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Abstract In this paper, we calculate the region of emergence of rogue waves in the Sasa–
Satsuma equation by performing Penrose stability analysis. We consider Wigner-transformed
Sasa–Satsuma equation and separate out unstable solutions, namely Penrose instability
modes. We superpose these modes in a small region. With the help of marginal property
of the Wigner transform, we identify the region in which rogue wave solution can emerge in
the Sasa–Satsuma equation and calculate the amount of spatial localization. We also formu-
late a condition for the emergence of rogue wave solution in the Sasa–Satsuma equation.

1 Introduction

Modulation instability (MI), which unties the nonlinear mysteries, has been studied in depth
in various nonlinear systems that arise in different branches of Physics including hydrody-
namics [1], plasma physics [2] and optics [3]. A very simple mathematical model which has
undergone this analysis is the nonlinear Schrödinger equation which is represented mathe-
matically by the nonlinear partial differential equation,

iqt + 1

2
qxx + |q|2q = 0, (1)

where q is a complex wave envelope, x and t are space and time co-ordinates, subscripts
represent partial derivative. The second and third term in Eq. (1) refer to group velocity
dispersion and self-phase modulation, respectively. The characteristics of MI for a family of
NLS equations has been a topic of research over decades [4,5]. The MI studies have also been
carried out on collisionless electron-ion plasma wave in order to explain the ordinary Landau
damping in that system [2]. Earlier Penrose investigated the instability of the Vlasov–Poisson
equation [6].

The MI can explain the resonance generation which occurs in the nonlinear system that
comes from self-interacting waves [7]. In the literature, MI is also known as Benjamin and Feir
instability [8]. Lighthill introduced a geometrical condition for the instability of deep water
waves, as a development of Whitham’s theory [9]. Later, Zakharov ventured into Hamiltonian
approach and derived the MI criterion for water waves [10]. MI may develop due to self-
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induced effect or due to induced one. When a weak external amplitude or phase perturbation
is applied to an initial continuous wave, MI can be induced if the sideband wavenumber
falls within the critical wavenumber. The instability of this kind is called induced MI. If the
modulation develops spontaneously due to noise that is present in the system then it is called
spontaneous MI [5]. Regardless whether it is self-induced or induced one, MI plays a vital
role in the formation of localized structures including solitons of various types, breathers
and rogue waves (RWs) [11,12]. These localized structures are frequently observed both
in experiments and in theory. In this work, we focus on the instabilities which lead to the
formation of RWs.

In a recent work, Athanassoulis et al. have studied Penrose instabilities in the NLS equation
and built RW from the spatially periodic MI-type modes [13]. MI is observed on a plane wave
background. Unlike MI, the Penrose instability can be observed on a spectral background.
Since the results of [13] are obtained for the narrow spectral conditions, it generalizes the MI.
The authors of [13] have also calculated the fundamental length scales and timescales for the
localization of the above said modes to raise as RWs. In the Penrose stability analysis, the
spectral background can be brought inside the theory through Wigner transform. Based on the
work [13], recently a higher-order NLS equation, namely Hirota equation, is analyzed where
the contribution of higher-order nonlinear terms in the Lorentian spectrum and damping have
been investigated [14].

In this work, we consider an extended version of NLS equation, namely Sasa–Satsuma
equation (SSE), of the form

iqt + qxx
2

+ |q|2q − iγ
[
qxxx + 3

(|q|2)xq + 6|q|2qx
]

= 0, (2)

where q , x , t and the subscripts mean the same as in Eq. (1), and γ is the strength of the higher-
order terms. Equation (2) acts as an important model to describe third-order dispersion, self-
frequency shift, and self-steepening effect of the nonlinear dispersive waves. These higher-
order nonlinearities constitute structural complexities in the solution of SSE. A number of
publications have been made to construct the solutions of SSE [15–18]. These exact analytical
solutions represent events like breathers, solitons and RWs that occur in various nonlinear
media. Besides these, one can also find several other interesting localized structures in the
SSE (2) [17–21]. In this paper, we study Penrose instability and identify the region of the
emergence of RW in the SSE. We also aim to quantify the spatial localization of RW.

To achieve these two goals, to begin, we rewrite the SSE in phase space using Wigner
transform and its properties. We investigate the stability of the constructed Wigner-SSE. By
feebly perturbing the homogeneous spectrum, we obtain a linearize Wigner-SSE. By con-
sidering a physically valid solution to the linearized Wigner-SSE, we formulate the Penrose
instability condition. We then evaluate the obtained Penrose instability condition by consid-
ering the background as a narrow spectrum and separate out the unstable modes that arise
from them. By continuously superposing the unstable modes, we obtain a localized structure
which we call localized instabilities. We then calculate the exact amount of spatial localiza-
tion of these instabilities. The occurrence of RW has been pointed out in the literature as “a
linear unstable mode localized over a single wavelength λ0 = 2π/k0.” Hence, the localized
instabilities which we calculate should be within the region λ0, from which we derive a con-
dition for the occurrence of RW. The RW solution reported earlier in the literature satisfies the
condition which we derive in this paper. We note here that in this analysis any type of Fourier
spectrum can be chosen as the background to determine the RW emergence. However, MI
can be observed only on the plane wave background, for more details see Ref. [13].
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We organize our work as follows: In Sect. 2, we recall briefly the Wigner transform and
its properties and construct the SSE in phase space using the Wigner transform. In Sect. 3,
we linearize the nonlinear SSE. We perform Penrose instability analysis and formulate the
Penrose instability criterion. We determine the unstable solutions of the Wigner-SSE, arising
from the homogeneous spectral background in the narrow band limit we identify unstable
modes from these we obtain localized instabilities. In Sect. 4, we superpose these unstable
modes and create a localized structure in space and quantify this localization. Using the RW
criteria given in [13], we calculate the region where the RW can emerge. In Sect. 5, we
summarize our work and highlight the advantages and differences of our work with earlier
works. In Appendix 1, we derive the Wigner-SSE.

2 Construction of Wigner-SSE

In this section, to begin, we recall Wigner transform and some of its essential properties. We
rewrite the SSE in phase space with the help of Wigner transform and its properties. We call
the SSE which is written in phase space as Wigner-SSE.

2.1 Wigner transform

The Wigner transform was formulated by Eugene Paul Wigner [22]. The motivation to intro-
duce this transform is to make a quantal corrections to classical statistics [22]. Now, Wigner
transform is being used in various fields [23,24]. In this work, we choose Wigner transform
for the dynamical study of SSE. The Wigner transform of a complex wave envelope is defined
by [13,25]

W (x, k, t) = W [q, q] =
∫

s
e−2π iksq

(
x + s

2
, t

)
q̄
(
x − s

2
, t

)
ds, (3)

where W (x, k, t) is the Wigner transform, q is the complex wave envelope, k is the wavenum-
ber, x and t are space and time coordinates, respectively, and bar denotes the complex
conjugation. Equation (3) is the sub-case of the conventional Wigner transform

W (x, k, t) = W [q, p] =
∫

s
e−2π iksq

(
x + s

2
, t

)
p̄
(
x − s

2
, t

)
ds, (4)

where p is another complex wave envelope. The integration is over the entire space. As
our aim is to construct Wigner transform for the evolutionary Eq. (2) which contains the
variable q and its complex conjugate, we consider Wigner transform in the form (3). Since
the nonlinear PDE (2) contains derivative terms as well, in the following, we recall a couple
of properties of Wigner transform which are essential to reformulate Eq. (2) in phase space.

(i) Marginals: When a continuous multivariate function is integrated over one of its vari-
ates, then the integral is said to be its marginal distribution if the result is a probability
distribution in the remaining variates. The marginals of the Wigner transform are [13,14]

∫

k
W (x, k, t) dk = |q(x, t)|2, (5a)

∫

x
W (x, k, t) dx = |q̂(k, t)|2. (5b)
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q̂ is the Fourier transform of q and the integrations over k and x have the limits −∞ to
+∞. Having these marginals Wigner transform can be called as a distribution function.
However, it is widely known as quasi-distribution function as it takes negative values in
certain domains of phase space [26].

(ii) We also recall the following property [13]

W [qx , q] =
(

2π ik + 1

2

∂

∂x

)
W [q, q]. (6)

This property helps us to write the Wigner transform of a term involving derivatives into
derivatives of Wigner transform.

2.2 Wigner-SSE

Using the definition (3) and imposing the properties (i) and (ii) in both the SSE and its
complex conjugate equation, we can represent the evolution of Eq. (2) in phase space in the
form

Wt [q, q]= i

2

(
W [qxx , q]−W [q, qxx ]

)+γ
(
W [qxxx , q]+W [q, qxxx ]

)

+i
(
W [|q|2q, q]−W [q, |q|2q]) + 3γ

(
W [(|q|2)xq, q] + W [q, (|q|2)xq])

+ 6γ
(
W [|q|2qx , q] + W [q, |q|2qx ]

)
. (7)

We note that a similar type of construction has also been made for the NLS equation, Hirota
equation and Alber equation, see for example, Refs. [13,14,25]. Substituting Eqs. (5a) and
(6) into Eq. (7), we can formulate the Wigner-SSE in the form (see Appendix 1 for details)

Wt = −12π2k2γ Wx + 3γ

∫

Λ,η,s
e−2π iηs

[
W

(
x + s

2
,Λ, t

)

+W (x − s

2
,Λ, t)

]
dΛ ds Wx (x, k − η, t) dη

−4πk Wx + i
∫

Λ,η,s
e−2π iηs

[
W

(
x + s

2
,Λ, t

)

−W (x − s

2
,Λ, t)

]
dΛ ds W (x, k − η, t) dη

+12π iγ
∫

Λ,η,s
e−2π iηs

[
W

(
x + s

2
,Λ, t

)

−W (x − s

2
,Λ, t)

]
dΛ ds (k − η) W (x, k − η, t) dη

+ γ

4
Wxxx + 3γ

∫

Λ,η,s
e−2π iηs

[
∂W

(
x + s

2 ,Λ, t
)

∂
(
x + s

2

)

+∂W
(
x − s

2 ,Λ, t
)

∂
(
x − s

2

)
]

dΛ ds W (x, k − η, t) dη. (8)

Equation (8) is a nonlinear PDE in the Wigner transform W (x, k, t). It is not possible to
solve the nonlinear PDE (8) analytically. As our aim is to analyze the stability of the system,
we move on to analyze the stability of the system (8) against the applied perturbation. This
investigation will provide the necessary information about the considered system is stable or
not.
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3 Linear stability analysis

In the case of MI, the initial plane wave is modulated by applying a weak perturbation. As time
goes on, the perturbation applied on the background starts to grow exponentially. This defines
the instability of the system. Sometimes, the perturbation may not exhibit exponential growth
marking the stability of that system. In our study, we intend to investigate the instabilities that
arise from spectral background. To achieve this task, we choose Penrose stability criterion,
introduced by Penrose in Ref. [6].

Penrose analyzed the stability of a plasma whose dynamics is governed by Vlasov–Poisson
equation and framed a criterion as follows : “If the solution of Vlasov–Poisson equation grows
exponentially with time as t → ∞, as far as linearization is justified, then that solution is
unstable which means that the plasma is physically unstable” [6].

Let us assume that the Wigner-SSE solution describes a homogeneous spectrum. Now let
us feebly perturb the solution spectrum in the form

W (x, k, t) = F(k) + Γ w(x, k, t), (9)

where Γ � 1 whose post factor denotes the perturbation and F(k) is the Fourier spectrum
which represents the homogeneous background. Substituting the assumed solution (9) into
(8), we arrive at the following equation, namely the linearized Wigner-SSE, in the order Γ ,
that is

wt = − 12π2k2γ wx + 3γ

∫

η,s
e−2π iηs 2A2 ds wx (x, k − η, t) dη

−4πk wx + i
∫

Λ,η,s
e−2π iηs

[
w

(
x + s

2
,Λ, t

) − w
(
x − s

2
, Λ, t

)]
dΛ ds F(k − η) dη

+ 12π iγ
∫

Λ,η,s
e−2π iηs

[
w

(
x + s

2
, Λ, t

) − w
(
x − s

2
, Λ, t

)]
dΛ ds (k − η) F(k − η) dη

+ γ

4
wxxx + 3γ

∫

Λ,η,s
e−2π iηs

[
∂w

(
x + s

2 , Λ, t
)

∂
(
x + s

2

)

+∂w
(
x − s

2 , Λ, t
)

∂
(
x − s

2

)
]

dΛds F(k − η) dη. (10)

The solution of the linearized Wigner-SSE (10) may either grow or decay in time as
t → ∞. We need an arbitrarily growing solution which is expected to burstforth as a RW.
Hence, we consider a solution of Eq. (10) in the form

w(ξ) = C (ξ)(k)ei(ξ x−Ω(ξ)t), (11)

with ξ is the modulating wave number which has to be considered as a real parameter, Ω(ξ)

is the modulating frequency which is a complex quantity and C (ξ)(k) is the amplitude of the
modulated wave. We choose this form of solution due of the following reasons: (i) the solution
(11) is valid even for an unbounded system (x → ±∞) with the choice ξ is real and (ii) when
t = 0, Eq. (11) neither grows nor decays but when t > 0, one may observe that the solution
either grows or decays depending on the sign of Im(Ω(ξ)). The linearization withstands
as long as the perturbation becomes comparable with the background. By identifying the
positive Im(Ω(ξ)), we can determine the unstable solution. In the following subsection, we
derive an expression for the occurrence of unstable solutions.
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3.1 Analytical criterion

From (11), it is clear that the solution becomes unstable when Im(Ω(ξ)) is positive. Based on
this observation, we formulate a condition for the occurrence of unstable modes. We recall
here that in his studies, Penrose had proposed an integral dispersion relation as an analytical
criterion for the plasma instability [6]. We also formulate a criterion involving an integral
using the marginal property of Wigner transform.

Substituting Eq. (11) in the linearized Wigner-SSE (10), the spatial derivatives that appear
in the first and fourth term on the right-hand side of Eq. (10) can be evaluated straightfor-
wardly. The function ei(ξ x−Ω(ξ)t) which appears inside the integrals on the right-hand side is
independent of the variables of integration, so we can take it outside. Now, one can remove
this function from the entire equation since it appears in all the terms. On combining the
remaining terms suitably and identifying the integrals with delta function, we can rewrite
Eq. (10) in an integral form involving delta function in the variable s which is centered at
ξ

4π
. Now integrating over s, Eq. (11) can be brought to the form

C (ξ)(k)∫
Λ
C (ξ)(Λ)dΛ

= [ − iΩ(ξ) + 4π ikξ + γ

4
iξ3 + 12iπ2k2ξγ − 6i A2ξγ

]−1

×
∫

η

[(
i + 3iξγ + 12π iγ (k − η)

)
δ
(
η − ξ

4π

)

−(
i − 3iξγ + 12π iγ (k − η)

)
δ
(
η + ξ

4π

)]
F(k − η)dη. (12)

Implementing delta identities, we can evaluate the integral over η that appear on the right-hand
side of (12) from which we can obtain an expression for C (ξ)(k). However, after performing
the η integration, we once again integrate the resultant equation with respect to k on both
sides in order to obtain an analytical condition. This action yields

∫

k

C(ξ)(k)∫
Λ C(ξ)(Λ)dΛ

dk =
∫

k

[
− Ω(ξ) + 4πkξ + γ ξ3

4
− 6γ ξ A2 + 12π2k2ξγ

]−1

×
[[

1 + 3ξγ + 12πγ
(
k − ξ

4π

)]
F

(
k − ξ

4π

)

−
[
1 − 3ξγ + 12πγ

(
k + ξ

4π

)]
F

(
k + ξ

4π

)]
dk. (13)

In Eq. (13), as far as the left-hand side is concerned, the numerator can be obtained just by
differentiating the denominator. Hence evaluating the integral on the left-hand side, we obtain
a logarithmic function whose argument is the denominator of Eq. (13). Upon evaluating the
integral in the denominator (argument of the logarithmic function), we obtain a constant.
Since logarithmic value of a constant is also a constant, we choose the value of that constant
as one just for simplicity. As a result, we arrive at the following expression:

1 =
∫

k

[
1 + 3γ ξ + 12πγ (k − ξ

4π
)
]
F

(
k − ξ

4π

) −
[
1 − 3γ ξ + 12πγ

(
k + ξ

4π

)]
F

(
k + ξ

4π

)

−Ω(ξ) + 4πξk + γ ξ3

4 − 6γ ξ A2 + 12γπ2k2ξ
dk.

(14)

Expression (14) is nothing but the Penrose instability condition. Solutions of Eq. (14) consti-
tute the solutions of linearized Wigner-SSE (10) [13]. The solutions of Eq. (14) are composed
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of real and imaginary part (since Ω(ξ) is a complex parameter). In the solution, we can ignore
the imaginary part as it cannot be interpreted physically. Hence, we concentrate only on the
real part and identify its role in making the instability.

3.2 Instability arising out of narrow spectral background

Upon analyzing Eq. (14), we can perceive the complexity in computing the integrals appearing
on the right-hand side. The Penrose criterion (14) can be numerically computed for any type
of background. We recall here that the realistic spectra, when become narrow, switch to
instability from stable state and vice versa happens when they become broader [27]. Hence
in order to achieve our task, we consider only the narrow spectrum as background.

Let the background be a delta Fourier spectrum centered at k0 = ξ
4π

, that is F(k ± ξ
4π

) =
A2δ

(
k ± ξ

4π

)
. With this choice, Eq. (14) becomes

1 =
∫

k

A2
[
1 + 3γ ξ + 12πγ (k − ξ

4π
)
]

δ
(
k − ξ

4π

) − A2
[
1 − 3γ ξ + 12πγ

(
k + ξ

4π

)]
δ
(
k + ξ

4π

)

−Ω(ξ) + 4πξk + γ ξ3

4 − 6γ ξ A2 + 12γπ2k2ξ
dk.

(15)

By executing Dirac identities, we can evaluate both the integrals in Eq. (15). Upon rear-
ranging the resulting expression, we find

Ω(ξ)2 + (18γ A2ξ − 2γ ξ3)Ω(ξ) = ξ4

4
− ξ2A2 − γ 2(ξ6 + 72ξ2A4 − 18A2ξ4). (16)

Equation (16) is a quadratic equation in Ω(ξ) whose roots are given by

Ω(ξ) = ξ

2

[
2γ ξ2 − 18γ A2 ± i

√
4A2 − ξ2 − 36γ 2A4

]
. (17)

From Eq. (17), it is clear that when the imaginary part of the complex temporal frequency is
positive then the solution of the linearized Wigner-SSE exhibit exponential growth in time [see
Eq. (11)]. The existence of Im(Ω(ξ)) stands on the fact that the quantity 4A2 − ξ2 − 36γ 2A4

should be greater than zero which in turn provides the maximum and minimum values of ξ

in the form

ξmin := −2A
√

1 − 9γ 2A2; ξmax := 2A
√

1 − 9γ 2A2 (18)

The choice ξ = 0 fixes the solution as neither a growing one nor a decaying type. Substituting
Eq. (17) in Eq. (11), we can isolate the unstable solution of Wigner-SSE in the form

w(ξ) = C (ξ)(k)e
i

(
ξ x− ξ

2

[
2γ ξ2−18γ A2±i

√
4A2−ξ2−36γ 2A4

]
t

)
. (19)

The unstable solution (19) of the linearized Wigner-SSE (10) exhibits periodicity in space.
One may notice that the solution (19) is given only in partial form and the complete expression
can be seen only when we substitute the expression C (ξ)(k) into it. The instability of the
system shows that it can admit solutions like breathers and RWs. Among these two types
of structures, we prefer to investigate the RWs because we have an appropriate marginal to
construct them. In the following section, we identify the region in which RW can originate.
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4 Localized instabilities

In the study of RWs, most of the efforts have been made to construct RW solutions of
different orders for the considered system. To understand the RW occurrences and their
properties, attempts have been made to model them in the form of rational solution for the
concerned nonlinear partial differential equation. As far as SSE is concerned, to begin, first-
order RW solution was reported by analyzing its spectral problem, see Ref. [18]. Later, it
has been shown that RW is one of the limiting cases of soliton solution on a plane wave
background [17]. Subsequently, higher-order RW solutions have been constructed for the
SSE [28,29]. Differing from the earlier works, in this paper, we identify a region in which
RW can occur in the SSE and calculate the amount of its localization.

4.1 Localization in space

From the unstable solution (19), we can identify a localized structure. To create a localized
wave packet, we superpose the waves in such a way that within the desired region the waves
of marginally varying wavelengths in amplitudes and in phases enhance their overlapping in
a constructive fashion and they destruct each other elsewhere.

Since Eq. (10) is a linear one, we can superpose various unstable solutions (w(ξ)) of it
continuously. The superposed solution can then be obtained through an integration, that is

w(x, k, t) = Re
∫

ξ

e
i

(
ξ x− ξ

2

[
2γ ξ2−18γ A2±i

√
4A2−ξ2−36γ 2A4

]
t

)
C (ξ)(k) B(ξ) dξ, (20)

where B(ξ) is the weight of each unstable solution which can have an arbitrary form [13].
Though we have brought localization to the instabilities, yet we do not know which of these

localized instabilities can be considered as RW. This situation can be tackled with the help of
marginal property of the Wigner transform, Eq. (5a), which can measure the distribution of the
wavefunction in both space and time. From Eq. (5a) and W (x, k, t) ≈ F(k) + Γ w(x, k, t),
we have

|q(x, t)|2 =
∫

k
W (x, k, t)dk ≈

∫

k
[F(k) + Γ w(x, k, t)]dk. (21)

Evaluating the integral, we find

|q(x, t)| ≈
√
A2 + Γ L(x, t). (22)

The first term inside the square root, that is A2, represents the area under the spectral curve
F(k) (comes out from the integral involving F(k)) which has nothing to do with space and
time. The localization can be determined from the second term, L(x, t), where

L(x, t) =
∫

k
w(x, k, t) dk. (23)

Upon evaluating (23), we can locate the region where the constructive superposition
occurs. Substituting back the superposed unstable solution in Eq. (23), we find

L(x, t) = Re
∫

k,ξ
e
i

(
ξ x− ξ

2

[
2γ ξ2−18γ A2±i

√
4A2−ξ2−36γ 2A4

]
t

)
× B(ξ) C (ξ)(k) dξ dk.

(24)
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Substituting the expression C (ξ)(k) [which is found through Eq. (12)], in the preceding
equation, we come across a double integral in which the integration of k is nothing but the
Penrose instability condition (14). Replacing the integral involving k by Eq. (14), we end up
at

L(x, t) = Re
∫

ξ

e
i

(
ξ x− ξ

2

[
2γ ξ2−18γ A2±i

√
4A2−ξ2−36γ 2A4

]
t

)
× B(ξ) dξ. (25)

We evaluate the integral (25) to get the localization in x since the superposition of periodic
solutions leads to spatial overlapping of waves. We separate the spatial part from the temporal
part with the help of Fourier convolution theorem. Let

B̃t (ξ) = B(ξ)ei
ξ
2

[
2γ ξ2−18γ A2±i

√
4A2−ξ2−36γ 2A4

]
t
. (26)

To proceed further, we introduce a function (X) which acts as a window function (like
the one used in signal processing) [30]. Upon multiplying the window function by another
function, we get one within the given interval and zero outside the interval. We can define
such a function within the allowed interval of ξ so that the function X makes the outcome
zero whenever ξ fails to satisfy the relation (18). Through this way, Eq. (26) can be brought
to the form

L(x, t) = Re
∫

|ξ |<2A
√

1−9γ 2A2
eiξ x B̃t (ξ) X[

−2A
√

1−9γ 2A2,2A
√

1−9γ 2A2
] dξ. (27)

We multiply and divide the right-hand side by a constant 2π just before the term ξ so that
Eq. (27) becomes

L(x, t) = Re2π

∫

|ξ |<R

B̃t

(
2π

ξ

2π

)
e2π i ξ

2π
x X[

− A
π

√
1−9γ 2A2, A

π

√
1−9γ 2A2

] dξ

2π
. (28)

The right-hand side of Eq. (28) can be interpreted as an inverse Fourier transform of the
product of two functions, namely B̃t and X , that is

L(x, t) = Re2π F−1
ξ→x

[
B̃t

(
2π

ξ

2π

)
X[

− A
π

√
1−9γ 2A2, A

π

√
1−9γ 2A2

]
]
. (29)

Let F−1 represent the inverse Fourier transform. With the help of Fourier convolution
theorem, we can rewrite Eq. (29) in the form

L(x, t) = Re2π F−1
ξ→x

[
B̃t

( ξ

2π

)]
∗x F−1

ξ→x

[
X[

− A
π

√
1−9γ 2A2, A

π

√
1−9γ 2A2

]], (30)

where ∗x denotes convolution in x . The term which immediately follows the convolution
symbol in Eq. (30) acts like the Inverse Fourier transform of a rectangular window function
X . Hence, upon integration, it yields

L(x, t) = 4A
√

1 − 9γ 2A2 F−1
ξ→x

[
B̃t

( ξ

2π

)]
∗x sin(2A

√
1 − 9γ 2A2 x)

2A
√

1 − 9γ 2A2 x
. (31)

The function (sin(2A
√

1 − 9γ 2A2x))/(2A
√

1 − 9γ 2A2x) refers the spatial localization
obtained by superposition of unstable solutions. From Eq. (31), the actual value of L(x, t) can
be identified by taking the convolution in x . After the convolution L(x, t) takes the form [13]

L(x, t) =
∫

v

b(x − v, t)
sin(2A

√
1 − 9γ 2A2v)

2A
√

1 − 9γ 2A2v
dv, (32)
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where

b(x) = 4A
√

1 − 9γ 2A2 F−1
ξ→x

[
B̃t

]( x

2π

)
. (33)

In the above calculations, we have not assumed any exact form for B(ξ) since it does
not contribute anything while calculating the space localization. As the integration in (30) is
performed with respect to the modulating wavenumber, the result describes the space local-
ization. The main lobe of the calculated sinc function refers the maximum spatial localization
which depends only on ξmax. No more localization is possible through the superposition of
unstable solutions of the Wigner-SSE for the same ξmax. Hence, for a particular ξmax (18),
the localization will be 4

2A
√

1−9γ 2A2 x
[13].

4.2 RW criterion

We note that not all localized instabilities can be considered as RW. As we have mentioned
in the introduction, “the RW can emerge within the region λ0” [13].

In other words, for a narrow spectral background, the superposed instabilities of Wigner-
SSE, in order to describe a RW, should satisfy the condition

λ0 ≥ 4

2A
√

1 − 9γ 2A2
. (34)

The inequality (34) relates two physical entities, namely wavelength and region of local-
ization. This inequality is satisfied only when the quantity inside the square root (1−9γ 2A2)

is positive. This happens only in the case

A < ± 1

3γ
. (35)

So whenever the condition (35) is satisfied one can expect the formation of RW from the
considered narrow background. To demonstrate our result graphically, we recall the exact
first-order RW solution of Sasa–Satsuma equation reported in Ref. [18], that is,

q(x, t) = − λ

2γ

(
1 − τ − τ ∗

λ
P

)
exp

[
i

(
k

2γ
x + ω

8γ 2 t

)]
(36)

where
ω = 2λ2 − k2 + (6kλ2 − k3) (37)

and

P = |v|Re[τ ](τv∗α + τ ∗vβ∗) + (τ |α|2 + τ ∗|β|2)(τ ∗v∗α + τvβ∗)
|τ |2(|v|2 + |α|2 + |β|2) − |v2 + 2βα|2Im[τ ]2 , (38)

in which

τ = ± i
√

9λ2(9λ2 + 10Q2) + 3λ(9λ2 − 4Q2)
3
2 − 2k4

3
√

2Q
(39a)

v =
(u21

2
t − 2γ x

)
; β =

( v

N1
+ 12γ 2

N 2
1

)
; α = 3λ

( v

N2
− i

12γ 2

N 2
2

)
; (39b)

N1 = Q + r − τ ; N2 = Q − r + τ ; (39c)
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(a) (b)

(c) (d)

Fig. 1 a First-order RW solution of Sasa–Satsuma equation for A = 0.38, γ = 0.45. b The same for
A = 0.76, γ = 0.45. c, d are contour plots of a and b respectively

r =
(
n

2
+ 2(Q2 + 18λ2 + 3τ 2)

3n

)
; n = (−i + √

3)
(
[(Q2 − 9λ2 − τ 2)τ ] 1

3

)
;
(39d)

u21 = 9(m − 6λ2)τ 4 + 3m(m − 1 − 18λ2)τ 2 + m3

3(2τ 2 + rτ + m2)
; (39e)

m = (Q2 − 3 − 36λ2)

3
; Q = 1 + 3k; λ = 2γ A. (39f)

We plot the solution (36) in Fig. 1. When the solution obeys the condition (35), we obtain a
double peaked RW as shown in Fig. 1a and c. If the condition (35) is violated, the localization
of RW is distorted which is demonstrated in Fig. 1b and d. The plots are drawn for k = 0.

The obtained result (35) matches with the one reported in Ref. [18], in which the authors
have pointed out that RW can exist for k = 0 with a constraint that the amplitude parameter
obeys a particular relation (see Eq. (12) in Ref. [18]). Because of this, the wavenumber
disappears from the amplitude parameter relation. The result which we have obtained from
the narrow spectral background corresponds to the case k = 0 reported in Ref. [18]. In our
case, marginal property [vide Eqs. (5a) and (23)] enforces the wavenumber to disappear from
the condition (35).

5 Conclusion

In this paper, we have calculated the region in which RW can emerge in the SSE and the exact
value of localization. To achieve this task, we have rewritten the SSE in phase space using
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Wigner transform and its properties. We have performed Penrose stability analysis for the
SSE written in phase space. The Wigner-SSE came out as a nonlinear PDE. We have carried
out the stability analysis for the Wigner-SSE. It is known that an arbitrary growth in the
solution is a necessary but not a sufficient condition for a RW to occur. By utilizing the linear
superposition principle, we have made the instabilities localized. With proper justification
given for the linearized form of solution, we compared these localized instabilities with the
definition of RW from which we deduced a sufficient condition for the existence of RW. We
have also demonstrated our result graphically.

We note here that our outcome is consistent with the results reported in Refs. [17,18].
In the latter two references, the authors have studied RW that arises from the plane wave
background, whereas in our studies, we have focused our attention on RWs that arise from
the narrow background spectrum. Our result shows that RW can exist whenever the system
parameter (γ ) and the amplitude (A) obey a particular amplitude–parameter relation given
in Eq. (35). When the system parameter and the amplitude fails to satisfy this relation, the
shape of RW gets distorted and eventually the wave disappears.

The analysis which we have carried out in this paper has also been performed on the NLS
equation earlier. One may consider the SSE as NLS equation with an extended nonlinearity.
From this point of view, it is worth to compare the outcome of the present work with the one
that performed on NLS equation. In the NLS equation, the authors have found the fundamental
lengthscales and timescales for the RW that emerges from non-dissipative and very narrow
spectrum [13]. In our work, we have established a relation between amplitude and system
parameter for which RW can emerge, from a non-dissipative and very narrow spectrum.
Unlike the NLS equation, in SSE, we come across a double peaked RW structure. Our result
will be useful to the experimentalists working on higher-order nonlinear phenomena.
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Appendix: Construction of Wigner-SSE

In this Appendix, we formulate Wigner-SSE for Eq. (2) by utilizing Wigner transform and
its properties. Using Fourier convolution theorem, we can rewrite the nonlinear terms in the
required form. Using Eq. (6), we can rewrite the group velocity dispersion term as

W [qxx , q] − W [q, qxx ] = 4π ik Wx [q]. (40)

Similarly, the third-order dispersive term in (7) (second term) can be rewritten in the form

W [qxxx , q] + W [q, qxxx ] = −12π2k2 Wx + 1

4
Wxxx . (41)

The self-phase modulation term T3 [third term in Eq. (7)], can also be rewritten in an exact
Wigner form with the help of the convolution theorem of Fourier transform (after replacing
|q|2 = U (x, t)), that is

T3 =
∫

η,s
e−2π iηs [U(

x + s

2
, t

) −U
(
x − s

2
, t

)] ds W (x, k − η, t) dη. (42)
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In the self-frequency shift term T4 [fourth term in Eq. (7)], we have the spatial derivative
of U (x, t). We keep this term as it is and rewrite this term as

T4 =
∫

η,s
e−2π iηs

[
∂U

(
x + s

2 , t)

∂
(
x + s

2

) + ∂U
(
x − s

2 , t
)

∂
(
x − s

2

)
]

ds W (x, k − η, t)dη. (43)

To rewrite the last term (T5), we use the properties (5a) and (6). After imposing these
properties and through the convolution, the last term can be brought to the form

T5 =
∫

η,s
e−2π iηs

[
U

(
x + s

2
, t) −U

(
x − s

2
, t

)]
ds 2π i (k − η) W (x, k − η, t) dη

+
∫

η,s
e−2π iηs

[
U

(
x + s

2
, t) +U

(
x − s

2
, t

)]
ds

1

2
Wx (x, k − η, t) dη. (44)

Replacing the right-hand side of Eq. (7) with the above expressions (40)–(44), we obtain

the Wigner-SSE which is given in Eq. (8) in Sect. 2 withU (x, t) =
∫

Λ

W (x,Λ, t) dΛ owing

to the marginal of the Wigner transform.
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