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ABSTRACT 

Pisarenko’s Harmonic Retrieval (PHR) method is perhaps the 
first eigenstructure based spectral estimation technique. The basic 
step in this method is the computation of the eigenvector corre- 
sponding to the minimum eigenvalue of the autocorrelation matrix 
of the underlying data. This eigenvector is obtained as the solu- 
tion of a constrained.minimization formulation. In this paper, we 
recast this constrained minimization problem into the neural net- 
work (NN) framework by choosing an appropriate cost function (or 
energy function) for the NN. We also present the theoretical anal- 
ysis of the proposed approach for the asymptotic case. It is shown 
that the minimizers of the energy function are the eigenvectors 
(with a given norm) of the autocorrelation matrix corresponding 
to the minimum eigenvalue, and vice versa. Further, all the mini- 
mizers of this energy function are also global minimizers. Results 
of computer simtdations are presented to support our analysis. 

1 INTRODUCTION 

Estimation of the frequencies of sinusoids corrupted with white 
noise arises in many applications. The various spectral estima- 
tion techniques which can be applied to solve this problem can be 
classified into two categories; eigenstructure based methods and 
non-eigenstructure based methods. The Pisarenko’s Harmonic Re- 
trieval (PHR) method and the Maximum Entropy Method are the 
examples, respectively, of these two classes. The eigenstructure 
based methods are preferrod to the other, since they yield high 
resolution and asymptotically exact results. In this paper, we 
concentrate on the PHR method and solve the basic step in this 
method, i.e., estimation of the eigenvector corresponding to the 
minimum eigenvalue, using a modified form of the analog Hop- 
field neural network by exploiting the optimization preperty of 
this neural network (NN). 

An Artificial Neural Network (ANN) consists of many highly 
interconnected, simple and similar processing elements, called neu- 
rons, operating in parallel. In general, ANNs can be classified into 
two classes; feedforward ANNs and feedback ANNs. One of the 
most important applications of the feedback type ANNs is in solv- 
ing optimization problems. For example, the ability of Hopfield 
ANN [I] to provide fast and collectively computed solutions to 
difficult optimization problems is well established in the litera- 

This paper is organized as follows. The PHR method and 
its constrained minimization formulatiod are briefly reviewed in 
Section 2. The NN formulation of the .PHR problem is presented 
in Section 3. The theoretical analysis of the proposed approach, 
derived in Section 3, is presented in Section 4. This includes con- 
vergence and such other key aspects. Simulation results are pre- 
sented in Section 5 and Section 6 concludes the paper. 

ture [21,[31,[41. 

2 BACKGROUND 
Let 

P 
y(n) = Caicos(win + e;) + u(n) (2.1) 

i=l 

where a ; , ~ ;  and Bi denote the amplitude, frequency (normalized) 
and initial phase (assumed to be uniformly distributed in [0,2n]) 
of the ith sinusoid and {U(.)} are zero mean, independent and 
identically distributed random variables with variance U*. Let R 
denote the covariance matrix of size N x  N ,  ( N  2 2P+1) of y(n). 
Then the eigenvector corresponding to the minimum eigenvalue 
(hereafter referred to as the minimum eigenvector) of R is the 
solution of the following constrained minimization problem [5]: 

min wTRw subject to wTw = 1 (2-2) 
W 

where is an N-dimensional weight vec- 
tor. 

Now the polynomial whose coefficients are the elements of 
this minimum eigenvector will have 2P of its N - 1 roots located 
at exp(*tjw;), i = 1 . .  . P .  These 2 P  roots of interest will be 
unaffected by the noise power and the remaining N - 1 - 2 P  loots 
are arbitrary [6]. 

Thus, the central problem in PHR method is the computa- 
tion of the minimum eigenvector of theautocorrelation matrix of 
the underlying data. Different techniques have been recently pro- 
posed for efficient and adaptive estimation of the minimum eigen- 
vector [5],[7]. While Thompson [5] suggested a constrained gra- 
dient search procedure, Reddy et al. [7] restated this constrained 
minimization problem as an unconstrained minimization problem 
and developed a Gauss-Newton type recursive algorithm, for seek- 
ing the minimum eigenvector. Larimore [8] studied the conver- 
gence behaviour of the Thompson’s [5] adaptive algorithm. 

In this paper, we suggest a neural network (NN) approach 
to the PHR problem. We. recast the constrained minimization 
problem (2.2) into a different unconstrained minimization prob- 
lem, suitable for the NN framework. The analysis and results 
presented in this paper are for the asymptotic case. However, this 
approach can easily be extended to the finite data case to develop 
an adaptive version of the PHR method. 

w = [wl, w2,. . . , 

3 NN FORMULATION OF THE 
PHR PROBLEM 

In a Hopfield NN, the neurons are connected in a feedback 
configuration and the stable stationary states of the network cor- 
respond to the minima of a mathematical quantity, called as the 
energy function (or Lyapunov function) of the network. In order 
to set up-a Hopfield NN to minimize a given cost function, the 
neuron model is fixed a-priori and the connection strengths of the 
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neurons are assigned appropriate values by comparing the energy 
function and the given cost function. But, in the approach we dis- 
cuss below, the neuron model (and hence the network structure) 
evolves as a direct consequence of the nature of the cost function 
to be minimized. In the following derivation, we assume linear 
input-output relation for each neuron and the output of the kth 
neuron represents the k"' element of the vector w. 

The cost function used in our development is motivated as 
follows. Recall that in solving the minimization problem (2.2) 
using the Lagrange multiplier approach, we use the following cost 
function 

L(w, A) = W ~ R W  + X ( W ~ W  - 1) (3.1) 

where X is the Lagrange multiplier. This function is not always 
positive definite, and hence, it is not a valid energy function (Lya- 
punov function). We, therefore, modify the second term in (3.1) 
and construct another function J given by 

J(w, p )  = W'RW + p (W'W - 1)* (3.2) 

where p is a positive constant. Since R is a positive definite 
symmetric matrix (for the case of sinusoids in white noise) and p 
is positive, the function J is always positive. Thus, (3.2) is a valid 
energy function. Incidentally, the p here acts as a weighting given 
to the violation of the unit norm constraint on the minimizer of 
1 

can say that when the network comes to the resting state, the neu-, 
ronal output vector w will correspond to a minimum eigenvector 
of R. 

For the purpose of illustration, we have shown in Fig. 1 
the structure of the resulting N N  for the case with N = 3 and 
P = 1. We call this a modified form of the Hopfield NN due to 
its similarity with the original analog Hopfield N N  [l]. 

4 THEORETICAL ANALYSIS OF 
THE PROPOSED APPROACH 

In this sectiop, we present a theoretical analysis of the pro- 
posed neural network approach and establish it as a minimum 
eigenvector estimator. We do this in two steps. First, we es- 
tablish the correspondence between the minimizers of J and the 
minimum eigenvectors of R. Next, we derive the bounds on the 
integration time-step ( h )  which is used in solving numerically the 
system of N ordinary differential equations. 

We treat the problem of minimization of J as an uncon- 
strained non-linear optimization problem in the following analy- 
sis. We study the nature of the stationary points of J (points at 
which the derivative of J with respect to w becomes zero) and 
establish the relationship between these points and the eigenvec- 
tors of R. Going one step further, we investigate the link between 
the minimizers of J and the minimum eigenvectors of R, since our 

U .  

Now, to obtain the structure of the neural network which 
solves the minimization problem (3.2), we proceed as below using 

(or Lyapunov) function for the network to be obtained, provided 
the network dynamics are such that the derivative of is 
negative. 

The time derivative of J is given by 

ultimate aim is to solve for a minimum eigenvector of R. 
The cost ,function J ,  as given by (3.2), can be considered 

we assume that p is fixed at some appropriately chosen value. 
Guidelines for choosing the value of p are given in the discussion 
that follows Corollary 4. 

4.1 Correspondence Between the Minimizers 
d J  d J  d W k ( t )  of J and the Minimum Eigenvectors of R 

In this subsection, we establish the correspondence between 

the Lyapunov stability approach. We can accept J as the energy as a function Of with parameter p. In the 

(3.3) _ -  -E-.- 
d t  k=l a w k ( t )  dt 

the minimizers of J and the minimum eigenvectors of R. The 
proposition, theorems and corollaries which are stated below are 
proved in [9]. 

where wk(t) denotes the ICfh component of the vector w at time t 
( t  denotes continuous time) and 

with &k denoting the ( p ,  element of the matrix R. 
Now, suppose we define the dynamics of the kth neuron as 

dWk(t) . d J  - = -- 
dt awkw . 

N 
= -2 CRkPWP( t )  - 4/LWk(t) (W'(t)W(t) - 1) 

p=l 

k =,I.. . N (3.5) 

giving 

We note from (3.6) that 

dJ - < 0 if # 0 for at least one of the k's dt 

Positivity assumption on p 

that 
In the foregoing analysis, we make the following assumption 

P > O  

This assumption is required to ensure the positivity of J .  

Proposition: If w is a stationary point (SP) of J ,  then the norm 
of w, p, is less than unity, i .e. ,  llwllz = p < 1, where 11.112 denotes 
the Euclidean norm. 

T h e o r d  w is a st.ationary point (SP) of J if and only if 
w is an eigenvector of R corresponding to the eigenvalue A, with 
11w11'2 = p' = 1 - 2jT. 

Theorem 2: w is a global minimizer of J if and only if w 
is a minimum eigenvector of R corresponding to the minimum 
eigenvalue Amin, with llw11; = Bz = 1 - -!r ' . 

We state four corollaries below in order to bring out the 
significant features of Theorem 2. 

if = 0 for all k. dJ 
-=I) 
dt (3.7) Corollary 1: The value of p should be such that p > +. 

This implies that the NN with dynamics given by (3.5) has its 
stable stationary points at the local minima of J .  In the next 
section, we show that the minimizer of J corresponds to a mini- 
mum eigenvector of R (see Theorem 2, Section 4.1). Hence, we 

Corollary 2: For a given p, every local minimizer of is also 

a global minimizer and the minimum value of J is A '  ' (1 + p'). 
Corollary 3: The minimizer of J is unique only when = 
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2 P  + 1. 
Corollary 4: 
2 P  eigenvalues correspond to the saddle points of J .  

Discussion: 

The eigenvectors of R associated with the first 

The proposition implies that the set of stationary points of J 
with p > 0 is a subset of the set of vectors with norm less than 
unity. Theorems 1 and 2 establish the one-to-one correspondence 
between the minimizers of J and the minimum eigenvectors of R. 
Theorem 1 implies that all the stationary points of J are eigen- 
vectors of R with a given norm, where this norm is decided by 
the value of p. Conversely, all eigenvectors of R with a given 
norm are stationary points of J .  Similarly, Theorem 2 along with 
Corollary 2 establishes the fact that all minimizers of J are min- 
imum eigenvectors of R, with a norm decided by the value of p,  
and vice versa. Corollary 4 reinforces this fact by showing that 
all other eigenvectors of R correspond to the saddle points of J .  
Combining these four points we see that computing a minimum 
eigenvector of R is equivalent to finding a minimizer of J .  It is 
significant to note that eventhough J is a non-convex nonlinear 
function, the problem of minimization of J doesnot suffer from 
local minima problems since any locally optimum solution is also 
globally optimum (Corollary 2). 

An important point that is to be noted from Theorem 2 
is that the norm of all minimizers of J is predetermined by the 
value of p.  Further, for the constraint satisfaction to be better 
(Le.,  for the norm of the solution to be closer to unity), the value 
of p required is higher. If the minimum eigenvalue of R is known, 
then we can choose the value of p so as to obtain a minimum 
eigenvector with a specified norm (less than unity). 

4.2 Bounds on the Integration Time-step 
We note from (3.5) that the vector differential equation, which 

defines the evolution of the neural network in its state space, is 
given by 

-- dw(t) - -2Rw(t) - 4pw(t) [wT(t)w(t) - 11 (4.1) dt 

Minimizer of J corresponds to the solution of this vector differ- 
ential equation. In order to solve this using some numerical tech- 
nique, we need to choose an appropriate integration time-step, say 
h. The choice of h is crucial, from the point of view of conver- 
gence of the technique to the correct solution. We now present an 
approximate analysis to obtain the upper and lower bounds for h, 
assuming a simple time-discretization numerical technique. 

For sufficiently small h, we have the following approximation 

w(n + 1) - W(.) 
h 

where n is the discrete time index. Thus, (4.1) can be rewritten 
as 

w ( n + l )  x B(n)w(n) (4.2) 

where B(n) = [l - 4 h p d ( n ) ] I ~  - 2hR and d(n) = 
wT(n)w(n) - 1. Noting that B(n) is symmetric and the eigen- 
vectors of B(n) are same as those of R ,  we can express (4.2) as 

N 

w(n + 1) x b;(n)e;eTw(n) (4.3) 
i=l 

where ei is the normalized eigenvector corresponding to the eigen- 
value bi(n) (= 1-4hpd(n)-ShXi) of B(n) and Xi is theeigenvalue 
of R corresponding to e;. 

Let MO be a large positive integer such that for n > MO, 
the trial solution w(n) is very close to the desired solution, say 
w*. Then it is reasonable to assume that the norm of ~ ( n )  re- 
mains constant at I I w * ~ ~ ~ ,  for all practical purposes, from instant 
to instant. Thus, for n > MO 

d(n) x d =  w*'w* - 1 

b;(n) w bi = 1 - 4hpd - 2hXi (4.4) 

Substituting these approximations into (4.3) and iterating it from 
hi, to n,  we can show that 

N 

~ ( n )  x xbi(n-M")7jej (4.5) 
i=l 

where 7, = eTw(Mo). Decomposing (4.5) into two terms, one 
consisting of the first 2 P  eigenvalues and eigenvectors and the 
other consisting of the last N - 2 P  minimum eigenvalues and 
eigenvectors (of R), we have 

We note from (4.6) that for w(n) to converge to a minimum 
eigenvector of R, the first term should vanish asymptotically and 
the factor in the second term should be a constant for all 
n > MO. These requirements are met if 

) b , )  < 1 V i = 1 ,  ..., 2 P  (4.7) 

and 

l b j l  = 1 V i = 2 P + 1 ,  ..., N .  (4.8) 

Substituting (4.4) into (4.7) and rearranging the terms, we get 

v i  = l,.. . 1 
O < h < -  

2pd + Xi 
, 2p (4.9) 

(4.11) 

Since the bound on h has to be satisfied for all eigenvalues, X1 to 
Xzp, we replace Xi in (4.9) with A,,, and restate the relation for 
h a s  

(4.10) 
1 

O < h <  
2pd + Amas 

where A,,, is the maximum eigenvalue of R. 
Suppose that the eigenvalues of R are ordered as 

2 Xz 2 I . .  2 Xzp > xzp+1 = Xzp+z = .. . = AN 

Then, (4.4) shows that 

bl 5 bz 5 * ' * 5 bZp < bZp+1 = &p+z = . . . = bN 

Then, combining (4.7) with (4.11), gives 

bj > -1 V i E (2P + 1, .  . . , N }  (4.12) 

Equations (4.8) and (4.12) imply that for i = 2P + 1,. . . , N ,  
~ 

bi = 1 - 4hpd -2hXi = 1 (4.13) 

Substituting for Xi = Amin and d = w*=w* - 1 = PZ - 1 into 
(4.13) gives 

Xmin = 2/1(1- P') (4.14) 

Note that (4.14) is in agreement with Theorem 2. Substituting 
(4.14) into (4.10), we get the bounds on h as 

(4.15) 1 
O c h c  

Xmaz - Xmin 
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1. 

2. 

3. 

4. 

5. 

6. 

summarizing the analysis of Sections 4.1 and 4.2, we have the estimated values of the frequencies from the true values arc 
because of the numerical solution of the differential equations. 

Table 2 gives six different minimizers of J (minimum eigen- 
the following results. 

A11 the minimum eigenvectors of R estimated using the above 
approach will have norm less than unity. 

w is a minimizer of J if and only if it is a minimum eigenvector 
of R with wTw = 1 - *, where Amin is the minimum 
eigenvalue of R. 

As the value of p increases, the norm of the solution vector 
approaches unity. 

The value chosen for p should always be greater than 

in order to obtain a valid solution. For p < 
of the solution is unpredictable. 

For a given p, all minimizers of J (or minimum eigenvectors 
of R, the norms of which satisfy the relation given above) are 
global minimizers. 

The bounds on the integration timestep h, for the iterative 
equation in w(n) to converge to a minimum eigenvector of R, 
are 

c1 

the nature 

O < h < h  
moz - Anin 

where Amoz is the maximum eigenvalue of R. 

This completes the analysis of the proposed neural network ap- 
proach. Next we present some simulation results which corrobo- 
rate our analysis. 

5 SIMULATION RESULTS 
For the data described by (2.1), the asymptotic autocorrelation 

matrix R is given by 

a; 
!=1 2 

R(i ,  j )  = -cos (wllc) + a2&, 

where k =( i  - j l ,  i,j = 1,. . . , N, and 6, is the Kronecker delta 
function. The system of N ordinary non-linear differential equa- 
tions is solved numerically, with an appropriate integration time- 
step h. The iterations are stopped when the norm of the difference 
between the consecutive solution vectors is less than a predeter- 
mined threshold, 6(i.e., Ilw(n + 1) - w(n)112 < 6). A polynomial, 
whose coefficients are the elements of the minimum eigenvector 
estimated using this approach, is then formed and the frequencies 
of the sinusoids are computed from the roots of this polynomial 
which are closest to the unit circle. If w denotes the estimated 
minimum eigenvector, then the minimum eigenvalue is estimated 
as. 

WTRW 
Amin = - 

WTW 

and llwll2 is taken as the estimate of p. 
In the simulations, we chose a2 = 1 (giving Amin = 1) and 

6 = For a fixed h, the estimated values of the frequencies 
of the sinusoids, Ami,, and p are given in Table 1, for different 
values of N, P and p. We note the following from the results of 
this table. 

When p is large, ,h is closer to unity as predicted by the 
cost function (3.2). The estimated value of Ami,, j s  same as the 
true value and the norm of the solution vector, p, is very close 
to the theoretical value given by (4.14). The minor deviations of 

- - 
vectors of R) obtained with different initial conditions, for the 
case with N = 4 , P  = 1 and p = 15. Note that there are more 
than N - 2 P  different minimizers (all having the same norm) 
thus illustrating the non-uniqueness of the minimizer of J ,  when 
N > 2 P  + 1 (Corollary 3). The estimate of Amin and the norm 
of the solution vectors are same as the true values. For p < Amin 

the behaviour of the system was erroneous. 

tions we made in Section 4. 

2 ,  

Thus, the simulation results confirm the theoretical asser- 

6 CONCLUSIONS 
The problem of estimating the frequencies of a given number 

of real sinusoids corrupted with white noise using the Pisarenko’s 
harmonic retrieval method has been recast into the neural network 
framework. Dynamics of the neural network are derived using the 
Lyapunov stability approach. The theoretical analysis of conver- 
gence and other key aspects is developed, and the results of the 
analysis are supported by simulations. Though we considered the 
asymptotic case in the paper, the approach can be easily extended 
to the finite data case. 
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Table 

0.7452 0.3003 0.7190 0.6495 
-0.0739 0.5533 0.0962 0.2481 
0.5062 -0.1564 0.3849 0.2481 

1. 

0.1777 0.3051 
0.6011 -0.6115 

-0.2616 0.5665 

Estimates of frequencies, ,8 and Xmjn for different values of p, N and P.  

True valueof p: 0.707106 for p = 1 and 0.993730 for p =40 

Table 2. Different minimizers (minimum eigenvectors) for the case with N . =  4,P = 1 and p = 15. 
Minimum 

eigenvector 
for different 

initial conditions 0.3867 I 0.7389 I 0.5406 0.6495 1 0.7109 I -0.4229 
0.983192 I 0.983192 I 0.983192 10.983192 1 0.983192 I 0.983192 

True valueof p = 0.983192 for p = 15 

Fig.1 Neural network rtmcture for 6eekhg the minium eigenvector d B (N = 3, P = 1) 
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