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ABSTRACT 

Given a monocular image, we propose a new 
method for extracting the shape of objects 
from the pixel intensities. The problem of 
solving the partial differential equation 
corresponding to the reflectance map is 
reduced to that of solving a finite set of 
nonlinear algebraic equations. The method 
involves patchwise approximation of the sur- 
faces in the scene by discrete polynomials. 
Distinctive features of the method are as 
follows: a) Shape extraction without initial 
depth information of any form, (b) Handling 
of discontinuity (obtained by a zero-crossing 
operator) by splitting the region into 
multiple patches around the discontinuities 
contour and fitting the depth polynomial 
separately in each patch, (c) Algebraic eva- 
luation of the quadratic polynomial 
coefficients in the case of identical source 
and viewer direction, and (d) Facility to 
integrate stereo information. 

1. Introduction 

The problem considered in this paper is 
one of recovering surface information from a 
monocular image of the scene, more 
specifically from the shading caused by the 
difference of orientation in different parts 
of the object. This is known as the "Shape 
from Shading (SFS)" problem. The mathematical 
formulation of the problem in terms of the 
relationship between image brightness and the 
surface orientation is due to Horn 111. In 
Fig.1 which depicts the imaging geometry for 
the SFS problem, a Lambertian surface is 
assumed to be illuminated from a distant 
point source located at a known direction 
(ps,qs,-l). With furhtar assumption. of 
orthographic projection, the image formation 
is governed by 

Q (l+P P, +Q 4,) 
(1.1) 2 2  E(x,y) = 

J (  (l+P +q ) (l+PS2+ ss2)) 

whereeis the albedo constant (assumed to be 
1) and (p,q,-l) the surface normal vector. 
The surface normal parameters p and q are the 
first order partial derivatives of depth 
z(x,y) with respect to x and y respectively. 
In a more general case the observed, 
intensity is related to a reflectance map 
R(p,q) which is obtained from the particular 
scene illumination, surface reflectance 
property and imaging geometry [21, [31. 

E(x.y) = R(P,q) (1.2) 

As evident from (1.1) and (1.2), the shape 
from shading amounts to solving a first order 
nonlinear partial differential equation. 

Horn's [l] characteristic strip method 
tries to solve the image irradiance equation 
by replacing it by an equivalent set of five 
ordinary differential equations. These 
'Chirpit's equations' [41 express each of the 
variables x,y,z,p and g in terms of the 
derivative with respect to a dummy parameter 
s. Starting from a point of known orientation 
(pO,gO), the parameter s is varied progress- 
ively to obtain new points and their 
corresponding orientation and depth. The 
Characteristic Strip method suffers from the 
drawback of error accumulation owing to the 
presence of noise [51. 

Ikeuchi and Horn [ 5 ]  incorporates the 
occluding boundary information and surface 
smoothness constraint and reformulates the 
problem in the light of Variational Calculus. 
The inability of the gradient space to handle 
the occluding contour (either p or q or both 
become infinite) led to the use of 
stereographic projection coordinates (f,g). 
The problem so posed is to find a smooth 
surface that minimizes the square sum error 
between the observed image and the 
reflectance map. Mathematically, the problem 
is to minimize 

e2 =/I( ((E(x.y)-R(f ,g)) 
+A(fx~+fy~+gx~+gy~) )dx dy (1.3) 

where the subscripts x and y denote the 
first order partial derivatives and A is the 
parameter to counter the deviation from 
smoothness. The Euler equations corresponding 
to the above problem result in 

These Poisson type equations are 
numerically solved with the known values of f 
and g at the occluding boundary. Several 
authors have improved upon the Ikeuchi-Horn 
algorithm by way of incorporating integra- 
billity constraint [ 6 ] ,  and including other 
multiple cues like binocular and photometric 
stereo, etc. [7], [ 8 1 .  
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Another approach proposed by Pentland [91 
assumes the surface to be locally umbilical 
which results in interpretation of the 
surface from the image and its first and 
second derivatives. The spherical assumption 
is an inadequate model for any general 
surface. Pentland [le], 1111 proposes a 
linear reflectance function on the basis of 
Taylor series approximation of R(p,q) about 
the point ( 
transform 
information 
However,to 
orientation 

within f30 
l p l v .  I Q 1  <: 

Coupled 

p = 0, q = 0 ) .  He uses a Fourier 
method to recover the depth 

from the image spectrum. 
apply his method the surface 

1 or the source direction :i 
of the viewer direction. 

should be restricted 

inherently with the Problem of 
shape from shading is- the problem of "source 
from shading", i.e.. finding the illumination 
direction from the shaded image. Brooks and 
Horn (121 give an iterative algorithm to 
alternately estimate the surface normal and 
the source direction in a variational 
formulation of the problem in terms of the 
surface normal and its first order partial 
derivatives. The square sum error is 
minimized with respect to the source vector 
assuming that the surface normal is known. 
Simple Lagrange multiplier technique has been 
applied to get a recursive relation for 
the source vector in terms of the currently 
estimated surface normal. 

Pentland [ 9 ] ,  [13] and Lee and Rosenfeld 
[141 apply a statistical formulation to the 
source estimation problem. With the 
assumption that change in surface normal is 
isotropically distributed, a least square 
estimation procedure is proposed with the 
directional derivatives of the image as given 
data. In the Lee - Rosenfeld procedure, a 
joint probability distribution of surface 
slant and tilt is assumed as originally put 
forward by Witkin [15] in connection with 
shape estimation from texture. 

2. Shape Recovery by Polynomial approximation 

We assume that the original scene contains 
objects which could be polyhedral or any 
other shape. The surface visible to the 
viewer is approximated by orthogonal 
polynomials in small patches, the size of the 
patch being dependent on the prior 
information about the scene obtained by 
preprocessing the image: whether the scene 
contains smooth or discontinuous surfaces and 
whether the objects are occluded. 

Consider a patch R of size (2M+l)x(2M+l) 
in an image of size N x N with the centre of 
the patch having co-ordinates (0,0). We 
assume that original object(s1 in the scene 
have a depth function 2tx.y) given by 

where P.j(x,y) belongs to a basis set o f  
discrete polynomials .C;zl] 

From (2.1), we have 

b z  bPij 
= Z aij. - 

b X  a x  
a z  a Pij 

= Z aij. - 
b Y  a Y  

p = - 

q = - 

The image irradiance equation (1.1) now 
becomes 

= R(a) , where a = laijl (2.2) 

Thus the problem now is to estimate the 
parameters of the polynomial from the 
relation (2.2). 

In a similar model, Pqng et. al. [16] 
proposes a least square formulation of the 
problem, as 

minimize e2 = E I E(x,y) - R(g)l' (2.3) 

where they consider the polynomial fit in a 
global region. This global optimization 
scheme requires a sparse depth information 
obtained by matching a stereo pair of images. 
The shading information is used just to 
assist in the interpolation. This is against 
the independent nature of the shape from 
shading problem. 

From the Taylor series expansion of depth 
z(x,y) about a point (xO,yO) it is obvious 
that a finite order polynomial approximation 
is not justified in global sense. A patch- 
wise fit is consistent with theoretical 
justification. Instead of an ordinary 
polynomial, an orthogonal polynomial of the 
same order gives a better fit because of the 
Bessel's inequality in the Hilbert 
Space. [171. 

- a X.Y 

The advantage of the orthogonal polynomial 
over the ordinary polynomial is that we can 
select the order of the polynomial from the 
analysis of the coefficients. Also, the 
discontinuity point can be detected from the 
change in polynomial parameters between two 
adjacent patches. 

2.1 Shape Estimation 

Case I: Identical source and viewer 
direction: 

Let us first consider the simple case 
where the light source and the viewer 
directions coincide. We have 

1 
E(x,y) = 

J ( l+p '+q ' 1 
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from which we get 

p'+q' = - 1 = f(x,y) (2.4) 

Eq.2.4 is the so called Eikonal equation 
1181. Assume that the depth function can be 
represented by a quadratic polynomial, given 

1 

E~(x,Y) 

by 

z(x,y) = a g 0 + a 1 0 x + a g l ~ + a l ~ x ~ + a ~ ~ x 2 + a ~ ~ ~ ~  
(2.5) 

Note that in (2.5) we have employed- an 
ordinary polynomial instead of an orthogonal 
one because the partial derivatives are same 
for both. 
Substituting 2 in (2.4) we get, 

c ~ ~ + c ~ ~ x + c ~ ~ y + c ~ ~ x y + c ~ ~ x ~ + c ~ ~ Y ~  = f(X,Y) 
(2.6) 

* c00 

4a10a20 + 2a01a11 = ~ 1 0  

Qa01a02 + 2a10a11 a c01 - c20 
alia +4ag2a = c02 

where a102 +a012 

all 2 +4aa0a 

4a11(-320 + a02) cii (2.7) 

For a patch of size (2M+l)X(2M+1) there are 
equal number of equations of the form (2.6). 
Solving the set of equations for the unknown 
coefficient c.. and using the set of 
auxiliary equations (2.7) the a coeffi- 
cients can obtained. Substitu&g the 
estimated coefficients in (2.5), depth z(x,y) 
can be estimated. 

Case 11: General source direction: 

The Eikonal equation formulation is not 
applicable in case of the general source 
direction. Auxiliary equations of the type 
(2.7) can be obtained by means of the various 
image derivatives at the centre of the 
patch. The second degree polynomial 
parameters can then be extracted from the 
first order and the second order derivatives 
at the centre of the patch. With E denoting 
the intensity at the centre of the patch, 
a = p / 4 ( l + p  2 + q s 2 ) .  B = q, / J(l+p 2+qsz), 
T=l/f$l+ps2+qsq) and the subscripts of x and 
y denoting partial derivatives. These 
equations are: 

E(al02 +ae12)Ex + E2(2a10 a20+ a01 all) - (T + a ala +B aOl) (2a a20 + B all) 

E(a102 +ae12)Ey + E2(2a01a02+ ala all) 

= (T + a a10 +B aO1) (2s ae2 + a all) 

(Exz + E Exx) (a102 +a012) 

+ 4 E E,(2a10 a20+ a01 all) 

+ E2(2aa02 + all?) 

= (la a20+B a11)2 (Ey2 + E Eyy) (a103 +ael') 

+ 4 E By(2a01 a02+ a10 all) 

+ E2(2ael' + all2) 

= (26 a02 + a all) 2 (Ex E +E Exy) (al0' +a012) Y 
+ 4 E (2a10 a20+ ael all) Ey 

+ 2E2 a11(a20+ aa2) - (2a aaO + 8 all) (2B ae2 + a all) (2.8) 

The image derivatives can be computed from 
the image data, and the set of equations(2.8) 
can be solved to extract the polynomial 
parameters. 

3. Numerical Solution Scheme and experimental 

For the case I, the ci. coefficients 
are estimated from a least &are fit 1191 
to f(x,y) data. The system of equations in 
(2.7) leads to a total of 16 solutions. Out 
of these only 4 are consistent with image 
data. These four solutions correspond to one 
convex, one concave and two saddle-surface 
solutions. This only confirms the ambi- 
guity of SFS problem. Convexity assumption 
imposes the constraint aaO < 0 ,aez < 0 and 
4 aaO ag2 >.alia on the a coefficients and 
lea s to unique solution. 

The algebraic solution of the set of 
auxiliary equations are very difficult for a 
general light source direction and 
particularly when the order of the 
polynomial is large. The various numerical 
techniques of solutions to nonlinear 
equations demand an approximate guess of the 
solution as the initial value. These 
approximate values are to be obtained either 
from preprocessing of the image or from the 
orientation information at the occluding 
boundary. 

Results : 

At the singular points (points of 
maximum gray value) and occluding contour , 
the surface normal can be locally determined. 
The starting patch can be centred around such 
a point and computation can be proceeded 
from this point. However, if the order of 
the polynomial is not proper, greater error 
in estimation will be introduced at a point 
of larger orientation. Our computational 
experience favours the initial patch to be 
taken around a singular point. We apply the 
Newton - Raphson technique[201 for the 
numerical solution of equations (2.8). 

3.1. Enforcing smoothness and Integration 
with stereo information 

For a smooth surface, it becomes necessary 
to preserve the continuity of depth and 
orientation across patches. This can be 
achieved by refitting the depth data into a 
smooth surface. 

The depth-map corresponding to stereo 
information can be used to estimate the 
parameters of the initial patches t%i 
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around a contour where such data are 
available. These coefficients provide good 
initial guess for a nearby patch. 

3.2. Computational Results: 

following cases, are shown in figures (2-5): 
The results of reconstruction. for the 

(i) Synthetic Saddle surface: quadratic 
polynomial fitting over the entire 
image (p, = 0, q, = 0 1 .  (Figure 2) 

(ii) Synthetic partial sphere on a plane : 
global and patch-wise fit (p, = q, = 0 )  
(Figure 3) 

(iii) Natural surface : quadratic polynomial 
fitting : 
a) A paper cylinder : (Figure 4 )  
b) A portion of an orange : (Figure 5) 

4. Conclusion 

A method has been presented for 
recovering surface depth from the shading 
information by patch-wise polynomial fit of 
the depth. For the simple case of identical 
source and viewer direction , explicit 
algebraic technique based on quadratic 
approximation of the surface is given. For a 
general source direction iterative technique 
is presented on the basis of orientation 
information in the singular point in the 
image. The method is applied to surface 
recovery from synthetic and real images. 
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