ePrints@IIScePrints@IISc Home | About | Browse | Latest Additions | Advanced Search | Contact | Help

On calcium-to-alkalinity anomalies in the North Pacific, Red Sea, Indian Ocean and Southern Ocean

Steiner, Z and Sarkar, A and Liu, X and Berelson, WM and Adkins, JF and Achterberg, EP and Sabu, P and Prakash, S and Vinaychandran, PN and Byrne, RH and Turchyn, AV (2021) On calcium-to-alkalinity anomalies in the North Pacific, Red Sea, Indian Ocean and Southern Ocean. In: Geochimica et Cosmochimica Acta, 303 . pp. 1-14.

[img]
Preview
PDF
geo_cos_act_303-01_1-14_2021.pdf - Published Version

Download (1MB) | Preview
Official URL: https://doi.org/10.1016/j.gca.2021.03.027

Abstract

An important factor for predicting the effect of increased CO2 on future acidification of the ocean is a proper understanding of the interactions controlling production and dissolution of calcium carbonate minerals (CaCO3). The production and dissolution of CaCO3 in the ocean can be assessed over large spatial scales by measuring seawater calcium concentrations and total alkalinity (AT), yet past studies suggest that there could be large discrepancies between calcium and AT-based balances of the CaCO3 cycle in the North Pacific and Indian Oceans. Here, we analyse water column samples collected along transects in the North Pacific, Southern Ocean, tropical Indian Ocean and Red Sea for their concentrations of calcium, nutrients, and AT. We find that there is an excess calcium over AT anomaly in the top 1000 m of the tropical Indian Ocean water-column. The source of this anomaly is the dissolution of subsurface gypsum deposits in the Red Sea. We find no evidence for calcium-over-AT anomalies in the North Pacific, in contrast to previous studies. Our results show that, in most cases, calcium and AT data agree well and can be used to reconstruct the marine CaCO3 cycle. © 2021 Elsevier Ltd

Item Type: Journal Article
Publication: Geochimica et Cosmochimica Acta
Publisher: Elsevier Ltd
Additional Information: The copyright for this article belongs to Authors
Department/Centre: Division of Mechanical Sciences > Centre for Atmospheric & Oceanic Sciences
Date Deposited: 11 Aug 2021 10:49
Last Modified: 11 Aug 2021 10:49
URI: http://eprints.iisc.ac.in/id/eprint/69090

Actions (login required)

View Item View Item