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Population imbalance for a family of one-dimensional incommensurate models with mobility edges
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In this paper, we look at four generalizations of the one-dimensional Aubry-André-Harper (AAH) model
which possess mobility edges. We map out a phase diagram in terms of population imbalance and look at the
system size dependence of the steady-state imbalance. We find nonmonotonic behavior of imbalance with the
system parameters, which contradicts the idea that the relaxation of an initial imbalance is fixed only by the ratio
of the number of extended states to the number of localized states. We propose that there exist dimensionless
parameters, which depend on the fraction of single-particle localized states, single-particle extended states,
and the mean participation ratio of these states. These ingredients fully control the imbalance in the long
time limit and we present numerical evidence of this claim. Among the four models considered, three of
them have interesting duality relations and their locations of mobility edges are known. One of the models
(next-nearest-neighbor hopping) has no known duality but a mobility edge exists and the model has been
experimentally realized. Our findings are an important step forward to understanding nonequilibrium phenomena
in a family of interesting models with incommensurate potentials.
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I. INTRODUCTION

It is a well-known fact that for an arbitrarily small random
disorder, the single-particle eigenstates of a noninteracting
Hamiltonian are all localized in d < 3 [1]. This phenomenon,
termed Anderson localization, has been observed in a wide
variety of systems [2,3]. For d = 3, there is a critical value of
disorder, above which a localization transition occurs, with a
sharp energy-dependent mobility edge [4].

However, after the seminal work by Anderson, it was
shown by Aubry and André that localization can occur even
in the presence of a quasiperiodic potential [5]. Their model
is described by the Hamiltonian

H =
∑

i

[t (c†
i+1ci + H.c.) + λ cos(2πβi + φ)], (1)

where particles are annihilated (created) by the operators ci

(c†
i ) and they hop with amplitude t on a one-dimensional

(1D) lattice whose sites are labeled by the index i. λ is the
strength of the on-site potential and β is an irrational number,
which ensures the incommensurability of the potential with
the lattice. This Hamiltonian also arises in the context of the
quantum Hall effect on a lattice with an irrational flux per
plaquette [6,7]. For the Aubry-André-Harper (AAH) model,
there exists a critical disorder strength, below which all single-
particle eigenstates are delocalized, and above which all
single-particle eigenstates are localized, which is in contrast
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to the phenomenon of Anderson localization in one dimension
where all single-particle states are localized.

The AAH model possesses a duality that maps its localized
and delocalized phases onto each other with the transition
between them appearing at a self-dual point. The self-dual
point occurs at λ = 2|t |, where the eigenstates are neither
localized nor delocalized but are critical [8], and transport
is subdiffusive at the critical point [9]. The above type of
quasiperiodic potential has recently been realized in opti-
cal lattices in the context of the experimental observation
of many-body localization [10–12], dynamic potentials [13],
with non-Abelian gauge potentials [14], and topologically
protected edge states [15,16]. It was recently shown that the
single-particle localization to delocalization transition follows
a Kibble-Zurek mechanism for a quenched Aubry-André-like
disordered potential [17]. Variants of this model which con-
tain a single-particle mobility edge have also been realized
experimentally [18–20].

The AAH model can be modified to produce single-particle
mobility edges, and this has been studied recently in a wide
context theoretically [21–37]. In fact, it is believed that a
generic one-dimensional model with a quasiperiodic potential
possesses single-particle mobility edges and their lack in the
AAH model is due to its specific (fine-tuned) form [18,21,38].

It is paramount to mention that one of the major advantages
of studying such models is that they mimic certain aspects of
the behavior of generic disordered systems in three dimen-
sions, such as the presence of a mobility edge while affording
the computational advantage of being in one dimension.

It is well established that the properties of delocalization
and localization are deeply connected to those of a measure
of ergodicity and nonergodicity, respectively, in interacting
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systems [39–41]. Ergodicity ensures that at long times the
system with any memory of its initial conditions settles into an
equilibrium state. Generically, this equilibrium state does not
possess broken translational order (note that the equilibrium
state under discussion is a generic one at any energy rather
than, say, the ground state, which is special and can have
specific types of order). Therefore, one promising method to
determine whether a given system is ergodic is to start it out in
a state with broken translation order and observe whether that
order disappears at long times. This is the method employed
in several experimental and theoretical studies of many-body
localization (MBL) via introducing the concept of imbalance
as a diagnostic. For the lattice systems we consider here, the
imbalance I (t ) at any time t is a measure of this order and is
defined as I (t ) = ne(t )−no(t )

L , where ne(t ) and no(t ) are the total
number of particles at even and odd sites, respectively, and L
is the size of the system.

The quantity imbalance is gaining importance for studying
systems that break ergodicity, in the context of cold atom
experiments, where such physics can be realized. A useful
and straightforward indicator of localization of eigenstates is
the mean participation ratio (inverse mean participation ratio),
which is of O(1) [O(L)] for localized states, and O(L) [O(1)]
for delocalized states. But unlike the imbalance, this quantity
is not possible to measure in experiments. In our work, we will
use the imbalance as a diagnostic tool to explore localization
physics in one-dimensional quasiperiodic models that break
ergodicity, as this quantity can be measured experimentally
in a straightforward way [10], unlike the mean participation
ratio or inverse participation ratio. Many of the results from
our work can thus, in principle, be directly verified in exper-
iments as well. The main aim of this paper is to establish the
connection between ergodicity breaking, which can be seen in
experiments by measuring the imbalance, and the degree of lo-
calization, of which the mean participation ratio is a measure.

For an ergodic system, an initially nonzero value of I (t ) is
expected to go to zero at long times, while for a nonergodic
one, it remains nonzero. Since nonergodicity is an essential
feature of any localized system, this imbalance of a localized
system, even one without interactions, is expected to remain
nonzero. However, the situation for noninteracting systems
with delocalized states (regardless of whether they occupy the
entire energy spectrum or only a part of it) is less obvious
since these systems are not strictly ergodic (not possessing
interactions). We investigate the behavior of the imbalance for
different types of localized, delocalized, and “mixed” systems
in this work. Although the new order parameter, imbalance,
was studied earlier in the context of interacting systems,
its relevance to noninteracting models (U = 0) was already
shown in Ref. [10]. Systems with single-particle mobility
edges for a one-dimensional quasiperiodic potential [18] were
also studied once the importance of imbalance for study-
ing localization physics in optical lattices was established.
A detailed analysis of noninteracting models, having single-
particle mobility edges, may not have been important before,
but with such models [20] synthesized now, we expect our
results to motivate experiments studying imbalance in them
as well.

Although we do not study interacting models in this work,
we would like to point out that the physics observed in non-

interacting models might be relevant for models where an
interparticle interaction is present. The many-body states of
noninteracting models, with single-particle localized states,
are many-body localized themselves, and show properties
such as Poissonian energy level statistics, violation of the
eigenstate thermalization hypothesis (ETH), area law scal-
ing of entanglement, etc., which are signatures of MBL
states. Thus, understanding any experimental diagnostics of
many-body states of a noninteracting model, in which only
single-particle localized states are occupied (these are MBL
states themselves), might explain observations and help in
understanding phase transitions in MBL experiments.

In this paper, we calculate the steady-state imbalance for
various noninteracting models with quasiperiodic potentials,
obtained by modifying the AAH model. An initial state is
chosen with a broken translational order, in which every
even site is occupied by a particle, and the odd sites are
empty. This charge density wave (CDW) state is similar to
the one employed in Ref. [10]. The relaxation of the CDW
can be calculated in the unitary time evolution that follows.
The calculations are performed by numerically solving the
Schrödinger equation on finite-sized systems and the imbal-
ance is obtained as a function of the various microscopic
parameters and the length L of the system. We perform
finite-size scaling to determine the value of the imbalance
in the thermodynamic limit and its dependence on system
size. Further, we examine its variation with the microscopic
parameters of the models under consideration, and we find a
nonmonotonic dependence on them. We show that the value
of the imbalance is not simply determined by the relative frac-
tion of localized to delocalized states but it also depends on
the strength of localization and delocalization of these states.
This is quantified by the measures ε and ε′ (to be defined
later) whose values we show are correlated with that of the
imbalance. In other words, in addition to how many localized
or delocalized states exist, we demonstrate that it is also of
paramount importance to quantify how “localized” a localized
state is and how “delocalized” a delocalized state is.

The rest of the paper is organized as follows. In Sec. II
we introduce the models (see also Table I), and point out
their main features. We present a brief derivation of the ex-
act mobility edge for the first two generalized AAH models,
following Ref. [25], and for the slowly varying deterministic
potential model from Ref. [42]. Section III is dedicated to
describing the methods employed and calculations.

In Sec. IV, we calculate the fraction of localized states,
whenever the exact expression for the mobility edge is known,
and use it to construct the phase diagram for the model. In
case the location of the mobility edge is not known, we use the
mean participation ratio (which is introduced in Sec. II, model
3) to map out an approximate phase diagram. We also look at
the evolution of a broken translation order in terms of a charge
density wave (CDW) and calculate the imbalance in the long
time limit. The long time value of imbalance serves as an
order parameter and can be used to construct an approximate
phase diagram, akin to the fraction of localized states. For the
main part of this paper, we focus on calculations of model 1
only and show that all the justifications for the behavior of
model 1 in different phases using this order parameter may
be extended to the other three models in the Appendixes.
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TABLE I. Models studied and their properties. All the models feature delocalized, intermediate phases with a mobility edge, and localized
phases, determined by the parameters λ, α [Figs. 1(a)-4(a)].

Model Hopping term On-site potential Vi Location of mobility edge

1 Ti,i+1 = t (a†
i ai+1 + H.c.) 2λ

cos(2πβi+φ)
1−α cos(2πβi+φ) a†

i ai αEc = 2 sgn(λ)(|t | − |λ|)
2 Ti,i+1 = t (a†

i ai+1 + H.c.) 2λ
(1−cos(2πβi+φ)
1+α cos(2πβi+φ) a†

i ai αEc = 2 sgn(λ)(|t | − |λ|)
3 Ti,i+1 = t (a†

i ai+1 + H.c.) 2λ cos(2πβi + φ)a†
i ai No analytical expression,

Ti,i+2 = μt (a†
i ai+2 + H.c.) phases calculated through PR

4 Ti,i+1 = t (a†
i ai+1 + H.c.) 2λ cos(2πβiα + φ)a†

i ai Ec = ±2(|t | − |λ|)

We look at finite-size effects and propose a leading order
scaling of the imbalance with system size. This is used to
extract the thermodynamic limit of the imbalance I0 which
unveils a nontrivial behavior across the parameter space, noted
first in model 1 in Ref. [43]. We extend this analysis for the
other three models as well and show that the nonmonotonicity
is apparent in them as well.

Also in Sec. IV, we provide an explanation for this coun-
terintuitive behavior by using two dimensionless parameters,
ε and ε′, following a recent application of them to distinguish
between the ergodic and MBL phase [44]. These parameters
capture the effective strength of the single-particle local-
ized states versus extended states in confining the particles’
motion, and hence are directly linked to the behavior of imbal-
ance as a function of microscopic parameters of the model. In
Sec. V, we summarize our results along with a brief outlook.

A discussion of the other three models is presented in
the Appendixes, with Appendix A discussing the system size
dependence of the steady-state imbalance and its behavior
in different phases. Appendix B shows how the appearance
of multiple mobility edges show a unique transition between
phases in model 3.

II. MODELS

The models are chosen from Sec. II of Ref. [44]. We
would like to point out that the choice of models is based
primarily on the relevance of the systems to present day exper-
iments, and how well they have been explored. For example,
the specific choice of models in our work is motivated by
the fact that the location of the single-particle mobility edge
in them is known precisely. In practice, the set of models
that have single-particle mobility edges is very large; almost
any quasiperiodic model with a short-range hopping has a
single-particle mobility edge [30,31,42,45]. The fine-tuned
energy-independent duality of the Aubry-André model pre-
vents the occurrence of a mobility edge but generically models
with quasiperiodic potentials are expected to possess mobil-
ity edges. We thus limit ourselves to the study of only four
well-characterized models, and given that they are not trivially
related to one another, believe that our conclusion relating the
imbalance to the degree of localization applies much more
broadly for models with mobility edges. All the models we
study contain an on-site potential Vi of strength λ. The form
of the potential also contains an irrational number β (which
we set equal to the golden mean

√
5+1
2 ) that ensures its in-

commensurability with the underlying lattice and a phase φ

which can be used to move the potential relative to the lattice.

φ is averaged over in our calculation analogous to disorder
averaging. Finally, the potential also depends on an auxiliary
parameter α, which can be tuned to move the position of the
mobility edge in the spectrum. The models studied are listed in
Table I along with some of their specific properties. We restrict
to λ ∈ [0, 2|t |] and α ∈ (0, 1] unless otherwise specified.

The first two of the four models we study were explored
by Ref. [25]. The models were shown to be self-dual by
a generalized transformation akin to a Fourier transforma-
tion, and unlike the AAH model, have mobility edges due to
energy-dependent self-dual conditions. The first of this family
of self-dual models is the generalized AAH model (GAAH),
described by

H (1) = t
∑

i

(a†
i ai+1 + H.c.) +

∑
i

2λ cos(2πβi + φ)

1 − α cos(2πβi + φ)
a†

i ai.

(2)

Another modification to this model, which preserves the
self-duality condition, and transforms under the same trans-
formation [25], is

H (2) = t
∑

i

(a†
i ai+1 + H.c.) + 2λ

×
∑

i

1 − cos(2πβi + φ)

1 + α cos(2πβi + φ)
a†

i ai. (3)

The Schrödinger equation for both the models is written
out, following Ref. [25] (g below contains the details of the
specific model),

t (ψi−1 + ψi+1) + gχi(δ)ψi = (E + 2λ cosh δ)ψi, (4)

with the definition of the on-site potential χi [25],

χi(δ) = sinh(δ)

cosh(δ) − cos(2πβi + φ)
, (5)

where δ is defined in Eq. (9). The location of the mobility
edge can be found using the self-dual transformation of the
amplitude of the wave function at site i, ψi, to that at point k
in the dual space [25],

fk =
∑
mni

ei2πb(km+mn+ni)χ−1
n (δ0)ψi, (6)

which transforms the Schrödinger equation [Eq. (4)] to

t ( fk−1 + fk+1) + g
sinh δ

sinh δ0
χk (δ0 fk ) = 2t cosh δ fk, (7)
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with the parameter δ0 defined as

δ0 = cosh−1

(
E + 2λ cosh δ

2t

)
, (8)

δ = cosh−1(1/α). (9)

The parameter g is model dependent, and for the model in
Eq. (2) is defined as

g = 2λ cosh(δ)/ tanh(δ) (model 1),

g = 2λ(1 + cosh δ)/ sinh(δ) (model 2),

for the model in Eq. (3). The self-dual condition of Eqs. (4)–
(7) is met by δ = δ0, which gives the equation for the position
of the mobility edge:

αE = 2 sgn(λ)(|t | − |λ|) (models 1 and 2). (10)

For both models, states with energy E > Ec are extended,
and those with E < Ec are localized. Both of these models
are a subset of class of models with the on-site term as in
Eq. (4) which may be obtained with an arbitrary choice of
the parameters g(α, t ) and E (λ, α, t ) but still have an exact
mobility edge. The parameter α is a generalization of various
special cases: For model 1 [Eq. (2)], α = 0 produces the AAH
limit. For model 2 [Eq. (3)], α = 0 corresponds to the AAH
model, α = −1 produces the constant on-site potential model
with Vi = 2λ, and α = 1 produces the closed form singular
potential [25] Vi = tan2 ( 2πβi+φ

2 ).
Another perturbation to the self-duality of the AAH model

may be introduced by considering long-range hopping, as
studied in Ref. [46]. The Schrödinger equation becomes∑

i �= j

te−p|i− j|ψ j + 2λ cos(2πβi + φ)ψi = Eψi, (11)

where 0 < p < 1. The inclusion of an exponentially decaying
hopping amplitude perturbs the AAH duality to the following
linear self-dual relation,

cosh(p) = E + t

2λ
. (12)

In our work we consider only a next-nearest-neighbor hop-
ping term as the perturbation to the AAH model, also called as
the t1-t2 model. Without loss of generality, we parametrize the
hopping amplitudes as t1 = t , t2 = μt , with μ = e−p, and 1/p
is defined as the length scale over which the hopping strength
decays in Eq. (11). In this parametrization, consider

H (3) = t
∑

i

(a†
i ai+1 + μa†

i ai+2 + H.c.)

+
∑

i

2λ cos(2πβi + φ)a†
i ai. (13)

This model produces the nearest-neighbor hopping AAH
model with μ = 0, and two superimposed AAH lattices with
nearest- and next-nearest-neighbor hopping at μ = 1. This
model does not have an exact expression for the mobility edge,
although studies have shown the presence of both localized
and delocalized states coexisting at the same value of the
microscopic parameters [30,46].

A first-order approximation to the hopping amplitude in
Eq. (11) may be made by considering all hoppings longer than

the next-nearest-neighbor interaction to be suppressed, by a
large value of p. An approximate relation for the location of
the mobility edge is constructed by substituting p = ln(t1/t2)
into Eq. (12), which yields

Ec ∼ λ

(
μ + 1

μ

)
− t (approximate for model 3). (14)

As found in Ref. [46], this works only for small values of μ,
or large values of p, as shown by inverse participation ratio
calculations. To explore the phases in this model, an exact
diagonalization of the Hamiltonian is employed to get the
eigenstates and calculate the participation ratio (PR) of the
nth eigenstate, defined as

PR(ψn) = 1∑
j |ψn( j)|4 , (15)

where ψn( j) is the amplitude of the nth eigenstate at site j.
This is of O(1) for the localized states, and O(L) for delo-
calized states, with L being the system size. Owing to the
lack of an expression for the mobility edge for model 3, the
mean participation ratio (MPR), which is the PR averaged
over all eigenstates n, MPR = 〈PR〉{n}, will be used to map out
a phase diagram for this model, instead of using the fraction
of localized states, as done for the other models.

The next model we study contains a slowly varying de-
terministic potential in the on-site term. This class of models
was studied in Ref. [42] and its geometrical properties with-
out referring to tight-binding Hamiltonians were explained in
Ref. [47]. The Hamiltonian is

H (4) = t
∑

i

(a†
i ai+1 + H.c.) +

∑
i

2λ cos(2πβiα + φ)a†
i ai.

(16)

The model transitions smoothly from the constant uniform
potential at α = 0 to the AAH limit at α = 1. For α > 2, the
potential is “pseudorandom” in the sense that the localization
length for the α > 2 case was shown to be the same as that
in the corresponding random case [42], and this model can be
identified with the 1D Anderson model [42]. For 1 < α < 2,
it was proved that the eigenstates at the center of the spectra
are all localized, but with a large localization length, or van-
ishing Lyapunov exponents [48]. The localization mechanism
is different from the Anderson mechanism, as the potential
is neither aperiodic, nor random, but is deterministic. Indeed,
it was shown that the density of states has a discontinuity at
the mobility edges, unlike the 3D Anderson model [42]. The
slowly varying nature of the potential is written as

dVi

di
= −4λπβ cos(2πβiα + φ)

i1−α
, (17)

which implies that (Vi+1 − Vi ) ∝ iα−1, and this in the limit of
large system sizes, goes to zero, as 0 < α < 1. Note that this
almost constant feature of the potential is crucial for the lo-
calization transition in this model. The Schrödinger equation
is solved with the ansatz ψn = zn, and it may be proved that it
is possible to have localized states (extended states) for real z
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α

α

λ

FIG. 1. (a) Phase diagram of model 1 for β =
√

5+1
2 as a function

of λ and α in terms of the fraction of localized states η (single dis-
order realization). (b) Steady-state imbalance for model 1 (L = 256,
averaged over 1000 disorder configurations).

(imaginary z) only at

Re(z) = 0 ⇒ |E | > 2(|t | − |λ|), (18)

Im(z) = 0 ⇒ |E | < 2(|t | − |λ|), (19)

which gives us the location of the mobility edge [42] (inde-
pendent of α) at

Ec = ±2(|t | − |λ|), for model 4. (20)

All states at the center of the spectra, with energy E , |E | <

|Ec| are extended, and those at the tails with |E | > |Ec| are
localized [for the positive (λ, α) quadrant].

III. METHODS AND CALCULATIONS

We employ an exact diagonalization of the Hamiltonians in
Eq. (2) (model 1), Eq. (3) (model 2), Eq. (13) (model 3), and
Eq. (16) (model 4), with the parameters limited to t = −1,
μ ∈ (0, 1), λ ∈ [0, 2|t |], α ∈ (0, 1]. We perform calculations
with lattice sizes up to L = 900 and use a disorder averaging
over φ to restore translation invariance. The number of disor-
der samples used for Figs. 1–4 is 1000, as we use a relatively
small system size (256) for these plots. To study the scaling of
the steady-state imbalance with the number of sites, the data
are obtained over a set of larger system sizes. However, this
limits the number of disorder samples for which the results
can be averaged over in a fixed time, limiting the number of
samples to 100. Increasing the sample size further does not
appear to change the results in any discernible way. The error
bars are not shown in the plots, because they are of the same
size as that of the plot markers themselves, and hence we
neglect them. All the results shown below are for β =

√
5+1
2

(golden mean) unless mentioned explicitly to be a different
number. The imbalance is calculated by looking at the number
density at each site, from the single-particle wave-function
amplitude |ψn(i)|2. The imbalance is obtained by summing
over the amplitudes, over an entire single-particle spectrum.
The steady-state value of the imbalance is calculated from the
average in the time window 200τ–400τ , where τ = h̄/|t | is
the unit of time. The imbalance is constant in this interval with
only small fluctuations.

The system sizes that we study may be small in the context
of the study of noninteracting problems, but we would like to
point out that for all our results, we do not need very large
system sizes. Our main goal of doing a finite-size scaling is
to show that the steady-state imbalance follows a 1/L scaling
in the leading order, and hence including larger system sizes
causes the data points in I vs 1/L scaling to lie closer to each
other as L is increased, and this does not change the overall
scaling form at all. The single-particle wave functions can also
be grouped into an extended/localized category by looking at
their energy and the respective mobility edge expressions for
the models, where it is known analytically. We also verify the
distribution by looking at the PR calculation (not presented
here), defined in Eq. (15). For model 3, where the exact mo-
bility edge is not known, the PR is calculated to differentiate
between the single-particle states, where it scales as

PR ∼
⎧⎨
⎩

O(L), delocalized,
O(1), localized,
O(LD(q) ), critical,

(21)

where D(q) is the fractal exponent. The phase diagram is then
constructed by looking at the fraction of localized states η

(models 1, 2, and 4) and MPR (model 3) for all possible (λ, α).
We also plot the steady-state imbalance over the parameter
space for all models and see that it maps out an approximate
phase diagram similar to the one obtained by using the diag-
nostic η.

After a finite-size scaling for the steady-state imbalance,
the imbalance follows a linear scaling in 1/L at leading order,
whenever the steady-state value is high enough to differentiate
it from statistical noise. We propose that this is the behavior at
leading order at least in the mobility edge and localized edge
phase. At the critical point, we numerically find that it shows
1
L even for relatively small system sizes. (This dependence on
system size is a numerical observation for which we do not
currently have an analytical understanding.) This allows us to
write the steady-state imbalance as

I (L) = a

L
+ I0 + higher-order terms. (22)

The coefficient a quantifies the correlation of the steady-state
imbalance with system size L, and is not relevant for our work.
We will study the behavior of I0, the thermodynamic limit of
the steady-state imbalance. This behavior captures the trend
seen in the imbalance phase diagram, for finite sizes. The be-
havior of I0 is explained by calculating the two dimensionless
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parameters ε and ε′ as

ε = η̃
1 − MPRD/L

MPRL − 1
(degree of delocalization), (23)

ε′ = 1

MPRL − 1
(degree of localization). (24)

The parameter ε was used by Ref. [44] to define criteria for the
MBL to ergodic phase transition in interacting systems, with
a single-particle mobility edge. For our work, the parameters
will link the imbalance observed in these models to the mean
participation ratio of their single-particle spectrum, and hence
characterize the degree of localization in these models as a
function of the model parameters. The parameter ε satisfies
the following,

ε < 1, ergodic phase, (25)

ε > 1, MBL phase. (26)

Here, η̃ is the ratio of the number of localized to delocalized
single-particle states, and MPRD (MPRL) is the mean par-
ticipation ratio averaged over the spectrum and φ disorders
following Eq. (15) over the delocalized (localized) states only.
Note that ε captures how strongly localized the single-particle
localized states are versus how strongly delocalized the single-
particle delocalized states are, only in the mobility edge phase
[44]. This is by construction 0 (η̃ = 0) in the delocalized
phase, and ∞ [due to Eq. (23)] in the localized phase.

To look at the degree of localization of the localized states
only, a new parameter ε′ is defined in Eq. (24). We show that
the parameters ε and ε′ are capable of explaining the behavior
of I0 for all the models in their various phases. The parameter
ε has a jump discontinuity unlike ε′, whenever the fraction of
localized states η, and hence η̃, change over the phase diagram
in the mobility edge phase for all the models.

IV. RESULTS

A. Phase diagram

An exact diagonalization, as described in the last section, is
used to map out the phase diagrams for all the models, listed
in Sec. II and Table I. These are presented in Figs. 1(a)–4(a).
For models 1, 2, and 4, the phase diagram is represented in
terms of the fraction of localized states η. We calculate it
from Eq. (10) for models 1 and 2 and Eq. (20) for model 4,
and in terms of the MPR, obtained from Eq. (15) for model
3. The phase diagram of model 1 with β = (

√
5 − 1)/2 has

been obtained previously [44] and the phase diagram with
β = (

√
5 + 1)/2 has been obtained in Ref. [43]. The latter

agrees with the one we have obtained and shown in Fig. 1(a).
For model 3 [Fig. 3(a)], the phase diagram reveals a rich
transition physics in the region of λ < 1, where the system
transitions from a delocalized to mobility edge to back to a
delocalized phase. This is attributed to the appearance and
merger of the mobility edge. The system departs from the
delocalized phase to the mobility edge phase, as μ increases
from 0, due to the appearance of a single mobility edge.

At higher values of μ, multiple mobility edges appear in
the system, and they merge to bring the system back into the
delocalized phase at some higher μ. This is shown using the

α
α

λ

(a)

(b)

FIG. 2. (a) Phase diagram of model 2 for β =
√

5+1
2 as a function

of λ and α in terms of the fraction of localized states η (single dis-
order realization). (b) Steady-state imbalance for model 2 (L = 256
sites, averaged over 1000 disorder configurations).

PR calculation, in Fig. 10 (see the Appendixes) for multiple
values of μ along a fixed λ at which this peculiar transition
occurs.

Model 4 [Fig. 4(a)] shows an exclusively localized phase
for λ > 1, for both the choices of β.

However, it is also worth noting that the phase diagram is
identical for both values of β, which implies that the spectrum
is insensitive to the choice of irrational number. This is in
agreement with the claim that the parameter β is an irrelevant
parameter for the model, from a scaling theory perspective
[42].

B. Imbalance

The imbalance can also be used to identify the different
phases.The imbalance thus maps out an approximate version
of the phase diagram. At long times, it remains close to the
initial value of 0.5 deep in the localized phase, asymptotes to
0 deep in the delocalized phase, and to intermediate values
in the vicinity of the mobility edge. This is shown for all the
models in Figs. 1(b)–4(b). Results of the previous discussion
(which is the top panel of Figs. 1–4) show that the imbalance
can be used to obtain a rough phase diagram with smeared
boundaries. The direct juxtaposition of panels (a) and (b) of
Figs. 1–4 makes it clear that the fraction of localized states
fails to capture the complex behavior of the amount of local-
ization in these systems (which is captured by the steady-state
imbalance). There is thus no one-to-one correlation between
the fraction of localized states and the imbalance, and the
calculation of these phase diagrams show this difference.

We observe, as in Ref. [43], a nonmonotonic decrease in
the imbalance even if we cross from a localized phase to a
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μ

μ

λ

FIG. 3. (a) Phase diagram of model 3 for β =
√

5+1
2 as a function

of λ and μ in terms of MPR/L. MPR/L ∼ 0 means a localized phase,
and MPR/L ∼ O(1) means a delocalized phase. (b) Steady-state
imbalance for model 3 (L = 256 sites, averaged over 1000 disorder
configurations).

mobility edge (ME) phase (one would expect a strict decrease,
as the number of localized states decreases). The fact that the
steady-state imbalance is not a trivial function of the fraction
of localized states is also seen in models 2 and 4. A uniform
fraction of localized states should have implied a uniform
value for the steady-state imbalance, but this not the case in
the localized phase of models 2 and 4, as seen in Figs. 2(b)
and 4(b).

Our main aim is to demonstrate a correlation between this
nontrivial behavior and specific quantities obtained from the
single-particle spectrum related to the degree of localization in
the system. This is done by the two parameters ε and ε′, which
link the steady-state imbalance to the degree of localization of
the system as a function of parameters in the model.

To exclude any finite-size effects that may cause this non-
monotonic behavior of the steady-state imbalance, we obtain
a scaling of the steady-state imbalance with system size.
To leading order, the correction appears to be of the form
I = a

L + I0, presented in Fig. 5(a). Thus, the thermodynamic
limit is the intercept of the straight line I0. At the critical
point, our numerics show that 1/L behavior survives even for
small system sizes, verified for models 1, 2, and 4. Here, the
localization length is of the order of system size along the line
separating the localized and ME phase. The 1/L scaling also
seems to hold at small system sizes at the AAH critical point.
The leading order correction seems to hold quite well when-
ever the imbalance has a large value, even in the localized and
ME phases. We emphasize this is only the leading order term,
and an analytical expression for this quantity in terms of the
parameters of the model is currently lacking.

α
α

λ

FIG. 4. (a) Phase diagram of model 4 for β =
√

5+1
2 as a function

of λ and α in terms of the fraction of localized states η (single dis-
order realization). (b) Steady-state imbalance for model 4 (L = 256
sites, averaged over 1000 disorder configurations).

The linear fits in Fig. 5(a) are calculated in various regions
of the ME phase, and the localized phase of the model, as
summarized in Table II, along with the other three models,
which we present in the Appendixes.

The nonmonotonic behavior of I0 in Fig. 5(b) points out
that the nonmonotonicity in the steady-state imbalance, as
seen here and in Ref. [43], is not a finite-size effect, but rather
tells us that the imbalance is no longer a trivial function of the
number of localized and extended single-particle states.

C. Dimensionless parameters ε and ε′

The anomalies in the steady-state imbalance in Ref. [43]
and Fig. 5(b) show that I0 is not a trivial function of the
fraction of localized states. The degree to which an initial
CDW can relax depends on the single-particle states the parti-
cles occupy, and the localization length of these states should
dictate how far the particles can travel and how much the
CDW can relax. A useful quantity is the dimensionless pa-
rameter ε defined in Ref. [44], which calculates how strongly
the single-particle localized states are localized versus how
strongly the single-particle extended states are extended. The
definition of this parameter was presented in Sec. III, along
with the new parameter ε′ for calculating the strength/degree
of localization of the single-particle localized states. The plots
for the two parameters are presented in Fig. 6.

The plot for ε′ shows that even within the localized phase,
not all the states are uniformly localized, and some are lo-
calized more than the others, which is expected. But it is
the presence of this nonuniformity in the localization length
of these states that gives rise to the nonuniformity of the
steady-state imbalance in the localized phase. The trend of I0
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TABLE II. Finite-size dependence of steady-state imbalance. The values shown in the third column of the table are of the representative
parameters of the corresponding model identified in the second column. The corresponding type of single-particle spectrum is given in the
first column. The points marked with “∗” are the multiple ME zones (Appendix B). Note that in all cases the steady-state imbalance has 1/L
scaling. For the critical cases (i.e., third and fourth row of the table), this 1/L scaling happens even at small system sizes as per our numerics.

Type of spectrum Model Parameters (λ, α)

Mobility edge 1 (0.5,0.8),(1.2,0.8)
2 (0.5,0.8),(0.75,0.8)
3 (0.8,0.2), (1.4,0.2),∗ (1.7,0.5)
4 (0.75, 0.2), (0.9, 0.8)

Localized 1 (1.8,0.4)
2 (1.5,0.1),(1.5,0.8)
3 (1.7,0.1),(2.0,0.2)
4 (1.4,0.3),(1.8,0.2)

AAH critical point 1, 2, 3 (1.0,0)
4 (1.0,1.0)

Critical point (ME to localized transition) 1 (1.65,0.49),(1.93,0.74)

in Fig. 5 in the localized phase is consistent with that of ε′.
This is also the case for the other three models, presented in
the Appendixes.

In the mobility edge phase, there is a competition between
the extended and localized states. The extended states allow
the particle to move through the entire length of the lat-
tice and hence allow the CDW to relax completely, whereas
the localized states restrict the motion of the particles and
create a configuration that is closer to the initial condition.
Thus, the ε parameter measures how effective this competi-
tion is by taking into account not only how many of these
extended/localized states are present, but also how much each
state contributes to the CDW relaxation.

A direct tallying of Figs. 5(b) and 6 shows that this is
indeed the case. In the mobility edge phase, I0 follows the
trend of the parameter ε, increasing in accordance with ε for
λ = 0.5, 1, 1.2, 1.4, and decreasing in accordance with ε for
λ = 1.8.

One key thing to notice from Fig. 5 is that the behavior
of I0 is also dependent on the phase the model is in. In other
words, it increases or decreases differently in the ME phase
and the localized phase. Also, a change in the trend of I0 as
we increase α, keeping λ fixed, indicates that there has been
a phase transition. This is expected from the imbalance dia-
grams as well, in Figs. 1–4. A more convincing point for the
importance of these two parameters to explain the steady-state
imbalance is made by the imbalance phase diagram of model
4. In model 4 (Fig. 4), there is a fingerlike projection of a low
imbalance region into the localized phase, and the imbalance
is not constant across λ > 1, although every (λ, α) for λ > 1
corresponds to a localized phase. Plots of ε and ε′ in Fig. 7
show how this might occur.

The ε′ is very low for all λ near α = 0. The eigenstates are
not very strongly localized—they have a very large localiza-
tion length, of order N (system size), and hence the imbalance
is close to 0. The localized character of these states starts
getting stronger and stronger, and the parameter ε′ peaks with
this, reaching its maximum in between α = 0.7 and α = 0.8.

This is followed by a dip in ε′ around α = 0.9, where the
states seem to completely lose their localized form, and this
is the region of low imbalance that is seen in Fig. 4(b). The

states pick up their localization character soon after, and the
localization strength reaches its maximum when α = 1, and
the system hits the AAH limit.

Table II contains the summary of the finite-size scaling
explored in this paper for different models. At the critical
point, we find from numerics that 1/L scaling holds even at
small system sizes, and in the localized and mobility edge
phase, this is the leading order correction term.

V. SUMMARY

To summarize, we have seen that by performing exact
diagonalization on systems of length up to 900 sites, we
may define a metal-to-insulator transition in noninteracting
one-dimensional quasiperiodic systems with the population
imbalance as an order parameter. A value close to zero in-
dicates a metallic (ergodic) phase, whereas a value close to
the initial starting point defines an insulating (MBL) phase.
An intermediate value of the imbalance indicates restrictive
relaxation of the charge density wave, and hence the presence
of both localized and delocalized states (i.e., a mobility edge
phase). The steady-state imbalance has a linear dependence on
the inverse of the system size, 1/L to leading order for all the
systems studied here, in the localized and mobility edge phase,
i.e., wherever the imbalance value was high enough to allow
us to determine such a dependence. We see that while this 1/L
behavior holds even at small system sizes at the critical point,
it is also the leading order correction term for the mobility
edge phase and the localized phase for all the systems consid-
ered above. We have extracted the thermodynamic behavior
of imbalance from this finite-size scaling.

The steady-state imbalance shows nonmonotonic behavior,
as found in the phase diagram of imbalance for model 1 in
Ref. [43]. We see that although we cross from a region of
partial localization of the single-particle spectrum to complete
localization, the imbalance drops, around λ = 1.2. Model 2
(see the Appendixes) illustrates this in a better way, where we
see nonmonotonic behavior even in the localized phase, where
one might naively have expected the imbalance to roughly the
stay same, as all the states are localized (Fig. 9). This indicates
that the fraction of localized states is not the only factor
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I
−

I 0

1/L

I 0

α

FIG. 5. (a) Steady-state imbalance vs 1/L (L is the system size)
for model 1 (averaged over 100 realizations). The residual value at
the limit L → ∞, I0, has been subtracted to make the plots converge
at L → ∞, which makes the 1/L linear scaling clear. (b) Thermody-
namic limit of steady-state imbalance I0 for model 1, averaged over
100 realizations, as a function of α for fixed λ’s, obtained from the
linear fits for the top panel. Notice that there is a change in trend of
I0 whenever there is a phase transition from a localized to mobility
edge phase, for λ = 1.2 and λ = 1.4.

deciding the relaxation of the CDW, but also how effectively
the localized states are localized, as this decides the length
over which the particles may move.

We calculate the quantity ε [44], which is a quantifier of
how strongly localized the single-particle localized states are
versus how strongly delocalized the single-particle delocal-
ized states are. A larger value implies a larger influence of
the localized states, and hence a higher value of imbalance.
The thermodynamic limit of the imbalance I0 follows this

ε
ε′

α

FIG. 6. (a) ε [Eq. (23)] for model 1, for L = 256, averaged over
100 realizations. ε is calculated only in the mobility edge phase,
along a constant λ line in the phase diagram. (b) ε ′ [Eq. (24)] for
different values of λ. In the localized phase, it is calculated over the
entire spectrum, whereas in the mobility edge phase it is calculated
only over states below the mobility edge that are localized. Note that
both ε and ε ′ are 0 in the delocalized phase.

parameter in the mobility edge phase for all the systems we
considered, except for model 3, where the calculation is un-
feasible due to an absence of analytical formula for the critical
point/mobility edge.

The definition of ε renders it infinity in the localized phase,
and hence, if one is interested in the localized phase, a differ-
ent parameter ε′ may be used, which tells us how strongly
localized the single-particle localized states are. This quanti-
fies the degree of movement of the particles in the localized
phase and explains the nonmonotonicity, such as the one in
Fig. 9(c) in the localized phase. The imbalance follows this
parameter in the localized phase for all the systems we consid-
ered, except for model 3, where the calculation is unfeasible.
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ε
ε′

α

FIG. 7. (a) ε for model 4, for L = 256, averaged over 100 real-
izations. Note the relative peaks in ε around α = 0.5, in the mobility
edge phase, although the imbalance phase diagram is structureless
in this region and does not show any region of relatively high im-
balance. (b) ε ′ for model 4 averaged over 100 disorder realizations,
calculated for different values of λ in the localized phase. Note the
dip in the value for ε ′ for all λ’s around α = 0.9. This corresponds to
a fingerlike projection of the low imbalance region into the localized
phase [Fig. 4(b)].

To conclude, the parameters ε and ε′ play a pivotal role in
understanding the phase diagrams of our models.

As a future outlook, extending these studies to the interact-
ing case will be very interesting both from a theoretical and an
experimental perspective. A rigorous theoretical understand-
ing of the 1/L behavior of the steady-state imbalance remains
an open question. Studying higher spatial dimensional sys-
tems [49] through the lens of the diagnostics we introduced is
an important future goal.

I
−

I 0
I
−

I 0
I
−

I 0

1/L

FIG. 8. (a) System size dependence of steady-state imbalance,
averaged over 100 disorder realizations for (a) model 2, (b) model 3,
and (c) model 4. The residual value at the thermodynamic limit has
been subtracted to make the plots converge at L → ∞ and to make
the 1/L linear scaling clear.
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I 0
I 0

I 0

α

FIG. 9. Thermodynamic limit of steady-state imbalance I0 for
different λ’s with increasing α, from similar linear fits (averaged over
100 disorder realizations) up to leading order in 1/L as in Fig. 8. All
the linear fits from which we extract I0 have not been presented in
Fig. 8 for the sake of brevity. Plots are for (a) model 2, (b) model 3,
and (c) model 4. The various regions explored in Figs. 8 and 9 can
be looked up in Table II and the phase diagrams in Figs. 2–4.
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APPENDIX A: SYSTEM SIZE SCALING FOR
OTHER MODELS

The system size scaling obtained for model 1 is quite robust
and holds generally for the other models we consider in this
paper (Table I). Figure 9(a) shows that even for model 2 in
the strict localized phase, the imbalance does change from
one point to the other, although the number of localized states
stays the same. This further supports the hypothesis that the
number of single-particle localized states is not the only decid-
ing factor for the steady-state value of imbalance, but also how
effectively they are localized against the delocalized states
(refer to Secs. IV B and IV C for the anomalies in model
1 and the subsequent justification). The steady-state value of
imbalance suggests that the localized states close to λ = 1 are
weakly localized, and they get more and more localized as the
system moves deeper into the localized phase.

Figure 9(b) tells a similar story to the phase diagram
(Fig. 3) for model 3, in that there is a tiny region of high im-
balance around α = 0.2 for λ < 1. For λ > 1, the imbalance
decreases from the localized phase to the mobility edge phase.

While the AAH critical point has 1/L scaling even for
small system sizes, for the three remaining models (refer to
Table II), the localized and mobility edge phases also show a
leading order 1/L scaling (Fig. 8). For model 4, the value of
imbalance is fairly low even in the localized phase for all sys-
tem sizes, and hence the thermodynamic limit of imbalance
asymptotes to a value close to zero, except for a tiny sliver of
high imbalance close to α = 0.8 (Fig. 4).

While model 1 showed a nonmonotonicity of imbalance
in the localized phase and mobility edge, this is not unique
to model 1, and can be seen in the other models as well.
Calculation of I0 from the linear fits in Fig. 8 shows this
nonmonotonicity. The phase diagram of model 4, Fig. 4(a),
shows a uniform localized phase for all values of α for λ > 1.
However, the steady-state imbalance showed that the nature of
localized states is drastically different. They are very weakly
localizing near the Bloch limit α = 0, where they still retain
some of their plane-wave nature. This gives rise to a very
low value of imbalance, and although localized, this model
exhibits a value that is close to 0 even in the thermodynamic
limit. The imbalance, however, spikes up close to α = 0.8,
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FIG. 10. PR of single-particle states, defined in Eq. (15) for model 3, scaled by system size. We recollect that PR is O(1) for localized
states and O(L) for delocalized states [see Eq. (21)]. All the plots are for λ = 0.9, showing a transition from a delocalized to mobility edge
to a delocalized phase again through appearances and the merger of multiple mobility edges. (a) α = 0: The AAH limit, where all states are
delocalized. (b) α = 0.15: A single mobility edge appears separating the O(L) extended states from O(1) localized states. For (c) α = 0.35
and (d) α = 0.4, two mobility edges appear separating a region of localized states in the spectrum around E = 2 from extended states on either
sides. In other words, around E = 2 there is a region of localized states. (e) α = 0.45: The mobility edges merge to give a special band of
states near E = 1.6. (f) α = 0.6: The mobility edges have merged, giving a delocalized phase again.

before dipping at α = 0.9 before the model goes to the AAH
limit. The nature for this sudden drop is not very clear yet.

APPENDIX B: PARTICIPATION RATIOS FOR MODEL 3

In Sec. IV A, it was mentioned that for model 3, the de-
localization to mobility edge transition, and the transition
back to the delocalized phase, was due to the appearance
and merging of multiple mobility edges. These transitions
may be seen from following any vertical cut in the region
0.75 < λ < 1.0 in Fig. 3(b). The participation ratio, defined

in Eq. (15), describes the appearance of mobility edges as
an approximate energy value that separates the states with
extensive and intensive scaling with system size, i.e., it is
O(L) for delocalized states, and O(1) for localized states.
For various parameters this intricate transition is observed for
model 3, in the phase λ < 1. In Fig. 10, one such transition is
shown for λ = 0.9. As we increase α, the system moves from
a delocalized phase to a mobility edge phase. At higher α, a
second mobility edge appears, and as α is increased further,
these two edges merge together to transition the system back
into the delocalized phase.
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