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Abstract. An alternative approach is proposed here to investigate the problem of
scattering of surface water waves by a vertical permeable plate submerged in deep
water within the framework of linear water wave theory. Using Havelock’s expan-
sion of water wave potential, the associated boundary value problem is reduced to
a second kind hypersingular integral equation of order 2. The unknown function of
the hypersingular integral equation is expressed as a product of a suitable weight
function and an unknown polynomial. The associated hypersingular integral of order
2 is evaluated by representing it as the derivative of a singular integral of the Cauchy
type which is computed by employing an idea explained in Gakhov’s book [7]. The
values of the reflection coefficient computed with the help of present method match
exactly with the previous results available in the literature. The energy identity is
derived using the Havelock’s theorems.
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1 Introduction

The problem of interaction of water waves and submerged permeable structures
has been widely studied since the last few decades due to its vast applications
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in coastal engineering such as the construction of breakwaters. Permeable
breakwaters are often used to protect the harbor area and offshore structures
as they feel less wave load than the rigid barriers.

Literature in connection with the problem of water wave scattering and
permeable barriers is quite vast. The first theoretical model on water wave in-
teraction with permeable barriers was presented by Sollitt and Cross [26]. Later
several semi-analytical and numerical studies were made on the problem of scat-
tering of water waves by various kinds of permeable barriers (see [4, 17, 27]).
Employing Green’s integral theorem to suitable Green’s function and potential
function, Gayen and Mondal [12] solved the problem of water wave scattering
by vertical and inclined permeable plates by reducing it into a second kind
hypersingular integral equation. Manam and Sivanesan [19] developed an ana-
lytical method to study the problem of water wave scattering by vertical porous
barriers situated in deep water by establishing integral relations between poten-
tials associated with the solid and porous barriers. Sivanesan and Manam [25]
obtained analytical solution for the scattering problem involving a porous plate
with two gaps by decomposing the associated boundary value problem into four
problems involving solid barriers. Chanda and Bora [3] used the methods of
eigenfunction expansion and least square to investigate the interaction of water
waves with a pair of submerged vertical porous plates present in water of finite
depth with a porous sea bed.

Hypersingular integral equations of order 2 and 3 arise as a consequence
of the reduction of boundary value problems associated with Laplace equation
when the boundary conditions involving normal derivatives are enforced. The
applications of the hypersingular integral equation of the first kind (HSIE I) of
orders 2 and 3 are widely available in the literature of fluid mechanics [6,15,16],
acoustic waves [14], fracture mechanics [2], crack problem [24] etc. However,
involvement of hypersingular integral equations of the second kind (HSIE II) is
not so frequent, especially in the literature of linear water waves. Occurence of
HSIE II can be noticed in the problems of water wave scattering by permeable
barriers for which the velocity normal to the barrier is proportional to the
difference in potential function [12,21,22].

Various analytical and numerical methods are available in the literature to
solve the hypersingular integral equation of the second kind. Dragos [5] de-
veloped collocation method to solve the Prandtl’s hypersingular integral equa-
tion. Chakrabarti et al. [1] obtained the closed form solution of the Prandtl’s
equation by reducing it into a differential Riemann-Hilbert problem on a slit.
Mandal and Bera [20] employed a method based on polynomial expansion to
obtain an approximate solution of Prandtl’s equation. Mahmoudi [18] used
modified Adomian decomposition method to get the solution of an HSIE II.

The objective of the present article is to develop an alternative method to
encounter the problem of scattering of water waves by a permeable plate sub-
merged in deep water by reducing it to a hypersingular integral equation using
Havelock’s theorems and to introduce a new approximate method of evaluat-
ing the integral equation numerically. Several researchers [8, 9, 10, 13, 23, 28]
used Havlock’s expansion and inversion theorems as an essential tool to solve
the boundary value problems associated with the scattering problems involv-
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ing thin barriers by reducing them into integral equations. The structure of
this paper is given as follows. The mathematical formulation is presented in
Section 2. In Section 3, the governing boundary value problem associated with
the scattering problem is reduced to an HSIE II in the potential difference
across the porous plate using Havelock’s expansion and inversion theorems. In
Section 4, an approximate method of determining the numerical solution of
the hypersingular integral equation is described by employing an expansion-
cum-collocation method. It may be noticed in the literature that to get the
approximate solutions of integral equations by using expansion-cum-collocation
method, the authors mostly expanded the unknown function in terms of an or-
thogonal set of polynomials. But, in the present paper the unknown function
is approximated by a finite series involving polynomials upto degree N and the
polynomials are not orthogonal. Considering the hypersingular integral to be
the derivative of Cauchy Principal Value integral, the latter is evaluated by a
method outlined in Gakhov [7]. Then taking the derivative of the result and
collocating at N + 1 points with appropriate nodes a linear system of algebraic
equations is obtained which is solved to produce numerical estimates of the un-
known coefficients. The reflection coefficient is evaluated numerically by using
the approximate expression of the potential difference of the velocity potential.
In order to establish the phenomenon of energy loss due to the permeability
of the plate mathematically, an energy identity relation is derived using Have-
lock’s theorems. In Section 5, The efficiency of the method is presented in the
form of tables and through graphical presentation, the correctness of the pro-
posed method is described by comparing the present results with some results
available in the literature. Finally, conclusions are made in Section 6.

2 Mathematical formulation
 
 

𝑥𝑥 = 0 

 𝑥𝑥 

                                                                  (0,𝑎𝑎)             𝑑𝑑      Transmitted waves 

                                                Incident waves         2𝑐𝑐                                    

                                                       

                                               Reflected waves                  (0,𝑏𝑏)                     

 

 

      𝑦𝑦  

Figure 1. Schematic diagram of permeable vertical plate.

Here we consider the scattering of water waves by a vertical permeable plate
submerged into deep water. Let us choose Cartesian coordinates in which the
positive y−axis is taken downwards inside the fluid region and the plane y = 0
describes the mean free position of the undisturbed free surface. The fluid
occupies the region y > 0, − ∞ < x < ∞. The length of the barrier is 2c
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and a, b, d are the depths of submergence of the upper end, the lower end
and the mid-point of the plate below the mean free surface respectively (see
Figure 1). In this study, we denote the plate by Γ and the gap by Γ such
that Γ ∪ Γ = [0,∞). A train of small amplitude waves with angular frequency
σ propagates towards the plate from the negative infinity and is described by

Re{φinc(x, y)e−iσt} assuming the linear theory of water waves. φinc(x, y) is
given by

φinc(x, y) = e−Ky+iKx

with K = σ2

g , g being the acceleration due to gravity. If the resulting motion

in the fluid be described by the velocity potential Re{φ(x, y)e−iσt}, then the
mathematical problem satisfied by the function φ(x, y) comprises of the Laplace
equation

∇2φ = 0, in the fluid region, (2.1)

and the boundary conditions (cf. Gayen and Mondal [12])

Kφ+
∂φ

∂y
= 0, on y = 0, (2.2)

∇φ→ 0, as y →∞, (2.3)

r
1
2∇φ is bounded as r → 0, (2.4)

∂φ

∂x
= −iKG[φ(0+, y)− φ(0−, y)], on y ∈ Γ,

φ(x, y) ∼

{
Tφinc(x, y) as x→∞,
φinc(x, y) +Rφinc(−x, y) as x→ −∞.

(2.5)

In the above equations, r is the distance between any fluid particle and either
of the ends of the submerged plate, G represents the porous effect parame-
ter(see Yu and Chwang [29]), R and T denote respectively the reflection and
the transmission coefficients.

In the next section we describe a method to reduce the above boundary
value problem to a hypersingular integral equation of the second kind.

3 Reduction to the hypersingular integral equation

We employ Havelock’s expansion (cf. Gayen et al. [11]) of the water wave poten-
tial function φ(x, y) satisfying the equation (2.1) and the boundary conditions
(2.2), (2.3) and (2.5) as given by

φ(x, y) =


Tφinc(x, y) +

∫ ∞
0

A(ξ)F (ξ, y)e−ξxdξ, x > 0,

φinc(x, y) +Rφinc(−x, y) +

∫ ∞
0

B(ξ)F (ξ, y)eξxdξ, x < 0,
(3.1)

where F (ξ, y) = ξ cos ξy −K sin ξy and A(ξ), B(ξ) are unknown functions to
be determined.
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Let, v(y) and p(y) denote the fluid velocity and the difference of potentials
across the plate respectively. Then

v(y) =
∂φ

∂x
(0, y), y > 0

p(y) = φ(0+, y)− φ(0−, y), y > 0.

Since the normal velocity on the permeable barrier is proportional to the pres-
sure difference across the barrier and the pressure difference vanishes along the
line below and above the barrier, thus

v(y) = −iKGp(y), y ∈ Γ , (3.2)

p(y) = 0, y ∈ Γ . (3.3)

Using the expressions of the water wave potential function φ(x, y) from the
relation (3.1), the expressions of the fluid velocity v(y) and the pressure p(y)
are derived as

v(y) =


∂φ

∂x
(0+, y) = iKT e−Ky −

∫ ∞
0

ξA(ξ)F (ξ, y)dξ,

∂φ

∂x
(0−, y) = iK(1−R)e−Ky +

∫ ∞
0

ξB(ξ)F (ξ, y)dξ, y > 0,
(3.4)

and

p(y) = (T − 1−R)e−Ky +

∫ ∞
0

(
A(ξ)−B(ξ)

)
F (ξ, y)dξ, y > 0. (3.5)

Employing the Havelock’s inversion formula (cf. Gayen et al. [11]) on equation
(3.4), we obtain following relations between the constants T, R and the un-
known functions A(ξ) and B(ξ) in terms of the integrals involving the velocity
function v(y).

T =1−R = −2i

∫ ∞
0

v(y)e−Kydy,

A(ξ) = −B(ξ) = − 2

π

1

ξ(ξ2 +K2)

∫ ∞
0

v(y)F (ξ, y)dy.

Using the above relations between R, T, A(ξ) and B(ξ), the expression of p(y)
given in the relation (3.5) is simplified to

p(y) = −2Re−Ky − 2

∫ ∞
0

B(ξ)F (ξ, y)dξ, y > 0.

A repeated appliction of Havelock’s inversion theorem on the above equation
yields the following alternative expression for the reflection coefficient R and
the unknown function B(ξ):

R = −K
∫ b

a

p(y)e−Kydy, (3.6)

B(ξ) = − 1

π

1

ξ2 +K2

∫ b

a

p(y)F (ξ, y)dy. (3.7)

Math. Model. Anal., 26(2):223–235, 2021.



228 R. Gayen, S. Gupta and A. Chakrabarti

Substituting B(ξ) from the equation (3.7) into the expression of v(y) in the
equation (3.4) and then using the relation between the potential difference and
the fluid velocity as given in relation (3.2) a second kind hypersingular integral
equation of order 2 in the potential difference function p(y) is derived as∫
×
b

a

p(u)

(u− y)2
du+

∫ b

a

p(u)M(u, y)du+2iπKGp(y) = −2iπK(1−R)e−Ky, (3.8)

where y ∈ (a, b) and where

M(u, y) =
1

(u+ y)2
− 2K2e−K(u+y)

∫ K(u+y)

−∞

eν

ν
dν +

2K

u+ y
.

In the equation (3.8), there are two unknowns p(y) and R. However, R has
been found in terms of p(y) in equation (3.6). Thus, eliminating the unknown
constant R from the equations (3.6) and (3.8), we obtain the final form of the
second kind hypersingular integral equation for determining p(y):∫
×
b

a

p(u)

(u− y)2
du+

∫ b

a

p(u)N(u, y)du+ 2iπKGp(y) = −2iπKe−Ky, (3.9)

where y ∈ (a, b) and

N(u, y) = M(u, y) + 2iπK2e−K(u+y).

4 Numerical solution of the hypersingular integral
equation

In this section we describe a method to solve the integral equation (3.9) nu-
merically. For this, we first introduce the parameters s and t, where u = cs+d,
y = ct+ d. Then the equation (3.9) reduces to a parametric form as given by∫
×

1

−1

g(s)

(s− t)2
ds+

∫ 1

−1
g(s)L(s, t)ds+ 2iπKcGg(t) =

− 2iπKce−K(ct+d), t ∈ (−1, 1), (4.1)

where c = b−a
2 , d = b+a

2 , g(s) = p(cs + d) and L(s, t) = c2N(cs + d, ct + d).
We now approximate the unknown function g(s) by a polynomial of degree N

multiplied by a weight function (1 − s2)
1
2 to incorporate the edge condition

(2.4) satisfied by the potential function. Thus g(s) is approximated as

g(s) = (1− s2)
1
2

N∑
k=0

aks
k. (4.2)

Substituting the expansion of g(s) from the relation (4.2) into the integral
equation (4.1), we obtain

N∑
k=0

akAk(t) = f(t), (4.3)
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where

Ak(t) =

∫
×

1

−1

(1− s2)
1
2 sk

(s− t)2
ds+

∫ 1

−1
(1−s2)

1
2 skL(s, t)+2iπKcG(1− t2)

1
2 tk (4.4)

and

f(t) = −2iπKce−K(ct+d).

The hypersingular integral appearing in the expression ofAk(t) can be rewritten
in terms of singular integrals in either of the following two forms:∫

×
1

−1

(1− s2)
1
2 sk

(s− t)2
ds =

d

dt

∫
−

1

−1

(1− s2)
1
2 sk

s− t
ds (4.5)

or∫
×

1

−1

(1− s2)
1
2 sk

(s− t)2
ds =

∫
−

1

−1

k(1− s2)
1
2 sk−1

s− t
ds−

∫
−

1

−1

sk+1

(1− s2)
1
2 (s− t)

ds. (4.6)

Now, we employ the following lemma to evaluate the CPV integrals appearing
in the right sides of (4.5) and (4.6).

Lemma 1. (see [7]) Let L =
m∑
k=1

Lk be a contour consisting of m simple open

curves having no common ends. The coordinates of the ends, taken in certain
order, are denoted by c1, c2, . . . , c2m. Let p be an integer, 0 6 p 6 2m, and
P (z) a polynomial. Then

1

iπ

∫
L

p∏
k=1

(s− ck)
1
2 /

2p∏
j=p+1

(s− cj)
1
2
P (s)

s− t
ds = −P ∗(t),

where P ∗(z) is a polynomial representing the principal part of the expansion of
the density of the integral of the Cauchy type, in the vicinity of infinity.

Using the above lemma we find∫
−

1

−1

(1− s2)
1
2 sk

s− t
ds = −πPP{tk(t2 − 1)

1
2 }

= −πtk+1 − π
m∑
r=1

(−1) · 1 · 3 · . . . · (2r − 3)

2r(r!)
tk−2r+1, k > 0, (4.7)

where m = k
2 for k even, m = k+1

2 for k odd, and∫
−

1

−1

sk

(1− s2)
1
2 (s− t)

ds = πPP{tk(t2 − 1)−
1
2 }

= πtk−1 + π

m∑
r=1

1 · 3 · . . . · (2r − 1)

2r(r!)
tk−2r−1, k > 1, (4.8)
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where m = k
2 − 1 for k even, m = k−1

2 for k odd and PP{F (t)} denotes the
principal part of the expansion of the function F (t), as t→∞.

We now use the results (4.7) and (4.8) to evaluate the hypersingular part
of the function Ak(t) appearing in the relation (4.4). Thus we obtain∫
×

1

−1

(1− s2)
1
2 sk

(s− t)2
ds = −π d

dt
PP{tk(t2 − 1)

1
2 }

= −πkPP{tk−1(t2 − 1)
1
2 } − πPP{tk+1(t2 − 1)−

1
2 }.

To evaluate the unknown constants ak’s(k = 0, 1, 2, ..., N) we collocate at t =
tj(j = 0, 1, 2, ..., N) in equation (4.3), where tj ’s are chosen as the zeros of
Chebyshev polynomial of the first kind as given by

tj = cos
2j + 1

2N + 2
π, j = 0, 1, ..., N.

This produces the following system of linear algebraic equations in the unknown
constants ak’s(k = 0, 1, 2, ..., N):

N∑
k=0

akAk(tj) = f(tj), j = 0, 1, 2, ..., N. (4.9)

4.1 Reflection and transmission coefficients

In order to evaluate the reflection (R) and the transmission (T ) coefficients
numerically, first we express the reflection (R) and the transmission (T ) coeffi-
cients in terms of an integral of the function g(s) by using the transformation
y = cs+ d as given by

R =−Kc
∫ 1

−1
g(s)e−K(cs+d)ds, (4.10)

T =1−R = 1 +Kc

∫ 1

−1
g(s)e−K(cs+d)ds. (4.11)

Substituting the expansion of g(s) from (4.2) into the equations (4.10) and
(4.11) we obtain R and T as

R =−Kc
N∑
k=0

ak

∫ 1

−1
(1− s2)

1
2 ske−K(cs+d)ds, (4.12)

T =1 +Kc

N∑
k=0

ak

∫ 1

−1
(1− s2)

1
2 ske−K(cs+d)ds. (4.13)

Once ak’s are determined by solving the system of equations (4.9), these are
used to find the numerical values of the reflection (R) and the transmission (T )
coefficients, using the relations (4.12) and (4.13).
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4.2 The energy identity

In the present article, the scattering of water waves by a permeable plate is
considered. Due to the permeability of the plate some wave energy will be
dissipated by the plate so that |R|2 + |T |2 < 1. Now to prove this phenomenon
analytically, we first multiply both sides of the equation (3.4) by p(y), integrate
over (0,∞) and we obtain∫ ∞

0

p(y)v(y)dy =iK(1−R)

∫ ∞
0

e−Kyp(y)dy

+

∫ ∞
0

p(y)
(∫ ∞

0

ξB(ξ)F (ξ, y)dξ
)

dy. (4.14)

Here, p(y) represents the complex conjugate of the function p(y).
Using relations (3.6) and (3.7), equation (4.14) simplifies to∫ ∞

0

p(y)v(y)dy = −i(1−R)R− π
∫ ∞
0

ξ(ξ2 +K2)|B(ξ)|2dξ. (4.15)

Similarly we obtain the following relation as given by∫ ∞
0

p(y)v(y)dy = i(1−R)R− π
∫ ∞
0

ξ(ξ2 +K2)|B(ξ)|2dξ, (4.16)

where v(y) denotes the complex conjugate of the function v(y).
Subtracting equation (4.15) from equation (4.16), using the relations (3.2),

(3.3) and the relation R+ T = 1, the energy identity is determined as

|R|2 + |T |2 = 1− 2KGr

∫
Γ

|p(y)|2dy,

where Gr denotes the real part of the porous effect parameter G. The above en-
ergy identity was also derived in Gayen and Mondal [12] using Green’s integral
theorem.

5 Convergence and validation of results

Here, we present the numerical results for the absolute values of the reflection
coefficient |R| for different values of various parameters. In Tables 1 and 2, the
numerical values of |R| are depicted for different values of the dimensionless
wavenumber Kc with fixed values of d

c = 1.5, 2.0 and G = 1. These numerical
results demonstrate that the accuracy of the values of |R| is achievable with the
appropriate choice of the truncation size N of the finite series appearing in the
relation (4.2). It is observed from both the tables that for N = 10 an accuracy
upto six decimal places of the numerical values of |R| is achieved. Results with
higher accuracy can be obtained with larger values of the truncation number
N .

In Figure 2, we compare our present results with those in Gayen and Mon-
dal [12] by introducing a new parameter µ = a

b which represents the ratio of

Math. Model. Anal., 26(2):223–235, 2021.
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Table 1. Values of |R| with truncation number N at d
c

= 1.5 and G = 1.

N Kc = 1.0 Kc = 0.5 Kc = 0.1

5 0.109051 0.139703 0.025593
6 0.109055 0.139689 0.025593
7 0.109054 0.139682 0.025592
8 0.109053 0.139679 0.025592
9 0.109052 0.139677 0.025592
10 0.109052 0.139675 0.025592

Table 2. Values of |R| with truncation number N at d
c

= 2.0 and G = 1.

N Kc = 1.0 Kc = 0.5 Kc = 0.1

5 0.042014 0.084355 0.022048
6 0.042019 0.084350 0.022048
7 0.042020 0.084347 0.022048
8 0.042020 0.084345 0.022048
9 0.042020 0.084344 0.022048
10 0.042020 0.084344 0.022048

submergence of the top edge to the bottom edge of the plate. We plot the nu-
merical estimates of the absolute values of the reflection coefficient |R| against
the dimensionless wavenumber Kb with µ = 0.25, N = 10 and for two different
values of the porous effect parameter G = 0, 1. It is evident from this figure
that our results agree well with those in Gayen and Mondal [12] which proves
the correctness of our present method.

Kb
0 0.5 1 1.5 2 2.5

jR
j

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

G=0 (Present Result)
G=1(Present Result)
G=0 (Gayen and Mondal 2014)
G=1 (Gayen and Mondal 2014)

Figure 2. |R| vs. dimensionless wavenumber Kb with µ = 0.25 and G = 0, 1.

In Figure 3, we plot a graph of total wave energy i.e. |R|2 + |T |2 against
dimensionless wavenumber Kh for G = 0.5, N = 10 and µ1 = 1.8, where µ1

is the ratio of plate width to its mean depth h and µ1 is chosen such that
a = h

(
1− µ1

2

)
and b = h

(
1 + µ1

2

)
. Our present result which is denoted by
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a solid line matches well with the stars which represent the results of Manam
and Sivanesan [19] and this gives another check on correctness of our present
analysis.

Kh

0 0.2 0.4 0.6 0.8 1

jR
j2

+
jT

j2

0

0.2

0.4

0.6

0.8

1

Present Result
Manam and Sivanesan (2017)

Figure 3. |R|2 + |T |2 vs. dimensionless wavenumber Kh with µ1 = 1.8 and G = 0.5.

6 Conclusions

In this paper, we have presented a new method to encounter the problem of wa-
ter wave scattering by a permeable plate present in deep water. The technique
used here is more straightforward than the methods available in the literature.
Havelock’s theorem is employed to expand the velocity potential function. Us-
ing Havelock’s inversion theorem and the porous plate condition the boundary
value problem is reduced to that of solving a second kind hypersingular inte-
gral equation of order 2 in terms of the difference of potential function across
the plate. The unknown function appearing in the aforesaid integral equation
has been approximated in terms of an unknown polynomial multiplied by an
appropriate weight function. The hypersingular integrals have been evaluated
utilizing a lemma by reducing the order of singularity of the integrals. Then,
employing a proper collocation method, an approximate solution to the hyper-
singular integral equation is obtained and are used to evaluate the numerical
estimates for the reflection coefficient. The computed results have been com-
pared with those available in the literature, and a good agreement has been
achieved which proves the correctness of our present method. Also, we have
presented a new method to prove the energy identity relation for the case of
water wave scattering by a permeable plate.
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