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Correlation driven metallic and half-metallic phases in a band insulator
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We demonstrate a mechanism for realizing ferrimagnetic metal, antiferromagnetic half-metal, and param-
agnetic metal phases by tuning the onsite Coulomb repulsion U in a band insulator. In a simple model of
a correlated band insulator, namely the ionic Hubbard model at half-filling, and in the presence of a second
neighbor hopping, we show that as U is increased, first he insulating band gap is suppressed to zero at a
critical U1 and remains zero within the paramagnetic metallic phase. Interestingly, at a larger Uc, ferrimagnetic
order turns on, leading to a ferrimagnetic metallic phase for Uc < U < U2. For U > U2, the system exhibits an
antiferromagnetic half-metallic phase, followed finally by a transition into an antiferromagnetic Mott insulator.
Our results, based on dynamical mean-field theory, suggest alternate routes for achieving magnetically ordered
metallic and half-metallic phases which have potential applications in spintronics.
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I. INTRODUCTION

Exciting new physics is known to emerge when e-e inter-
actions are turned on in systems which are otherwise metallic
[1]. For example, in the half-filled Hubbard model, strong
correlations turn a metal into a Mott insulator, while weak
to intermediate interactions result in insulating phases due to
spin-density wave formation. In contrast, the fate of a band
insulator in the presence of interactions has been investigated
very little. In this paper, we demonstrate the surprising result
that increasing the strength of e-e interactions in a simple
model of a correlated band insulator can lead to a sequence
of correlation-induced metallic phases: a paramagnetic metal
first, a ferrimagnetic metal next, and then an antiferromag-
netic half-metal, before the system finally ends up as an
antiferromagnetic Mott insulator. Furthermore, known mech-
anisms for the realization of conducting phases in the vicinity
of a Mott insulator require doping the system away from
half-filling, as in the high-Tc cuprates [1]. However, the mech-
anisms we present here for realizing metals and half-metals
close to a Mott insulator are all at at half-filling, i.e., without
doping, and the accompanying disorder.

Antiferromagnetic half-metals [2], where electrons of one
spin orientation are in a metallic state while those of the oppo-
site spin orientation are insulating, with no net magnetization,
are of interest because of their outstanding potential in spin-
tronics [3], but are yet to be realized experimentally. Routes
for obtaining such phases are hence of importance. Most
of the earlier theoretical suggestions, mainly using density-
functional theory (DFT) [4], involve well-known correlated
materials either with both local moments and itinerant elec-
trons, with cation vacancies [5], or with hole doping [6]. The
mechanism presented in this paper, where correlation drives a
band insulator into metallic and half-metallic phases at half-
filling, is thus distinct from all of these and also promises to

lead to cleaner systems as no doping is required. Furthermore,
most known ferrimagnets are insulating, while some double-
perovskites are likely ferrimagnetic but also half-metallic [7],
so the ferrimagnetic metal phase we find is also exotic.

The model of a correlated band insulator (BI) we use is the
ionic Hubbard model (IHM) on a square lattice at half-filling.
The IHM is an extension [8–18] of the Hubbard model on
any bipartite lattice, obtained by adding a staggered “ionic”
potential �. This doubles the unit cell, and additionally, when
the Hubbard on-site interaction U is zero, induces a gap
between the two tight-binding electronic bands that result,
making the system a BI at half-filling (corresponding to one
electron per site).

For the half-filled IHM with only first neighbor hopping t
(t-IHM) and with the system constrained to be paramagnetic,
it is known that a Hubbard U of order � leads to a clo-
sure of the gap in the single-particle spectrum, resulting in
a correlation-induced paramagnetic metal (PM) phase sand-
wiched between (correlated) BI and Mott-insulator phases
[19–22]. However, permitting antiferromagnetic (AF) order
leads to a direct BI → AF Mott-insulator (AFI) transition
preempting the formation of the PM phase [23–37]. Thus, the
t-IHM at half-filling has only insulating phases in its phase
diagram [38].

Here we show that adding a second neighbor hopping t ′
to the IHM (t-t ′ IHM), which frustrates AF order as well as
breaks particle-hole symmetry, not only restores the PM phase
but also leads to the emergence of the exotic ferrimagnetic
metal (FM) and AF half-metal (AFHM) phases mentioned
above, over wide ranges of U and t ′, as depicted in the rich
phase diagram of Fig. 1.

The phases in Fig. 1 can be intuitively understood as
follows (see also the discussion on simple limits of the IHM
in the next section). For U = 0, the t-t ′ IHM on the square
lattice has two bands separated by an indirect band gap of
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FIG. 1. Phase diagram of the t-t ′ IHM at half filling in the t ′-U
plane, obtained using the dynamical mean field theory (DMFT)
combined with the continuous-time quantum Monte Carlo (CTQMC)
impurity solver for βt = 50.0, � = 1.0t . Full (dashed) lines in the
phase diagram indicate first-order (continuous) transition lines.

2� − 4t ′, with valence band maxima at the wave vectors
K = (0,±π ), (±π, 0) and conduction band minima at K′ =
(±π/2,±π/2), leading to the BI phase at half-filling (for
t ′ < �/2). However, while � prefers doublons on one sublat-
tice and holons on the other sublattice, U and t ′ prefer single
occupancies. Because of this competition, as U increases, the
effective quasiparticle band gap eventually closes, permitting
gapless excitations. The resulting paramagnetic metal (PM)
phase has particle-hole asymmetric electron and hole pockets
(due to t ′), different occupancies of the two sublattices (due to
�), and nontrivial correlations (due to U ). Hence, with further
increase in U , and over a limited range of t ′, the SU(2) spin
symmetry is spontaneously broken as magnetic order (induced
by the AF exchange due to U ) turns on, with opposite orien-
tations but different magnitudes on the two sublattices. This
leads to a phase with ferrimagnetic order and spin-polarized
electron and hole pockets, i.e., the ferimagnetic metal (FM)
phase. With continued increase in U , the quasiparticles with
spins parallel to the magnetization on the sublattice with po-
tential +� become gapped, resulting in a half-metallic phase,
which, due to the half filling constraint, necessarily has AF
order. This is the AF half-metal (AFHM) phase. Eventually, U
wins over � and t ′ and gaps open up in both the spin channels,
resulting in the AFI phase [39].

The rest of this paper is organized as follows. In Sec. II, we
present the model, its physics in simple limits and how this
helps to qualitatively understand the phase diagram in Fig. 1,
and the calculational methods we use for obtaining the results
we present in this paper. In Sec. III, we present and discuss the
central results of our paper in detail, including the different
observables we calculate and how they lead to the phase dia-
gram in Fig. 1. We end this paper with a concluding discussion
in Sec. IV. The Appendixes contain technical details of the
calculational methods used as well as some additional results
not included in the main text.

II. THE IHM HAMILTONIAN, SOME SIMPLE LIMITS,
AND CALCULATIONAL METHODS

The Hamiltonian for the t-t ′ IHM can be written using
standard notation as

HIHM = −t
∑
〈i j〉,σ

(ĉ†
jσ ĉiσ + H.c.) − t ′ ∑

〈〈i j〉〉,σ
(ĉ†

jσ ĉiσ )

+�
∑
i∈A

n̂i − �
∑
i∈B

n̂i − μ
∑

i

n̂i + U
∑

i

n̂i↑n̂i↓.

(1)

Here i labels the sites of a bipartite lattice (with two in-
terpenetrating sublattices A and B). ĉ†

iσ creates an electron
with spin σ and n̂i and n̂iσ are the total and spin resolved
number operators at the site i. As mentioned earlier, t and
t ′ are the amplitudes for first and second neighbor hopping,
U is the onsite Hubbard repulsion, and � is the staggered
potential. The chemical potential μ is chosen so that the
average site occupancy (nA + nB)/2 = 1, corresponding to the
“half-filling” constraint which we retain throughout this paper.
Although all the results we present in our paper are specific
to the two-dimensional square lattice, we expect the bulk of
the physics we unearth to be generic to models with compact
density of states in higher dimensions.

Two simple limits in which the t-t ′ IHM is exactly solvable
and easy to understand are worth discussing.

For U = 0, the noninteracting limit, the model is a one-
particle Hamiltonian that can be diagonalized exactly in terms
of two bands with quasimomentum or wave-vector labels k ≡
(kx, ky). The band dispersion relations in the full Brillouin
zone (BZ) are given by

ε±
k = −4t ′ cos kx cos ky ±

√
�2 + (γk )2 (2)

with γk ≡ −2t (cos kx + cos ky). When t ′ = 0, the two bands
are separated in energy by a band gap (Egap) of 2� along
the square contour corresponding to ky = ±π ± kx. So at
half-filling, the lower band is completely filled and the up-
per band is empty, resulting in a band insulator (BI). When
t ′ 
= 0, the eigenstates (for either band) along these square
contours are no longer degenerate. The bottom of the upper
conduction band is ε+

K′ = � at K′ ≡ (±π/2,±π/2), whereas
the top of the lower valence band is ε−

K = 4t ′ − � at K ≡
(0,±π ), (±π, 0). Hence, for t ′ 
= 0 and � > 2t ′, the two
bands have an indirect band gap Egap = 2� − 4t ′. As long
as Egap > 0, the system (at half-filling) continues to be a
band insulator (BI). As one increases t ′ from 0, the band
gap monotonically decreases from 2� and become zero at
t ′ = �/2, whence we get a BI to band-metal transition. It is
to be expected that when U is turned on starting from the
BI phase, the system will retain the gap for single-particle
excitations for values of the interaction U much smaller than
the gap. We continue to refer to the resulting phase as the BI
phase, consistent with the phase diagram in Fig. 1. However,
as we demonstrate in the next section, when t ′ is substantial
the effective (renormalized) gap decreases continuously as U
increases, leading to the correlation induced transition from
the BI to the PM phase, with the latter being adiabatically
connected to the noninteracting band-metal. We also note that
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in the presence of � the system always has charge density
wave order, with nB > nA.

Next, consider the “atomic” limit, corresponding to t =
t ′ = 0. When U/2 < �, the ground state of the system has
doublons (i.e., two electrons with opposite spins) on every
B site and holons (i.e., no electrons) on every A site, corre-
sponding to the maximal charge density wave order, and with
a single-particle excitation gap equal to � − U/2. This is the
atomic limit of the (correlated) BI phase. We can expect that
turning on hopping with strengths smaller than the gap will
leave the system in the same phase, and the resulting corre-
lated BI phase is adiabatically connected to the weak-coupling
BI phase discussed above. On the other hand, when t = t ′ = 0
and U/2 > �, the ground state of the system is the (atomic
limit of the) Mott insulator (MI) phase, with one electron
at each site, and a gap for single-particle excitations equal
to U/2 − �. In this case, the system has free spin-1/2 local
moments which can point in any direction and the ground
state is 2N -fold degenerate, where N is the number of sites in
the lattice. The turning on of t and t ′ induces first and second
neighbor antiferromagnetic superexchange interactions [26],
J = 4t2U/(U 2 − 4�2) and J ′ = 4t ′2/U respectively, leading
to the antiferromagnetic (Mott) insulator (AFI) phase in Fig. 1.
Finally, for U = 2� in the atomic limit, the system has
gapless single-particle (electron or hole) excitations in addi-
tion to local moments. When the hopping is turned on and
|U − 2�| is of order t and t ′, one can expect exotic corre-
lated metallic phases, with and without magnetism, as indeed
confirmed by the phase diagram in Fig. 1. We re-emphasize
that, as mentioned in the introduction and shown in this paper,
these metallic phases arise only when t ′ is nonzero.

In order to reliably investigate and establish the realiz-
ability of the possibilities mentioned above, one needs a
calculational method capable of handling the strong corre-
lations involved. Our method of choice employed in this
paper is the dynamical mean field theory (DMFT) [40,41],
which includes all local (i.e., single-site) correlations exactly.
The DMFT maps the IHM into two separate self-consistent
impurity problems, one for each sublattice, to solve which
we use the hybridization expansion continuous-time quantum
Monte Carlo (CTQMC) [42] impurity solver, generally con-
sidered the best current solver for DMFT. For more details, see
Appendix A.

The CTQMC mehod has the limitation that it provides
data only for imaginary time or Matsubara frequencies (see
the next section for more details). Hence, we complement
the CTQMC results with results obtained using the iterated
perturbation theory (IPT) impurity solver [43], known to
be qualitatively and semiquantitatively consistent with the
CTQMC and other methods [44] in the weak to intermedi-
ate interaction regimes. These results are also presented in
the next section, while more details regarding the calculations
are given in Appendix C.

Finally, we note that when t ′ is sizable, the correlation-
induced BI to PM transition in Fig. 1 occurs at relatively
small values of U , and is therefore accessible to a weak
coupling approximation such as the Hatree-Fock mean field
theory (HF-MFT). An unrestricted HFMFT also allows one
in principle to access the order parameters characterizing the
other phases in Fig. 1. Hence, we have carried out a detailed

(a) (b)

FIG. 2. The staggered magnetization ms and the uniform mag-
netization mf , as functions of U for different values of t ′ obtained
from the DMFT +CTQMC calculations for βt = 50.0 and � = 1.0t .
The U dependence of ms (and of mf where appropriate) is in clear
accordance with discontinuous, first-order jumps across the solid
lines in Fig. 1 and continuous transitions across the dashed lines in
Fig. 1.

investigation of the HF-MFT of the t-t ′ IHM, whose details
and results are presented and discussed in Appendix D. We
find that while HF-MFT yields all the same phases as in Fig. 1,
and hence offers some insights into their nature, it grossly
overestimates the stability of the magnetically ordered phases.

III. RESULTS AND DISCUSSION

In this section, we present and discuss our results [45]
for the magnetic properties and the momentum distribution
function, obtained using DMFT+CTQMC for fixed values
of βt ≡ t/(kBT ) = 50.0 and � = 1.0t , and how they lead
to the phase diagram in Fig. 1. We restrict our attention to
positive values of t ′, as the physics for negative values of t ′ is
obtainable simply via a particle-hole transformation. We also
present results for real-frequency spectral functions obtained
using DMFT +IPT.

A. Staggered and uniform magnetization

Figure 2 shows our results for the staggered magnetization
ms ≡ (mzA − mzB)/2 and the uniform magnetization m f ≡
(mzA + mzB)/2, where mzα ≡ nα↑ − nα↓ denotes the magneti-
zation for sublattice α, as functions of U/t for various values
of t ′. For every t ′, magnetic order sets in above a threshold
Uc(t ′) of U . For 0.12t < t ′ < 0.36t , both m f and ms turn on at
the transition and are nonzero in a range Uc(t ′) < U < U2(t ′)
(although the m f values are small), and the system has ferri-
magnetic order. As U → U2(t ′), m f → 0, and for larger U the
system has AF order. For t ′ outside the above range, m f is zero
for all values of U and the system goes from paramagnetic to
AF phases via first-order transitions across Uc(t ′).

The threshold Uc(t ′) has a nonmonotonic variation as t ′
increases, first decreasing and reaching a minimum around
t ′ = 0.18t and then increasing again. This arises from two
competing aspects, namely the size of the band gap and
the degree of magnetic frustration. As mentioned earlier, the
noninteracting t-t ′ IHM has a band gap (2� − 4t ′) that de-
creases as t ′ increases, hence the initial decrease in Uc. But
increasing t ′ also causes increasing frustration of the AF ex-
change interactions, hence the increase in Uc for larger t ′.
Furthermore, the jump in ms at the first-order AF transition for

155132-3



BAG, GARG, AND KRISHNAMURTHY PHYSICAL REVIEW B 103, 155132 (2021)

small t ′ decreases to zero as t ′ → .12t , and the ferrimagnetic
transition for 0.12t < t ′ < 0.18t is continuous, with both ms

and m f turning on smoothly at Uc. For t ′ > 0.18t , both mag-
netizations again turn on with a jump, and the transition
becomes first order again, though the width in U of the FM
phase and the jump in m f at Uc go to zero as t ′ → 0.36t .

As discussed in greater detail in Appendix B, because of
the presence of the staggered potential the spin-resolved stag-
gered densities δnσ ≡ (nBσ − nAσ )/2 are finite for all t ′,U .
They decrease as U increases, as empty or doubly occupied
sites are disfavored because of U and the half-filling con-
straint, are spin symmetric (spin asymmetric) in the paramag-
netic (magnetically ordered) phases, and show discontinuities
(kinks) across first-order (continuous) phase transitions.

B. Momentum distribution function

Whether a system is metallic or insulating is ideally
characterized by whether the zero-temperature single-particle
spectral function or density of states (DOS), ρ(ω), is finite or
zero at the Fermi level (ω = 0). With the CTQMC method,
one can only obtain the Green’s function at the Matsubara
frequencies, G(iωn) with ωn ≡ (2n + 1)π/β. Since ρ(ω) =
−π−1ImG(ω+), an analytic continuation of G(iωn) to real
frequencies is required for obtaining the DOS, which is a
difficult step with many subtle issues [46]. As an alternative
procedure that avoids analytic continuation altogether, we use
the momentum distribution functions (MDF) (see Appendix B
for more details), nα,k,σ = 1

β

∑
n Gα,σ (k, iωn) + 1

2 (α = A, B
is the sublattice index) to distinguish whether the system is
metallic or insulating. The MDF can be directly measured in
cold-atom experiments [47] and can also be obtained from
integrated spectral functions which are measured routinely
using ARPES [48].

In the correlated BI phase at half-filling, which is adia-
batically connected with the noninteracting BI phase where
μ lies within the insulating gap, nk,σ ≡ 1

2

∑
α nα,k,σ has a

constant value of 1
2 throughout the Brillouin zone (BZ). In

the PM state, adiabatically connected to the state in which
both the noninteracting bands cross the Fermi level, we get
(interaction-renormalized) electron pockets in the conduction
band, with nk,σ close to but less than 1.0, and hole pockets in
the valence band, with small values of nk,σ , in such a way as to
ensure half-filling. One can similarly use the spin dependence
of the momentum distribution functions combined with the
information on the magnetic order parameters to distinguish
the FM and AFHM phases, as discussed below.

Figure 3 depicts nk,σ over the full BZ for t ′ = 0.2t for three
values of U that lie respectively in the PM, FM, and AFHM
regions of the phase diagram in Fig. 1. For U = 3.4t , nk,σ is
spin symmetric and has clearly visible (renormalized) electron
pockets [peaks at k = K′ ≡ (±π/2,±π/2)] and hole pockets
[dips at k = K ≡ (0,±π ), (±π, 0)], corresponding to the PM
phase. As U is increased and magnetic order sets in, nk,σ (top
panel of Fig. 3, for U = 3.8t) develops spin asymmetry, with
the ↑ spin channel having bigger electron and hole pockets
and also a larger net occupancy compared to the ↓ spin chan-
nel, corresponding to the FM phase. On further increasing U
(bottom panel of Fig. 3, for U = 4.6t), only nk,↑ has Fermi
pockets while nk,↓ = 1

2 everywhere in the BZ. Thus, the ↓

(a) (b)

(c) (d)

(e) (f)

FIG. 3. False color plots of nk,σ over the full BZ obtained using
DMFT +CTQMC, for βt = 50.0, � = 1.0t , and t ′ = 0.2 for three
different values of U . Top panels: PM phase, with spin symmetric
electron and hole pockets. Middle panels: FM phase, with electron
and hole pockets for the up spin but much smaller electron pock-
ets and almost no hole pockets for the down spin. Bottom panels:
AFHM phase, with only up-spin electron and hole pockets. For the
down-spin electrons, nk,↓ = 0.5 over the entire BZ, showing their
insulating character.

spin channel is insulating with a finite band gap while the
↑ spin channel is a metal with both conduction and valence
bands crossing the Fermi level, while the net occupancy in
each channel is the same due to the half-filling constraint,
corresponding to the AFHM phase. A different depiction of
the same data is shown in Fig. 6 in Appendix B.

Figure 4 shows neσ ≡ (nK′σ − 1
2 ) and nhσ ≡ (nKσ − 1

2 ) as
functions of U for several representative values of t ′, chosen to
show the different sequences of phases and phase transitions
that occur in the half-filled t-t ′ IHM. For example, consider
the panel for t ′ = 0.2t , for which all the five phases that we
have discussed exist for different ranges of U (see Fig. 1).
In the insulating phases, ne and nh are zero for both spin
orientations, and the onset of metallicity is indicated by them
deviating from zero. The first transition is continuous and
from the BI to the PM phase, with spin symmetric deviations,
across the blue curve in the phase diagram of Fig. 1. The
second transition is into the FM phase, where ne and nh are
still nonzero for both σ values, but there is a spin asymmetry.
The third transition is from the FM to the AFHM, where ne

and nh differ from zero for only one spin channel, whereas the
other spin channel is insulating. The final transition at large
U is a first-order transition to the AFI phase, with ne and
nh becoming zero for both the spin channels. Similarly, the
trends of ne and nh shown in the other panels (see also Fig. 7
in Appendix B) are consistent with Fig. 1.
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FIG. 4. neσ (red and green curves) and nhσ (magenta and blue
curves) vs U for four different values of t ′. In the metallic phases,
neσ > 0 indicates electron pockets and nhσ < 0 indicates hole pock-
ets. For t ′ = 0.2, as U/t increases, there is a BI to PM transition,
followed by a transition into the FM phase where neσ > 0 for both
the spin channels while only nh↑ 
= 0. This is followed by a transition
into an AFHM phase, where only ne↑ and nh↑ are nonzero. For
large U/t , the AFI phase prevails, with neσ = 0 = nhσ for both spin
channels. Other panels similarly show the phases for other values of
t ′ and also how the ranges in U over which the different phases exist
change with t ′, consistent with Fig. 1.

C. Results from DMFT +IPT

We note that CTQMC calculations are possible only at
finite temperatures; therefore, even at the lowest possible tem-
peratures accessible to us numerically, metallic and insulating
phases are clearly distinguishable only if the insulating gap is
much larger than kBT . Close to the metal-insulator transition
point, where the gap becomes small, numerically it becomes
hard to locate the transition, as it is really a crossover. There-
fore, as mentioned earlier, we have also studied the t-t ′ IHM
using iterative perturbation theory (IPT) as the impurity solver
for the DMFT [40,43], where we have the advantage of being
able to calculate the zero-temperature Green’s function at real
frequencies; see Appendix C for details.

All the phases of the t-t ′ IHM found in our
DMFT +CTQMC calculations are also observed within
the DMFT +IPT. Figure 5 presents the spin-resolved,
sublattice-averaged, single-particle DOS ρσ (ω) obtained
within DMFT +IPT for t ′ = 0.3t and � = 1.0t for several
values of U/t . It shows that, consistent with the phase
diagram in Fig. 1, the system indeed evolves in the sequence
BI → PM → FM → AFHM → AFI as U/t increases
(DOS for the BI phase, with spin-symmetric gaps at the
Fermi level, not shown). This reaffirms the reliability of our
analysis based on the momentum distribution function within
DMFT +CTQMC and the presence of the correlation-induced
PM, FM, and AFHM phases in the t-t ′ IHM, which is one

FIG. 5. Single-particle density of states ρσ (ω) obtained within
DMFT +IPT for t ′ = 0.3t and � = 1.0t shown for several values
of U/t . As U/t increases starting from a PM phase, the system
first becomes a FM, with ρ↑(ω) 
= ρ↓(ω) and the DOS in the oc-
cupied part of the spectrum being smaller for down-spin compared
to up-spin, resulting in ferrimagnetic order. As U/t increases further,
the down-spin channel gets gapped, resulting in the AFHM phase.
Eventually, a gap opens up in the up-spin channel as well, and the
system becomes an AFI.

of the main achievements of this work. Needless to say, the
locations of the phase transition lines will be different in
DMFT +CTQMC compared to DMFT +IPT, and we expect
the former to be more accurate. Nevertheless, the consistency
between the results from the two very different methods is
encouraging and suggests that the DMFT +IPT can be used to
obtain reliable results for other properties, such as transport,
which are difficult to calculate using the DMFT +CTQMC
method because of the limitations connected with analytic
continuation discussed above. We hope to carry out such
studies in the future.

IV. CONCLUDING COMMENTS

In conclusion, in this paper we have demonstrated in a
simple model of a correlated band insulator at half-filling
that correlations can induce AF half-metal, ferrimagnetic
metal, and paramagnetic metallic phases over broad parameter
regimes. Our proposal for realizing the AFHM phase is dis-
tinct from the proposals mentioned in the introduction [2–6]
as well as a recent model-based proposal [49] which also in-
volves doping a parent system. The AFHM phase in our work
is realized at half-filling, thereby avoiding the disorder that
accompanies doping. Our mechanism should be realizable
in band-insulating materials with two inequivalent strongly
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correlated sites per unit cell, frustration in hopping and anti-
ferromagnetic exchange, and lack of particle-hole symmetry.

The question of a whether a stable correlation-induced
metallic phase can intervene between the BI and the AFI
phases in the half-filled IHM has been around for more than a
decade. Our work presents a definitive answer, in the affirma-
tive, by analyzing the t-t ′ IHM at half-filling and furthermore
has uncovered a rich set of additional phases. In addition to
demonstrating a scenario where conducting phases arise in
the close vicinity of a Mott insulator without any doping,
our work also implements a method for identifying metallic
and insulating phases based on the momentum-distribution
function obtained from CTQMC calculations without the need
of analytic continuation.

It will certainly be interesting to investigate the existence
of these correlation-induced metallic and half-metallic phases
as well as the nature of the various phase transitions involved
further, theoretically, using the more sophisticated and com-
putationally demanding quantum cluster and other methods
[50–52], and experimentally, in cold atom systems and real
materials. The IHM has been simulated recently in ultra-
cold atom experiments [53]. Recent developments in layered
materials and heterostructures also generate many contexts
where the qualitative physics can be understood in terms
of the IHM. For example, bilayers of 2-d materials, e.g.,
bilayer graphene, in the presence of a transverse electric
field which induces a potential difference between the two
layers, can be modeled in terms of an IHM [54]. We note
also that the IHM can arise as an emergent effective model
when spontaneous symmetry breaking leads to the devel-
opment of a commensurate two-sublattice charge density
wave induced by electron-phonon or first neighbor Coulomb
interactions. We hope that our work will motivate further
theoretical as well as experimental research looking for the
correlation-induced paramagnetic metal, ferrimagnetic metal,
and antiferromagnetic half-metal phases in these systems and
contexts. Additionally [45], the nature of the phases and phase
transitions in 2-d BI systems with strong correlations, where
magnetic long-range order is suppressed at finite tempera-
tures due to long wavelength fluctuations (unless there is
spin anisotropy), poses fascinating and challenging problems.
We hope that our work presented here will stimulate further
research in these directions.

ACKNOWLEDGMENTS

A.G. and H.R.K. gratefully thank the Department of Sci-
ence and Technology, Ministry of Science and Technology,
India, and its Science and Engineering Research Board, for fi-
nancial support under Grants No. CRG/2018/003269 and No.
SB/DF/005/2017, respectively. We also thank J. K. Freericks
for valuable feedback regarding early versions of this paper.

APPENDIX A: DETAILS OF DMFT + CTQMC METHOD

The formulation of the dynamical mean-field theory
(DMFT) for the IHM and the use of CTQMC as the impurity
solver have been discussed in detail in Sec. II of our earlier
work [26] (corresponding to t ′ = 0) and in the references cited
therein. Here we confine ourselves to drawing attention to

the specific differences that arise due to the presence of a
nonzero t ′.

Even in the presence of t ′, the expression for the k and
spin-dependent (2 × 2) matrix Green’s function for the IHM
in terms of the local spin-dependent self-energies continues to
be of the form given by Eq. (2) of Ref. [26], i.e.,

[Gσ (k, iωn)]αβ =
(

ζAσ (k, iωn) −γk
−γk ζBσ (k, iωn)

)−1

, (A1)

where the two-valued matrix indices α and β correspond
to the two sublattice indices (A, B). However, the diagonal
entries on the right-hand side are now k dependent, due
to the intrasublattice hopping induced by t ′, where as the
off-diagonal terms, due to the intersublattice hopping t , are
given by −γk = 2t (cos kx + cos ky) as before. For the diago-
nal terms, we now have

ζασ (k, iωn) = ζασ (iωn) − γ ′
k. (A2)

Here, α = A, B is the sublattice index,

ζAσ (iωn) = iωn + μ − � − A,σ (iωn),

ζBσ (iωn) = iωn + μ + � − B,σ (iωn),
(A3)

in terms of the two local self-energies α,σ (iωn) of the two
separate self-consistent impurity problems on sites A and B
as before, and γ ′

k = −4t ′ cos kx cos ky.
It is straightforward to verify that the diagonal components

of the k and spin-dependent matrix Green’s function are hence
given by

Gασ (k, iωn) = ζᾱσ (iωn) − γ ′
k

[ζAσ (iωn) − γ ′
k][ζBσ (iωn) − γ ′

k] − γ 2
k

,

(A4)

where ᾱ = B, A for α = A, B. The local Green’s functions on
an A or B site are obtained by performing the k sum,

Gασ (iωn) = 1

N

∑
k

Gασ (k, iωn), (A5)

where N is the total number of k points in the square Brillouin
zone (BZ). Unlike in the model with t ′ = 0, the sum cannot
be easily converted into an integral over a density of states
as it involves two different energy dispersions. We carry it
out numerically, using a (2Lg × 2Lg) grid over the square BZ,
with the crystal momentum components kx and ky defined as
(i−Lg)π

Lg
+ π

2Lg
where i runs from 0 to (2Lg − 1). Because of the

symmetry of Hamiltonian on the square lattice BZ, one does
not need to sample the whole BZ; sampling a 1/8 wedge of
the BZ with appropriate weights will do the job. Momentum
sums are carried out over these triangular wedges. (The tri-
angular regime is bordered by kx = ky where −π < kx < 0.
k points on the kx = ky line are ascribed weights of 4 and all
other points in the triangle carry weights of 8.) Based on our
experience with the HF-MFT calculations (see Appendix D),
where we find that calculations made using Lg = 1000 yield
the same results as those with the larger Lg = 2000 and 4000;
all the data reported in this paper have been obtained using
Lg = 1000.

The hybridization functions on the A and B sites, which
are the inputs to the CTQMC impurity solver, are then
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obtained as

Dα,σ (iωn) = ζασ (iωn) − [Gα,σ (iωn)]−1. (A6)

The CTQMC code (we use the CT-HYB package by Krist-
jan Haule [55] that has been graciously made available in
the public domain) then generates the local self-energies
on the A and B sites as functions of the Matsubara
frequencies. Starting from a trial self-energy, e.g., the Hartree-
Fock self-energies, the computation of the local Green’s
functions, the hybridization functions, and the local self-
energies are then iterated to convergence. Even if we start
from a trial self-energy that corresponds to a paramagnetic
state, the CTQMC code we use is sophisticated enough to
self-consistently generate nonzero values for the local magne-
tizations, mA and mB, as appropriate. The convergence criteria
we used were that nA and nB were converged to an accu-
racy of 0.0002, and the updating of chemical potential was
stopped once |(nA + nB) − 2.0| reached 0.001. Our CTQMC
calculations for the self-energy typically involved 107 Monte
Carlo steps. For most of the parameter regimes we studied,
around 150 self-consistent DMFT cycles were required for
convergence, whereas for parameters near phase transition
lines it took around 200 cycles.

The momentum distribution function nα,k,σ is calculable in
a straightforward way using the converged self-energies in the
expression for the k, sublattice, and spin-resolved diagonal
components of the matrix Green’s function given above by
performing the Matsubara frequency sum

nα,k,σ = 1

β

∑
iωn

Gα,σ (k, iωn) + 1

2
(A7)

as discussed in the main text. The Fermi surface is defined by
the locus of points in the BZ where there is a jump in the mo-
mentum distribution function. These points can be located by
determining where the gradient with respect to k of nα,k,σ has
the maximum magnitude. However, visually they are fairly
easy to see in false color plots of the momentum distribution
functions, as discussed in the main text.

The various phase transition points in the phase diagram
of the main text were identified using the following criteria.
Needless to say, the parts of the Uc line corresponding to
the first-order magnetic transitions were easy to identify from
the staggered magnetization data. The part of the Uc line
corresponding to the PM → FM continuous transition was
inferred by checking for ms and m f exceeding 0.001. From the
nk data, a transition from the AFHM phase to the AFI phase
was inferred when nk differed from 0.5 by less than 0.02. The
BI to metal transition was inferred when nk differed from 0.5
by more than 0.02.

APPENDIX B: MOMENTUM DISTRIBUTION FUNCTION
AND STAGGERED DENSITY WITHIN DMFT +CTQMC

Here we present some additional results from our mo-
mentum distribution and staggered density calculations using
DMFT +CTQMC that are complementary to the results pre-
sented and discussed in the main text.

Figure 6 shows the numerical values of (nk,σ − 0.5) on
paths along high-symmetry directions in the BZ for the t-t ′

FIG. 6. Numerical values of (nk,σ − 0.5) on paths along high-
symmetry directions in the BZ for the t-t ′ IHM at half-filling
obtained using DMFT +CTQMC for βt = 50.0, � = 1.0t , and t ′ =
0.2t , for the same U/t values of 3.4, 3.8, and 4.6 as in Fig. 3 of
the main text, chosen to correspond respectively to the PM, FM, and
AFHM phases. Top panel: PM phase, with spin symmetric electron
pockets around the symmetry points (±π/2,±π/2), where nk,σ is
close to 1, and hole pockets around the symmetry points (±π, 0) and
(0, ±π ), where nk,σ is close to zero. Middle panel: FM phase, with
electron and hole pockets for the up spin, but much smaller electron
pockets and almost no hole pockets for the down spin. Bottom panel:
AFHM phase, with only up-spin electron and hole pockets. For
the down-spin electrons, nk,↓ = 0.5 on all the paths, showing their
insulating character.

IHM at half-filling obtained using DMFT +CTQMC for βt =
50.0, � = 1.0t , and t ′ = 0.2t , for the same U/t values of
3.4, 3.8, and 4.6 as in Fig. 3 of the main text, chosen to
correspond respectively to the PM, FM, and AFHM phases.
In the top panel, corresponding to the PM phase, the momen-
tum distribution function is spin symmetric and has clearly
visible renormalized electron pockets with nk,σ close to 1 at
k = (±π/2,±π/2) and hole pockets with nk,σ close to 0 at
k = (0,±π ), (±π, 0). Note also the particle-hole asymmetry
because of the presence of t ′. In the middle panel, correspond-
ing to the FM phase, the electron and hole pockets for the
up-spin electrons are slightly larger, but for the down-spin
electrons the electron pockets are smaller, and there are al-
most no hole pockets. In the bottom panel, corresponding to
the AFHM phase, there are only up-spin electron and hole
pockets. For the down-spin electrons, nk,↓ = 0.5 on all the
paths, showing their insulating character.

Figure 7 shows neσ ≡ (nK′σ − 1
2 ) and nhσ ≡ (nKσ − 1

2 ) at
K′ = (π/2, π/2) (red and green curves) and K = (π, 0) (ma-
genta and blue curves) as a function of U for several values of
t ′ complementary to the values for which the same quantities
were shown in Fig. 4 of the main text. We recall that in the in-
sulating phases these are both zero and the onset of metallicity
is indicated by their deviating from zero. Thus, the panel for
t ′ = 0.0t shows that the system is always insulating, whereas
the panel for t ′ = 0.05t corresponds to the first value of t ′
where the PM phase makes an appearance in our calculations.
The panel for t ′ = 0.4t illustrates the shrinking of the range of
U corresponding to the AFHM phase with increasing t ′ (see
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FIG. 7. neσ (red and green curves) and nhσ (magenta and blue
curves) vs U for four different values of t ′, complementary to the
values for which the same quantities were shown in Fig. 4 of the
main text. In the metallic phases, neσ > 0 corresponds to electron
pockets and nhσ < 0 to hole pockets, whereas in the insulating phases
both are zero. Clearly, for t ′ = 0.0t the system is always insulating,
whereas t ′ = 0.05t is essentially the first value of t ′ where the PM
phase makes an appearance. The panel for t ′ = 0.4t illustrates the
shrinking of the range of U corresponding to the AFHM phase with
increasing t ′, while the panel for 0.6t illustrates the absence of the
BI phase and the direct transition from the PM to the AFI phase for
t ′ > 0.5t .

phase diagram in Fig. 1 of the main text), while the panel
for 0.6t shows the absence of the BI phase and the direct
transition from the PM to the AFI phase for t ′ > 0.5t .

Finally, Fig. 8 shows the spin-resolved staggered occu-
pancy, δnσ = (nB,σ − nA,σ )/2, and the mean staggered occu-
pancy, δn = 1/2

∑
σ δnσ , obtained using DMFT +CTQMC,

as a function of U for several values of t ′. These are fully
consistent with the nature of the phases and phase transitions
shown in Fig. 1 of the main text. An abrupt, first-order change
in δnσ is seen across Uc when the magnetic transition is
first order. For intermediate values of t ′ where the magnetic
transition (PM to FM transition) is continuous or weakly
first order, δnσ also change smoothly across the transition.
The slope changes in δn vs U at larger U for intermediate
values of t ′ are connected with the continuous AFHM to AFI
transition.

APPENDIX C: DETAILS OF DMFT +IPT

In this section, we provide some details regarding the
second impurity solver we have used, namely, the iterated
perturbation theory (IPT) scheme [40,43], which has the merit
of giving semianalytical results directly in the real frequency
(ω+ ≡ ω + i0+) domain.

FIG. 8. Spin-resolved staggered occupancy, δnσ , and the mean
staggered occupancy, δn, as functions of U for different values of
the second neighbor hopping (t ′) obtained using DMFT +CTQMC.
These results are for (nA + nB )/2 = 1 and βt = 50.0, � = 1.0t . At
t ′ = 0.0t and for larger values of t ′, δnσ and δn have first-order jumps
across the magnetic transition. However, at intermediate t ′ values, δn
seems to change smoothly across the magnetic transition, though it
exhibits slope changes at the continuous AFHM-AFI transition.

In the DMFT +IPT method, we start with a guess for
the self-energy ασ (ω+), and compute the local Green’s
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functions

Gασ (ω+) = 1

N

∑
k

Gσ
ασ (k, ω+), (C1)

where [compare Eqs. (A5) and (A4) above] the momentum,
spin, and sublattice resolved Green’s functions in the real
frequency domain are given by

Gασ (k, ω+) = ζᾱσ (ω+) − γ ′
k

(ζAσ (ω+) − γ ′
k )(ζBσ (ω+) − γ ′

k ) − γ 2
k

. (C2)

Here, as before [see discussion after Eq. (A5)], the sum over
k is carried out over a half-point grid in the BZ.

We next determine the “host Green’s function” Gασ from
the (reversed) Dyson equation

G−1
ασ (ω+) = G−1

ασ (ω+) + ασ (ω+) ≡ ω+ − εα − Dασ (ω+),

(C3)

where εA = � − μ, εB = −� − μ, and Dασ (ω+) is the an-
alytically continued version of the hybridization function
introduced earlier in Eq. (A6).

In the third step, we solve the impurity problem to obtain
the self-energy ασ (ω+) = ασ [Gασ (ω+)]. The IPT’s use as
an impurity solver comes in this step, where one has to obtain
the self-energy given the host Green’s function.

These three steps are executed iteratively until a self-
consistent solution is obtained. The IPT ansatz is constructed
[43] in such a way as to

(a) be exact to second order in U in the weak coupling
regime (U/t,U/t ′ � 1);

(b) be exact in the atomic limit t = t ′ = 0, which also
corresponds to the hybridization function being zero;

(c) be exact in the large-ω limit for all parameter values;
and

(d) satisfy the Luttinger-Friedel sum rule.
For this purpose, the self-energy is written [43] in terms of

the second order (in U ) self-energy as follows:

IPT
ασ (ω+) = HF

ασ + Aασ (2)
ασ (ω+)

1 − Bασ 
(2)
ασ (ω+)

. (C4)

Here, as mentioned earlier, HF
ασ = Unασ̄ is the HF self-

energy, and (2)
ασ is the second-order self-energy calculated

using a modified host Green’s function whose local potential
is shifted by an amount δασ , i.e., G̃−1

ασ (ω+) ≡ G−1
ασ (ω+) − δασ :

(2)
ασ (ω+) = U 2

3∏
i=1

∫ ∞

−∞
dεi [ρ̃ασ (ε1)ρ̃ασ̄ (ε2)ρ̃ασ (ε3)]

× [ f (ε1) f (−ε2) f (ε3) + f (−ε1) f (ε2) f (−ε3)]

ω+ − ε1 + ε2 − ε3
,

(C5)

where ρ̃ασ (ω) ≡ −Im[G̃ασ (ω+)]/π is the spectral function
or the density of states (DOS) of the modified host Green’s
function.

It is straightforward to verify[43] that condition (c) is sat-
isfied if we choose Aασ to be

Aασ = nασ̄ (1 − nασ̄ )

ñασ̄ (1 − ñασ̄ )
(C6)

with ñασ ≡ ∫ 0
−∞ dω ρ̃ασ (ω) is the sublattice and spin-

resolved occupancy corresponding to the modified host
Green’s function. The parameter Bασ , chosen so as to ensure
the exact atomic limit of the self-energy, is given by

Bασ = U (1 − nασ̄ ) − δασ

U 2ñασ̄ (1 − ñασ̄ )
. (C7)

At this stage, the local potential shift δασ is still a free param-
eter, and it can be chosen so as to ensure the Luttinger-Friedel
sum rule for the impurity problem, which is equivalent to the
following condition [56]:∫ 0

−∞

dω

π
Im

(
∂ασ (ω+)

∂ω
Gασ (ω+)

)
= 0. (C8)

Figure 5 in Sec. III of the main text, which showed the spin-
resolved, sublattice-averaged, single-particle density of states
(DOS) ρσ (ω) for t ′ = 0.3t and � = 1.0t for several values of
U/t , is calculated from the DMFT +IPT converged solutions
for the local Green’s functions [see Eq. (C1)] as follows:

ρσ (ω) = 1

2

∑
α

ρασ (ω); ρασ (ω) ≡ − 1

π
Im[Gασ (ω+)]. (C9)

APPENDIX D: HARTREE-FOCK MEAN FIELD THEORY
OF THE t-t ′ IHM

When both U and t (and/or t ′) are finite, the IHM is
no longer exactly solvable. A relatively simple approximate
solution can be obtained using the (unrestricted) Hartree-
Fock mean field theory (HF-MFT), where one approximates
the Hamiltonian as an effective, self-consistent one-particle
Hamiltonian allowing for mean-field order parameters corre-
sponding only to the sublattice and spin resolved occupancies
〈n̂ασ 〉 ≡ nασ , or, equivalently (because of the half-filling
constraint), to the staggered occupancy (δn), the staggered
magnetization (ms) and the uniform magnetization (m f ) de-
fined in Sec. III of the main text. This is achieved by breaking
up the interaction term within a mean-field approximation as

Un̂i↑n̂i↓ ≈ U [〈n̂i↑〉n̂i↓ + n̂i↑〈n̂i↓〉 − 〈n̂i↑〉〈n̂i↓〉]. (D1)

Furthermore, in this work, we make the simplifying ansatz
that 〈n̂iσ 〉 is the same, nAσ or nBσ , for all A or B sites respec-
tively. As is shown below in detail, the resulting quadratic
Hamiltonian can be diagonalized exactly, leading to four
renormalized, spin-dependent, versions of the noninteracting
bands, whose dispersions depend on and whose occupancies
(plus the half-filling constraint) therefore self-consistently de-
termine the four (spin- and site-resolved) occupancies nασ and
the chemical potential μ.

From the numerical solution of these self-consistent
equations, we determine the occupancies nασ and hence their
linear combinations that correspond to the magnetic order
parameters, namely the staggered magnetization ms and the
uniform magnetization m f , as well as the staggered den-
sity δn, using the relations mentioned in Sec. III of the
main text. The HF phases are characterized by the order
parameters that are nonvanishing, as well as the nature of
the band dispersions. Remarkably, the resulting phase di-
agram obtained within the HF approximation, depicted in
Fig. 9, shows all the same phases as obtained using the

155132-9



BAG, GARG, AND KRISHNAMURTHY PHYSICAL REVIEW B 103, 155132 (2021)

FIG. 9. Phase diagram of the t-t ′ IHM in the t ′-U plane at half-
filling using Hartree-Fock mean-field theory at zero temperature for
� = 1.0t . For t ′ < 0.06t , the system undergoes a direct transition
from BI to AFI phase with increase in U . For 0.08t < t ′ < 0.24t ,
the system goes from a BI phase to AFI phase via an intermediate
AFHM phase upon increase of U , whereas for 0.24t < t ′ < 0.26t ,
the system shows three transitions, from BI to FM, from FM to
AFHM, and eventually from AFHM to AFI as U is increased. For
0.26t < t ′ < 0.5t , the PM phase intervenes between the BI and the
other phases, whereas for t ′ > 0.5t there is no BI phase, and the
transition is from the PM into other phases. Full lines in the phase
diagram indicate first-order transition lines, whereas dashed lines
indicate continuous transitions.

much more sophisticated and accurate DMFT +CTQMC cal-
culations, albeit for different ranges of the parameter values.
We discuss the details of how we obtain this HF phase dia-
gram and the spectral properties of the various phases in the
subsections below.

However, although mean-field versions of all the phases
obtained in DMFT +CTQMC calculations show up in the HF
calculations as well and the HF-MFT provides useful insights
into the nature of the various phases as discussed below, it is a
mean-field theory that neglects quantum fluctuations entirely.
Hence, as one might expect, it overestimates the regions of
stability of the phases with broken symmetry, especially of
the AFHM phase, as is clear from a comparison of the two
phase diagrams. Needless to say, the inclusion of the quan-
tum fluctuations, especially in the strong correlation regimes,
poses considerable challenges, and in this paper we have
restricted ourselves to doing this within the DMFT approxi-
mation, which correctly includes at least all the local quantum
fluctuations, although the challenge of solving the result-
ing self-consistent impurity problem necessitates the further
approximation of CTQMC. The results from these calcula-
tions have been discussed in detail in the main text. Needless
to say, we expect the DMFT +CTQMC phase diagram to be
more accurate, apart from the effects of low-energy, long-
wavelength spin and particle-hole fluctuations, which are
not taken into account in the DMFT (nor are they included
in HF-MFT).

1. HF-MFT calculational details

Using creation (and annihilation) operators labeled with
wave vectors k according to

ĉ†
αkσ ≡

∑
j∈α

eik·r jα ĉ†
jασ , (D2)

where α = A, B is the sublattice index, we can write the
(operator part of the) HF Hamiltonian as

ĤIHM; HF =
∑
k,σ

{γk(ĉ†
Akσ ĉBkσ + H.c.)

+ Akσ ĉ†
Akσ ĉAkσ + Bkσ ĉ†

Bkσ ĉBkσ }. (D3)

Here Akσ ≡ � − μ + γ ′
k + UnAσ̄ and Bkσ ≡ −� − μ +

γ ′
k + UnBσ̄ , with γ ′

k ≡ −4t ′ cos kx cos ky, and σ̄ denotes ↓ (↑)
if σ is ↑ (↓).

Suppose that the one-particle eigenstates of the above
Hamiltonian are |d±

kσ
〉 = (P±

Akσ
ĉ†

Akσ + P±
Bkσ

ĉ†
Bkσ )|0〉 with

eigenvalues ξ±
kσ

, which are clearly the effective one-particle
band energies of the HF-MFT. Then the eigenvalue
equation is (

Akσ γk
γk Bkσ

)(
P±

Akσ

P±
Bkσ

)
= ξ±

kσ

(
P±

Akσ

P±
Bkσ

)
. (D4)

The HF band energies at wave vector k and for spin σ are
therefore given by

ξ±
kσ = 1

2
(Akσ + Bkσ ±

√
(Akσ − Bkσ )2 + 4(γk )2),

P±2
Bkσ = 1/(1 + L±2

kσ ),

P±2
Akσ = L±2

kσ /(1 + L±2
kσ ), (D5)

where L±
kσ

≡ −γk/[Akσ − ξ±
kσ

]. The particle occupancy at site
α for the state (|d±

kσ
〉) is given by n±

αkσ
=〈d±

kσ
|ĉ†

αkσ ĉαkσ |d±
kσ

〉 =
P±2

αkσ .
The four occupancies at site α and for spin σ are

determined self-consistently by populating these effective
noninteracting bands as per Fermi-Dirac statistics. In the
ground state, which is all that we focus on in this paper, only
the single-particle states with negative energies are occupied,
and hence we get the following four self-consistency relations:

nασ =
∑
ξ±

kσ
<0

P±2
αkσ . (D6)

For each set of parameter values (U/t , �/t , and t ′/t ), we
numerically solve these four equations, along with the half-
filling constraint, by iteration, to determine the four (spin-
and site-resolved) occupancies and the chemical potential μ.
To ensure the correctness of our HF calculations, we have
benchmarked the results obtained by setting � = 0 in our
calculations against the HF results for the t-t ′ Hubbard model
in Ref. [57]. Furthermore, the analytical form of band gap
in the noninteracting t-t ′ IHM on a square lattice is 2� −
4t ′. The gap obtained from our numerically calculated den-
sity of states (DOS) matches well with this analytical result
as U → 0.
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2. Staggered and uniform magnetization within HF-MFT

Especially in the context of understanding the phase dia-
gram in Fig. 9, it is useful to express the HF band dispersion
relations in terms of the order parameters ms, m f , and δn.
We get

ξ±
kσ ≡ ε̃±

kσ − μ = −4t ′ cos kx cos ky + U

2
− σUm f

2
− μ

±
√[

� − U

(
δn + σms

2

)]2

+ [γk]2. (D7)

By comparing with the noninteracting band dispersion in
En. (2) given in Sec. II of the main text, clearly one can
interpret these results in terms of an effective spin-dependent
staggered potential �̃σ = � − U (δn + σms)/2 and an ef-
fective spin-dependent uniform potential −σUm f /2. The
effective band gap (Ẽgap,σ ) for electrons with spin σ , deter-
mined by the difference between the bottom of the conduction
band (ξ+

K′σ ) and the top of the valence band (ξ−
Kσ

), is now
Ẽgap,σ = 2|�̃σ | − 4t ′, which is interaction and spin dependent.

First, consider the HF phase diagram (Fig. 9) in the param-
agnetic regime, where both the staggered magnetization, ms,
and the uniform magnetization, m f , are zero. Hence, �̃↑ =
�̃↓ ≡ �̃ = � − U (δn/2). Consequently the single-particle
excitation band gap Ẽgap,σ is also spin symmetric, being given
by (2|�̃| − 4t ′). Over the parameter range where U and t ′
are sufficiently small that Ẽgap remains positive, we get an
insulating phase which is adiabatically connected to the non-
interacting BI phase, and hence we use the same label for it.

As U increases, to leading order in U the insulating gap
decreases linearly with U because of the density difference
between the two sublattices, δn induced by the ionic potential
�; however, this decrease gets suppressed at higher orders
in U even within HF theory because U promotes single oc-
cupancy of lattice sites, leading to a reduction in δn. If the
first effect were to remain dominant, one would expect that as
one increases U further, Ẽgap might go to zero at a certain U ,
whence one would get a band insulator to metal transition. In
contrast, when t ′ = 0, one finds that the system never goes
to a paramagnetic metallic state within the HF theory, i.e.,
Ẽgap decreases monotonically but remains nonzero for all U .
But, as mentioned in Sec. I of the main text, more accurate
calculations using DMFT, which include local correlation ef-
fects beyond HF, do lead to a metallic state, as pointed out
first by Garg et al. [19]. Later works [23–26,36] showed that
this metallic solution is pre-empted, however, by AF ordering
[26], leading to a direct transition from BI to the AFI state.

As is clear from Fig. 9, this inability of the paramagnetic
metal (PM) phase to become viable before magnetic order sets
in continues to hold within the HF-MFT even when t ′ 
= 0, as
long as t ′ < 0.26t for � = 1.0t . As discussed in detail in the
main text, one of the main results of the work presented in
this paper is that when t ′ is sufficiently large Ẽgap does go
to zero within the paramagnetic sector, leading to a robust
paramagnetic BI to PM transition and a stable correlation-
induced PM phase, both within the HF-MFT and the more
accurate DMFT +CTQMC. While the threshold t ′ for the
viability of the PM phase is close to 0.26t for, � = 1.0t within

FIG. 10. HF theory results for the staggered magnetization ms

(a) and the uniform magnetization mf (b) as a function of the
Hubbard interaction U for different values of the second neigh-
bor hopping (t ′) for (nA + nB )/2 = 1, T = 0, and � = 1.0t . The
magnetic transition is first order except for t ′ in the range from 0.215t
to 0.26t , where it is a continuous transition. Note that the values of
mf are rather small and exist only for relatively larger values of t ′ (for
t ′ � 0.24t) and only for limited ranges of U , corresponding to the
magenta shaded region in Fig. 9. The FM-AFHM and the AFHM-
AFI transitions are continuous and show up as kinks (changes of
slope) in the ms vs U/t curves.

the HF-MFT, it is much smaller, a bit less than 0.05t , within
DMFT +CTQMC, consistent with the results for t ′ = 0.

Next, we discuss results from the unrestricted HF-MFT
when the spin symmetry breaking is allowed. Figures 10(a)
and 10(b) show the magnetic order parameters ms and m f at
zero temperature within the HF-MFT as functions of U for
different values of t ′. As U increases, the staggered magneti-
zation ms turns on at a threshold value Uc(t ′), which depends
on t ′. At the smaller t ′ values (t ′ < 0.215t for � = 1.0t), the
magnetic transition is a first-order AF transition, with m f = 0
for all values of U . As t ′ increases, the discontinuity in ms

across the transition decreases. We find that the transition is
continuous for 0.215t < t ′ < 0.265t and then again becomes
first order as t ′ increases beyond 0.26t , indicating the pres-
ence of multicritical points at (U = 2.82t , t ′ = 0.215t) and
(U = 2.16t , t ′ = 0.26t). The net magnetization m f seems to
turn on for the first time for t ′ ≈ 0.24t when the magnetic
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FIG. 11. Maxima of the valence (−) and minima of the conduc-
tion (+) HF bands as measured from the chemical potential (μ) for
both the spins plotted as functions of U/t for t ′ = 0.3t .

transition is continuous. For t ′ > 0.26t , m f also shows a first-
order jump, indicating that the magnetic transition has become
first order in nature. The first-order nature of the transition
in ms as a function of U in Fig. 10 is consistent with earlier
results for t ′ = 0 on the square lattice [36] and on the Bethe
lattice [26], and differ from the results in Ref. [23]. Similar
changes in the order of magnetic transition with increase in
t ′ have been observed [57] in the t-t ′ Hubbard model. [Note,
however, that the FM-AFHM and the AFHM-AFI transitions
are continuous (see below) and can be identified by kinks
(changes of slope) in the ms versus U/t curves. Clearly, these
lead to other multicritical points in the phase diagram.]

We note that just as in the DMFT +CTQMC phase dia-
gram, and for the same reasons as discussed earlier, Uc within
the HF-MFT also has a nonmonotonic dependence on t ′,
initially decreasing with increasing t ′, reaching a minimum
(around t ′ = 0.26t in HF-MFT), and then increasing again.
The initial decrease in Uc correlates with the reduction in
the effective band gap, Ẽgap as t ′ increases, consistent [26,58]
with the dependence of Uc for the BI-AFI transition on � for
t ′ = 0. Another aspect of the second neighbor hopping is that
t ′ introduces frustration against AFM ordering [57,59], which
should effectively increase the Uc required for ordering. These
two competing effects of t ′ are responsible for the observed
nonmonotonic trend of Uc with increasing t ′ both within the
HF and the DMFT methods.

3. Band structure within HF-MFT

Additional and interesting aspects of the magnetically
ordered phases emerge from an examination of the self-
consistent HF band dispersions and their gaps and overlaps.
Figure 11 shows the minima of the upper (conduction)
band(s), (ξ+

min,σ
), and the maxima of the lower (valence)

band(s), (ξ−
max,σ ), measured relative to the chemical potential

μ and for each spin channel, as functions of U for t ′ = 0.3t ,
whereas Fig. 12 shows the band dispersions along specific
paths (mentioned in the caption) in the Brillouin zone for five
representative values of U chosen to correspond to the five
different phases seen in Fig. 9 for t ′ = 0.3t as U is increased.

In the BI and PM phases, both of which are paramagnetic,
with ms = 0 = m f , the band dispersions and the maxima and
minima are spin symmetric. In the BI phase, obtained for
U/t < 1.7, ξ+

min > 0 and ξ−
max < 0, corresponding to an empty

conducting band and a filled valence band with a gap be-
tween them. This is also clearly seen in Fig. 12(a). As U
increases, ξ+

min decreases as |�̃| − μ̃, whereas ξ−
max increases

as 4t ′ − |�̃| − μ̃, where μ̃ ≡ μ − U/2 is zero when t ′ is

(a) (b) (c) (d) (e)

FIG. 12. Effective band dispersions, calculated using HF-MFT, plotted along the path in the Brillouin zone corresponding to (0, 0) →
(π/2, π/2) → (π, π ) → (0, π ) → (0, 0) (vertical doted lines indicate the break points) for different values of U at � = 1.0t and t ′ = 0.3t .
Enlarged plots of the dispersions near zero frequency are presented in the lower panels. (a) For U = 0.4t , the upper band has a minimum at
(π/2, π/2) and the lower band has a maximum at (0, π ). The chemical potential lies within the gap. Hence, the system is in the (paramagnetic)
BI phase. (b) For U = 2.2t , both the upper and the lower bands cross the chemical potential. The upper band has an electron pocket at
(π/2, π/2) while the lower band has a hole pocket at (0, π ). This is the paramagnetic metallic phase. (c) For U = 2.6t , the band structure is
different for ↑ and ↓ spins. The upper bands for both the spins cross the chemical potential, whereas only the lower ↓ spin band crosses the
chemical potential. Hence, we get a ferrimagnetic metallic state. (d) For U = 3.4t , the ↑ spin bands cross the chemical potential whereas the
↓ bands are gapped out, corresponding to the AFHM state. (e) For U = 5.0t , bands for both the spins are gapped out, and the system is in an
AFI phase.
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zero. The BI-PM transition occurs when the two lines cross
0 (simultaneously because of the half-filling constraint), at
U/t = 1.7, as is clear from Fig. 11. In the PM phase (obtained
for 1.7 < U/t < 2.4), the two switch signs, with ξ+

min < 0
and ξ−

max > 0, corresponding to band overlap, electron pockets
near the conduction band minima, and hole pockets near the
valence band maxima, as can be clearly seen in Fig. 12(b).
(See Fig. 4 for the corresponding scenario obtained using the
MDF within DMFT +CTQMC.)

As U increases past Uc (Uc = 2.4t for t ′ = 0.3t), the spin
symmetry is broken and antiferromagnetic order sets in. The
effective staggered potential �̃σ is spin dependent, leading
to spin split bands, maxima, and minima. For a positive ms,
corresponding to the A site being preferentially occupied by
up spins (�̃↑ < �̃↓), we find that there is a small range of U
past Uc where the down-spin bands have only electron pock-
ets (ξ+

min,↓ < 0 but ξ−
max,↓ < 0), while the up-spin bands have

both electron and hole pockets (ξ+
min,↑ < 0 and ξ−

max,↑ > 0), as
is also clear Fig. 12(c). Hence, m f 
= 0, which corresponds
to the FM phase, although the m f values are rather small
[Fig. 10(b)]. The first-order nature of the PM-FM transition
is also evident in Fig. 11. Further increase of U leads to ξ+

min,↓
increasing and changing sign, transiting to a broad range of U
where the ↑ spin bands overlap increasingly, while the ↓ spin
bands are fully gapped, corresponding to the AFHM phase,
with a band structure as in Fig. 12(d). The overlap of the ↑
spin bands is a nonmonotonic function of U , however, starts
decreasing past a threshold U , and crosses zero again, result-
ing in a transition from the AFHM phase to the AFI phase,
where the ↑ spin bands are gapped as well, but with a smaller
gap compared to the ↓-spin bands, as is clear from Fig. 11,
and also from the band structure in Fig. 12(e). The entire
sequence of phases and phase transitions is in accordance with
the HF-MFT phase diagram in Fig. 9.

4. Single-particle density of states within HF-MFT

All of the features of the phases and phase transitions dis-
cussed above can be seen more directly in the single-particle
density of states (DOS) for real frequencies, which can be
calculated exactly within the HF approximation. Specifi-
cally, Fig. 13 shows the results of our calculations for the
spin-resolved single-particle DOS averaged over the two sub-
lattices, ρσ (ω), calculated using the same equation [Eq. (C9)
of Appendix C] as used in the case of the DMFT +IPT solu-
tion discussed earlier, except that now Gασ (ω) is the HF-MFT
Green’s function on sublattice α.

The top panels in Fig. 13 show the DOS for t ′ = 0.3t and
� = 1.0t for four of the values of U in Fig. 12. For U = 2.2t ,
in the PM phase, where the system has spin symmetry (with
ms = m f = 0), the DOS for the two spin channels is the
same and finite at the Fermi level (corresponding to ω = 0).
For U = 2.6t , in the FM phase, where both the magnetic
order parameters are nonzero, the DOS is spin asymmetric
but finite at the Fermi level for both the spin channels. For
U = 3.4t , A↓(ω) has a gap around the Fermi level, while
A↑(ω = 0) is finite. Because of the half-filling constraint, this
necessarily implies that m f = 0, so this is the AFHM phase.
For U = 5.0t , gaps in the DOS are present in both the spin
channels, corresponding to the AF (Mott) insulating (AFI)

FIG. 13. The top four panels show the HF spectral function
Aσ (ω) vs ω for t ′ = 0.3t for four U values. The bottom set of four
panels present Aσ (ω = 0) vs U for four t ′ values. As U increases
for t ′ = 0.3t , one can see that the system undergoes a transition
from a BI to a paramagnetic metal, followed by transitions into
ferrimagnetic metallic and AF half-metallic phases, and eventually
becomes an AFI.

phase. The lower panels of Fig. 13 show the evolution of the
DOS at the Fermi level, Aσ (ω = 0), as a function of U for four
illustrative values of t ′, bringing out the sequence of phases
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and phase transitions that occur as U increases consistent
with the complete phase diagram in Fig. 9. The existence
(for different ranges of U ) of the BI (for smaller U values)
as well as AFI (for larger U values) phases where the DOS
in both spin channels is zero, and the AF half-metal where

A↓(ω = 0) = 0 but A↑(ω = 0) 
= 0 is clearly evident. For t ′ =
0.3t , the PM phase, where A↑(ω = 0) = A↓(ω = 0) 
= 0, and
the FM phase, where A↑(ω = 0) 
= A↓(ω = 0) 
= 0, appear as
well. For t ′ = 0.52t , the PM phase is present even at U = 0,
and there is no BI phase.
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