◦(y◦
i ) is almost surely a leaf in

Te◦ and that Te◦ is almost surely binary. The proof of (B) is also routine. ��

A.2 Sketch of proof of Theorem 3.13

Assume that for each m ≥ 1, k(m) = (k(m)

i , i ≥ 0), where k(m)

i are nonnegative integers
satisfying

∑
i≥0 k(m)

i = m and
∑

i≥0 ik(m)

i = m−1. Then there exist trees onm vertices
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in which for each i ≥ 0, there are exactly k(m)

i many vertices with i many children.
We call k(m) the child sequence of such a tree. Assumption 3.4 gives the criterion for
graphs with given degree sequences to be critical. The following assumption gives the
analogous criterion for plane trees with given child sequences.

Assumption A.4 There exists a pmf (p0, p1, . . .) with

p0 > 0,
∑

i≥1

i pi = 1, and
∑

i≥1

i2 pi < ∞

such that

k(m)

i

m
→ pi for i ≥ 0, and

1

m

∑

i≥0

i2k(m)

i →
∑

i≥1

i2 pi .

Wewill write σ 2 = ∑
i i2 pi −1 for the variance associated with the pmf (p0, p1, . . .).

Let Tk(m) be the set of plane trees with child sequence k(m). Let Tk(m) be a uniform
element of Tk(m) endowed with the tree distance and the uniform probability measure
on m vertices and viewed as a metric measure space. Broutin and Marckert [34]

showed that under Assumption A.4, σm−1/2Tk(m)
d−→ T2e w.r.t. GHP topology. The

following variant of this result follows from [26, Lemma 7.4 and Lemma 7.6]:

Lemma A.5 Suppose k(m) satisfies Assumption A.4. Further, suppose fm : {0, 1, . . .} →
[0, 1] is such that

∑

i≥0

k(m)

i fm(i) = 1, and lim
m→∞ max

i :k(m)
i >0

fm(i) = 0.

LetT fm

k(m) be a uniform element ofTk(m) endowed with the tree distance and the measure
that assigns probability fm(i) to any node that has i children, i ≥ 0. Then

σm−1/2 · T fm

k(m)

d−→ T2e w.r.t. GHP topology.

Now we can prove Theorem 3.13 using the above lemma and the techniques used
in the proof of [26, Theorem 2.2].
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