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Dynamic mode decomposition 
of inertial particle caustics 
in Taylor–Green flow
Omstavan Samant1, Jaya Kumar Alageshan2*, Sarveshwar Sharma3 & Animesh Kuley2

Inertial particles advected by a background flow can show complex structures. We consider inertial 
particles in a 2D Taylor–Green (TG) flow and characterize particle dynamics as a function of the 
particle’s Stokes number using dynamic mode decomposition (DMD) method from particle image 
velocimetry (PIV) like-data. We observe the formation of caustic structures and analyze them using 
DMD to (a) determine the Stokes number of the particles, and (b) estimate the particle Stokes number 
composition. Our analysis in this idealized flow will provide useful insight to analyze inertial particles 
in more complex or turbulent flows. We propose that the DMD technique can be used to perform 
similar analysis on an experimental system.

Advection of particles, such as dust or aerosol by a background flow is a ubiquitous phenomena. And the study 
of dispersion of these inertial particles are of immense interest both for applied and natural processes, in par-
ticular, to analyze oil spills in  oceans1–4, dispersion of pollutants and toxic  elements5,6, suspended particles in 
aquatic  systems7, formation of  clouds8,9 and volcanic  plumes10, and the effect of the flow patterns generated by 
the breathing action and cough on the dispersion of the aerosol particles are crucial to understand the spread of 
COVID-19  virus11–16. Numerical studies of inertial particle dispersion in different types of flows, ranging from 
 static17 to  turbulent18,19 flows have shown that the particles display complex dynamical behaviours like forma-
tion of fractal  clusters18 and  caustics20. The analysis of the structures formed by the particles encode information 
about the Stokes number of the particles and the flow patterns.

Experimental techniques such as particle image velocimetry (PIV) have been used to track particles and 
extract velocity  profiles21 when it is possible to identify individual particles in an image, but not with certainty to 
track it between images. If the particle concentration is so low that it is possible to follow an individual particle it 
is called particle tracking velocimetry (PTV). While similar techniques have been adopted to track particles in 
simulations, the averaging process reduces the spatial resolution, which is critical in our application. In simula-
tions, the Osiptov’s  method22 have been used to extract caustic  features20, which track each particle in PTV like 
situations but fail for PIV like data. We propose the use dynamical mode decomposition (DMD) based scheme 
to obtain the spatio-temporal particle distributions as a representative for particle density. DMD methods have 
been used to extract coherent structures in simulations and  experiments23–26 of fluids. We use the DMD method 
to analyze and extract the features of the caustics to (a) determine the Stokes number of the particles, and (b) 
estimate the relative particle concentrations in a bi-disperse Stokes number system. Our approach can also be 
extended to multiple Stokes number poly-disperse systems.

This paper is organized as follows. In “Model” we present the form of the TG flow, minimal model of an iner-
tial particle, and the relevant numerical simulation details. In “Observations” we show the formation of caustic 
structures and analyze them using DMD method in “Analysis” and demonstrate how we extract the caustic 
wavefronts from the DMD mode. We use the position and the gradient of the wavefront in the DMD eigen mode 
to estimate the Stokes number and the composition of a bi-disperse Stokes number systems in  “Determination 
of Stokes number from DMD” and “Estimation of particle concentration” respectively, and present our conclu-
sions in “Conclusions”.
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Model
We consider a 2D lattice of vortices in the form of a Taylor–Green (TG) flow. The TG flow is a steady state solu-
tion to the forced, incompressible Navier–Stokes equation and can be considered a convection model in  2D27,28. 
Such a flow can be experimentally setup using ion solutions in an array of  magnets29. The TG flow is given by 
the vorticity field as

and the corresponding velocity field is

where x, y ∈ [0, L) and are periodic, u is the Eulerian velocity field such that ω = ∇ × u , with ω0 = 4πV0/L . 
We choose V0 as the velocity scale and L as the length scale and write the system parameters in corresponding 
dimensionless form. We model the aerosol particles as small rigid spheres, which are effectively points, that have 
density different from the surrounding fluid. The equation of motion of the inertial particles in a background flow 
given by the simplified Maxey-Riley  approximation17 for small particles that are much denser than the fluid are

where St is the Stokes number which captures the effect of particle inertia, x is the particle position and v is the 
particle velocity (see Appendix A for validity of the equations). The case when St → 0 the particles act as tracers 
that follow the velocity stream lines and the Eq. (3) leads to v = u . We use RK4 numerical scheme to discretize 
and evolve the particle positions and velocities. Furthermore, we use periodic boundary conditions, such that 
the particles are reintroduced into the system when they exit the boundary. In our analysis we set the time step 
to �t = 0.01(L/V0).

Results
Observations. A typical feature of inertial particles in a background flow is that they are expelled from high 
vorticity regions. In a background flow with vortices, the inertial particles can form  caustics20. So in the case of 
TG flow, the inertial particles tend to accumulate along the low vorticity regions that separate the vortices. We 
simulate the dynamics of inertial particles in a TG flow and observe spatial regions where the Lagrangian veloc-
ity field is multi-valued, which are referred to as  caustics30–32 (see Fig. 3a).

Figure 1 shows the caustic structure formed by a mono-disperse inertial particle system, when we start the 
simulation with the particle positions initialized with uniform random distribution within the L× L box, and 
setting the initial velocities of the particles to zero. In the long time limit, the particles accumulate along a  curve33. 
We observe that the caustics that form in the transient state are robust and stable to small perturbations (see 
Appendix A), whereas the steady state structures break up and lead to  chaos33. Furthermore, the steady state 
behaviour strongly depends on the system size and the boundary conditions.

We find that for a range of Stokes numbers the caustic structures preserve their shapes; and their sizes depend 
on St. In the following section we use dynamic mode decomposition (DMD) to extract features of the struc-
tures, in particular the caustic wavefront, and study its size dependence on the Stokes number. Furthermore, the 
sharpness of the caustic wavefront enables us to detect and extract their sizes even in presence of poly-disperse 
Stokes number systems.

Analysis. The caustics in Fig. 1 have a complex structure and in the presence of multiple Stokes number 
particles resolving these structures from a single snap-shot is hard. Therefore we employ the spatio-temporal 
data in the form of a video sequence that contains F frames of N × N pixel images and analyze them using the 
dynamic mode decomposition (DMD) method.

DMD is a data analysis technique that has been used to extract coherent structures in fluid dynamic  systems34, 
where it is able to extract different modes that are similar to normal modes in linear dynamical systems. The 
DMD is a data-driven technique introduced by Schmid as a numerical procedure for extracting dynamical fea-
tures from flow  data24. The DMD algorithm takes in a time-series data in the form of vectors {v1, v2, ...vT } and 
estimates a linear dynamical system that can generate a map

where A is an N2 × N2 matrix and the eigenvectors of A form the DMD modes, with the corresponding eigen-
values. Finally, the eigenvectors are reshaped into N × N  pixel image to obtain the modes. A Singular Value 
Decomposition (SVD) based algorithm for estimating the DMD modes is described in Appendix B.

Let i stand for the iteration number such that the particles are in their stationary initial state and start their 
evolution at i = 0 . Then for our data, the vectors vi are obtained by rearranging the N × N pixel images at instant 
i into N2 × 1 vector. In our DMD analysis we employ {v250, v251, ...v750} (i.e. F = 500 ), as the modes obtained 
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Figure 1.  A snapshot of the 2D spatial particle distribution in (a) at t = 750�t shows the complex structure 
formed by the mono-dispersed inertial particles with St = 1.0 in a periodic domain of size L× L . The 
background color-map corresponds to the vorticity field (with values given by the colorbar on the left side of 
the top panel) and the particles are plotted using black markers. Notice that the particles in the high vorticity 
regions have moved out towards the regions bounding the vortices. The zoomed-in version in (b) shows the 
details of the caustic structures around the central region of the domain. See the video C.1 for the evolution of 
the caustic structures. The figures were generated using Matlab 2020a, https:// www. mathw orks. com/ produ cts/ 
matlab. html.

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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are the sharpest for this range. Let D (α)(j, k) represent the (j, k)th pixel of the αth eigenmode, ordered in terms 
of decreasing absolute eigenvalue. Since the caustics are localized around the central region of the domain, we 
use a zoomed-in region of size 512× 512 pixels (i.e. N = 512 ) in our analysis, as shown in Fig. 1. We find that 
the highest singular eigenvalue mode, namely D (1) , shown in Fig. 2a highlights a straight-line caustic structure, 
which we refer to as the wavefront. The eigenvalues of other DMD modes decay exponentially. We observe that 
the position of the wavefront in D (1) has a systematic dependence on the Stokes number, and to extract this 
relation we detect the location of the wavefronts using edge detection techniques. Similarly, when we perform 
DMD analysis on a bi-disperse system D (1)(j, k) shows two distinct wavefronts (see Fig. 2b) corresponding to the 
two different Stokes numbers; and here DMD uses the velocity information to unambiguously extract the wave 
fronts. In particular, Fig. 3a shows the reduced phase space portrait of a typical particle which form the  caustic32 
and Fig. 3b shows the particles overlaid on top of the DMD that demonstrates the DMD’s ability to extract the 

Figure 2.  The highest singular DMD eigenvector, D (1) , obtained for: (a) St = 1.0 mono-disperse system, 
(b) a bi-disperse mixture of St = {1, 2} with 7:3 ratio of initial particle concentrations. The horizontal lines 
correspond to the caustic wavefronts, and the number of such fronts indicate the different Stokes number 
particles. Also notice that the wavefronts corresponding to St = 1.0 appear around the same values of y in 
both (a,b), indicating that the positions of DMD wavefronts are not perturbed by the presence of particles with 
different Stokes numbers. The figures were created using Matlab 2020a, https:// www. mathw orks. com/ produ cts/ 
matlab. html.

Figure 3.  (a) The particle trajectory in the reduced phase space, (y, vy) , shows the multi-valued nature of the 
casutics in velocity between the dotted vertical  lines32. The movie in C.2 shows the evolution of the bi-disperse 
particles overlaid on the corresponding DMD from Fig. 2b and the plot (b) shows a snap-shot at the 650th 
iteration step when the caustics and the DMD wavefronts coincide. Notice that the first DMD picks out only the 
slow moving horizontal caustics. The plot and the figure was generated using Matlab 2020a, https:// www. mathw 
orks. com/ produ cts/ matlab. html.

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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caustic structures. Furthermore, we find that the intensity of each wavefront compared to the background, which 
we refer to as  prominence35, depends on the corresponding initial particle concentrations in the system.

We now prescribe a method to extract the position of the wavefront from DMD. We use a Sobel  operator36 
such that the vertical gradient of the first DMD mode is given by

where ⊛ represents the 2D convolution  operator37, and �y is the spacing in DMD along the y-axis. We then sum 
over the values in the x-direction to get a 1D function of y as

where �x is the spacing in DMD along the x-axis, and we choose a square grid with �x = �y such that 〈G〉x 
is by definition independent of the grid spacing and is dimensionless. In the next section we describe how the 
location and the value of the peaks in 〈G〉x can be used to find the Stokes number of the particles and the relative 
initial concentrations in the case of a bi-disperse system.

Determination of Stokes number from DMD. The 〈G〉x is obtained from the DMD as described in “Analysis” by 
simulating mono-disperse Stokes number particle systems to generate the plots in Fig. 4a which shows 〈G〉x as a 
function of St. The alignment of the peaks in 〈G〉x along a curve indicates a systematic dependence of the location 
of wavefront on the Stokes number. To extract this relation we first get the location of the caustic wavefront from 
the domain center using the position of the peaks in 〈G〉x given by

where argmaxy gives the value of y for which 〈G〉x is maximum. We then plot YWF as a function of St as shown in 
Fig. 4b. Using a non-linear least squares fit method we find that the relation is of the form YWF ∼ a St2 + b St + c , 
with values of the parameters a, b, and c as indicated in Fig. 4b, where x represents St. Now, extrapolating the fit 
we find that YWF = 0 at St = 0.3767 and becomes multi-valued for St > 3.0979 , thus setting the limits on the 
validity of the relation. In stagnation-point flows below a certain value of Stokes number normally there are no 
caustics, as shown by Healy et al.22; the lower cut-off for the Stokes number in our case could be indicative of a 
similar phenomenon. The fact that St = 0.37 appears as a hard cut-off for caustics could be circumstantial and 
tied to the choice of initial condition and flows can actually display caustics at any Stokes number. Furthermore, 
we restrict our study to St < 3 motivated by similar studies in  literature33. As described in Cencini et al.38, the 
Maxey–Riley approximation in Eq. (3) is not valid for Stokes numbers greater than 3 as the back-reaction of the 
particle on the flow becomes important. The three parameters in the relation can be estimated experimentally 
using calibrated measurements and the relation can be used to predict the St of new particle systems. In particular 
we demonstrate that the above method can be generalized to work in case of bi-disperse system.

As shown in Fig. 2b, for a bi-disperse system the DMD has two sets of caustic wavefronts, corresponding to 
each Stokes number. Now we set one of the Stokes number fixed at one ( St1 = 1.0 ), vary the St2 and find 〈G〉x to 
generate the plots in Fig. 5. The results in Fig. 5 show that even in the bi-disperse system the caustic wavefront 
has the same characteristic behaviour on the Stokes number as the mono-disperse system. In particular, the 
wavefront corresponding to St1 has a fixed location and the wavefront due to St2 preserves the dependence on 
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Figure 4.  In (a) we show the plots of 〈G〉x obtained for different values of the Stokes number from mono-
disperse systems. We extract the location of the peaks in 〈G〉x for each St, as defined in Eq. (7), to generate the 
plot in (b) and we find that the YWF and St have a quadratic dependence. The plots were generated using Matlab 
2020a, https:// www. mathw orks. com/ produ cts/ matlab. html.

https://www.mathworks.com/products/matlab.html
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YWF of the mono-disperse system. Our studies with poly-disperse St systems show that the caustic wavefronts 
can be used to find the Stokes number of different particles in the system using the relation obtained from a 
mono-disperse system.

Estimation of particle concentration. Until now the bi-disperse systems that we considered had equal number 
of St1 and St2 particles, with uniform initial distribution in space. Now we study the variation in D (1) w.r.t. the 
change in relative number of particles. We observe that the intensity of the wavefront or the gradient in the DMD 
image depends on the number of particles or the initial uniform concentration, denoted by C(St).

The variable 〈G〉x gives the gradient of D (1) along the vertical direction and the magnitude of the gradient 
indicates sharpness of the wavefronts (see Fig. 6a). To measure the sharpness of the wavefront we define a ”promi-
nence” parameter, P , as the sum of the non zero values of ¯|�G�x | in the neighbourhood of the wavefront, which 
takes into account multiple peaks in the vicinity of the wavefront. We find that the prominence of the wavefront 
has a systematic dependence on the initial concentration of the corresponding Stokes number particles and from 
Fig. 6b we find that on a log–log plot the relation is linear, with a slope approximately equal to −1. This implies 
that in a bi-disperse system the ratio of the prominence is inversely related to the ratio of initial concentrations. 
We can use this relation to predict the concentration of various Stokes number particles in a system.

Conclusions
We study the dynamics of inertial particles in a Taylor–Green flow with periodic boundary conditions in 2D. In 
a minimal model of inertial particles we observe that for a mono-disperse Stokes number system, starting from 
a uniform distribution of stationary particles, the particle distribution forms caustics in the strain dominated 
region of the flow. We use the DMD method to analyze the PIV-like time-series data of the spatio-temporal parti-
cle distribution and find that the largest absolute eigenvalue mode is effective in extracting the caustic wavefront-
like structure. We notice that (a) the position of the wavefront depends on the particle Stokes number and employ 

Figure 5.  Plots of 〈G〉x for a bi-disperse system as a function of y and the ratio of the the two particle Stokes 
numbers, with one of the Stokes number fixed at one ( St1 = 1.0 ), and varying St2 . Notice that the peaks in 〈G〉x 
corresponding to St1 are aligned at the same location along y, whereas the peaks due to St2 show similar trend 
as the plots for mono-disperse systems in Fig. 4a. This plot was generated in Matlab 2020a, https:// www. mathw 
orks. com/ produ cts/ matlab. html.

Figure 6.  The plot (a) shows the variation in the absolute value of 〈G〉x for a bi-disperse system, with St1 = 1 
and St2 = 2 particles, for various initial concentration fraction C(St1)/(C(St1)+ C(St2)) . Notice that the peaks 
corresponding to each wavefront is not unique and have a finite spread in y. In (b) the relation between the 
prominence corresponding to St1 and St2 are given by P1 , P2 respectively, as a function of the initial particle 
concentrations C is shown in a log–log plot. The linear fit shows that the ratios of the peaks of ˆ|�G�| and the 
ratios of the concentration are related by a power-law, with a power close to −1. The plots were generated using 
Matlab 2020a, https:// www. mathw orks. com/ produ cts/ matlab. html.

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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standard image processing techniques to quantitatively extract a quadratic relation. Using this relation we can 
predict the Stokes number from the wavefront position. Furthermore, we find that for a bi-disperse system the 
DMD is able to extract two different wavefronts corresponding to each Stokes number and the positions of each 
wavefront follow the same quadratic relation as in the case of mono-disperse system. We also observe that (b) 
the sharpness of the wavefront in the DMD, measured in terms of prominence, depends on the initial particle 
concentration and find that for a bi-disperse Stokes number system the ratio of the wavefront prominence is 
inversely proportional to the corresponding Stokes number initial concentration. Hence the measurement of 
prominence can be used to estimate the concentration of the corresponding Stokes number particles.

We propose that the DMD technique can be used to analyze real experimental PIV data of caustics and 
perform similar analysis to extract information about the Stokes numbers and concentrations of the particles. 
In future we will consider detailed Navier-Stokes equation for the self-consistent evolution of the velocities and 
analyze the caustic structures in  3D39 and turbulent  flows18,40. Contrary to the Taylor-Green flow case, a single 
dominant DMD mode does not capture the complete features of the caustics in a turbulent flow. As described 
in Marensi et al.41, symmetries play an important role in data driven modal expansions for turbulent flows and 
would entail the use of symmetry-reduced dynamic mode decomposition (SRDMD).

A Validity of particle dynamics
The particle dynamics we use in our study is a special case  of17

where η is the white noise and R = ρf /(ρp + ρf /2) for density of particle ρp and density of fluid ρf  . We present 
our results for η = 0 and R = 0 , and use small values of these parameters to verify the stability of our results. In 
Wang et al.33 the authors show that for R = 0 the system is not chaotic. It will be interesting to check for R > 0 
if the DMD modes can capture the transition of the system from periodic to chaotic states.

B DMD algorithm
The N × N pixel image at kth instant, Ik(i, j) , is rearranged into an N2 × 1 vector Xk(m) (note that we subtract 
the mean value from Xk(m) ). Now the F sequence of image frames are appended together to form N2 × NT 
matrix Y. Let the N2 × (F − 1) dimensional matrix formed from the first (F − 1) frames be Y1 and the last 
(F − 1) frames be Y2 , i.e.

We find the singular value decomposition (SVD) of the matrix Y1 , such that Y1 = U�V∗ , where U is a 
N2 × N2 complex unitary matrix, � is an N2 × (F − 1) rectangular diagonal matrix with non-negative real 
numbers on the diagonal, and V is a (F − 1)× (F − 1) real or complex unitary matrix.

Now choose a lower dimensional SVD matrices made up of first nT (<< F ) columns, represented by Ũ  , Ṽ  , 
and the first nT × nT block of � as �̃ . Define a matrix nT × nT matrix A as

Then the dynamic modes are the N2 × 1 eigenvectors of matrix A that is rearranged into N × N matrix.

C Movies
The movies referred to in the text are available in the additional materials.

C.1. See ”Vid1.mp4”.

C.2. See ”Vid2.mp4”.
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