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Abstract 

In the Hopfield model of content addressable memory, 
the number of spurious attractors is exponential in the di- 
mensionality of the memory. Hence it is highly ’ikely that 
the system converges to a spurious memory on ar arbitrary 
input. It is desirable that the system has a way c:f checking 
whether its state corresponds to any one of the stored pat- 
terns. In this paper we show that it is possible to validate 
the patterns in a distributed fashion. The model uses com- 
plex activations and synapses for this purpose. The genuine 
memories are defined to be real attractors. Under some as- 
sumptions we show that the expected number of spurious 
attractors is negligibly small. We also calculate the capacity 
of the model. 

Oiie of the characteristic features of human memory is content ad- 
dressabiiity. Based on partial input cues, the system retrieves one 
of the stored patterns. Implicit in this statement is the fact that 
the memory “knows” that tjhe retrieved item is something it has 
encountered before. People fail to remember but they seldom con- 
fuse unknown things with known things (unless they are halluci- 
nating). Thus we need models of memory which, in addition to 
having content, addressability, can validate their input in light of 
their experience. The problem of validating the internal states of 
the system is called the validity problem. 

To make matters more concrete, consider the Hopfield model of 
content addressable memory[l]. Two important considerations of 
any neural model are: learning and computation. In this case these 
two correspond to storage and retrieval. In the Hapfield network, 
Hebb rule (also called the sum of outer products, in this case) is 
used for learning; relaxation is used as the mode of computation. 
During recall, the network iterates in its state space, {il}N, until 
convergence is achieved. The final state is taken as the recalled 
memory item. It is possible to show that the relaxation converges 
in all cases if the unih update themselves asynchronously. This 
can be proved by showing the existence of a function whose value 
decreases after each asynchronous update. ;Hence we can consider 
the stable states of the model as the local minima of this function. 
For this reason, the memories are also called the 6‘attractors’’. 

In the context of dynamical systems, it is desirable to distin- 
guish between eyuilibrium, points and stable equilihrium points or 
attractors, An upper bound for the number of equilibrium points 
of the Bopfield network is N [2],[3]. What is desireble for a CAM 
is that the memories should also be stable equilibrium points. The 
niaximum number o f  memories that can be stored as stable at- 
tractors i s  called the capacity of the model. If Hebb rule is used 
for storage then the capacity of the Hopfield model is asymptoti- 
cally & [4]. Another important performancemeiiure of a CAM 
is the number of spgrious memories (equilibrium points or attrac- 
tors). The number of equilibrium points of the Hopfield network is 
exponential in the dimensionality [4][5]. Since at most N arbitrary 
patterns can be made equilibrium points of the model, the number 
of spurious equilibria is exponential in N .  Hence hhere is a great 
likelihood that the network converges to a spurious attractor on an 

arbitrary input. The system has no way of checking whether the 
attractor corresponds to one of the stored memories. We need a 
mechanism to validate the state of the network in light of experi- 
ence. 

In this paper we propose a mechanism to solve: this problem. 
The main idea is to  make the network use complex numbers for its 
operation. In the complex domain, we define the genuine memories 
as real stable. equilibrium points. We can then expect that the 
number of spurious memories reduces greatly. In the rest of the 
paper we show that the above ideas indeed work. 

1 The model 
As already mentioned we want to introduce complex numbers to the 
basic model. One way to do this is to introduce an output function 
and make this function complex. In the usual Hopfield model the 
output is the identity function; in other words, the output of a unit 
is the same as its activation. In our model, the output of a unit is 
given by f ( S ) ,  where S is the activation of the unit. Introducing 
an output function raises the following issue: since the activation 
vector and the output vector will in general be different, which 
should be taken as the state of the network? Put c’ifferently, after 
the dynamics of the network converges, does the activation vector 
or the output vector stand for the recalled item? 11 our model the 
state of the network is the activation vector. 

The learning rule is a modification of the sum of outer product 
rule. If S1, Sz,. . . , Sw are the patterns to be stored, where S ,  E 

then the strength of the connection from uiiit k to unit i is 
given by 

where Z denotes the complex conjugate of z and j = n. We set 
wii = 0. The connection strengths are asymmetric, in general. 

Let the current state of the network be S = (:;I Sz.. . S N ) ~ .  
The operation of a unit can be summarized as 

1. calculate the net input, Fi, as 

2. update the activation value to Si as Si = O( jy). where O(.) 
is a complex hard-limiting function. 

3. output f(S,!). 

r h e  updates can be synchronous or asynchronous. The following 
subsections discuss the choice of functions O(.) and f(.). 
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Figure 1: Complex hard-limiting func- 
tion. The figure shows the complex 
phne. The receptive feid for each acti- 
vation is the region surroiinding it. For 
example, if the net inpiui. in region Ri 
then the activation value of she unit 
is updated to +1. Similar comments 
hold for negior, Rz and activation value 
--I. The equation of line L: is y = m x  
where m = taniris); ,,hat of Lz is 
‘y = --nix. 

~~~-~~~~~~~~~ ~~~~~~~~ 

This function relates the net input and the activation of a unit. W’e 
use a finite number of activation d u e s .  We also inske the conven- 
tion that all the advation vdues have unit, magnitude, i.e., they 
lie on the unit circle in the compiex plane. The n i d  natural way 
to define the activa.tion function is to divide the complex piane in 
to disjoint regions and assign one activation value ?or each region. 
The updated activation value al a unit i s  the activation value cor- 
responding to the region in which the net input falls. ‘L’hese regions 
are also called “receptive fields” of the activation values. For the 
analysis in this paper it is suEcient to define the receptive fields 
of $1 and -1, But as an example, we deiirie a(.) as below: (see 
figure 1) 

1 ,  y“<ec; 
&, 
j ,  Z < % <  ”a” 
e q ,  5 “ < Q <  2 
- I 1  2 
eJy2 

‘7 < 8 < 3c e -  
8 -  

qpeq = s -  

s?r c Q < 1171 a,< 8 2Q<T 83T 

;:;:* $ 8 < 7 

where peje is a complex number with magnitude ,u and argument 
0. This function uses 8 activation values spaced uniiformly on the 
unit circle in C. 

3.2 0UtpU.t function 
This function relates the activation of a unit to its output. If S is 
the state of the network then the net input to a unit is given by 

F, = CS;”Cmf’(Sk) (3) 
P k  

We yet, this by substituting equation 1 in 2. We will be interested 
in th’.; sum for real S. If we assume that f(.) also takes values on 
the unit circle in C, then it i s  easy to see that F; i s  t,he same for 
all the output functions for which the angle, 4, between f(+l) and 
f(-1) is the same. Hence the results in the subsequent sections are 
given in terms of 4. The output function can be taken as f(1) = 1 
and f ( - l j  = @. 

2 Number ofsp 
Given the above details we proceed to calculate the number of spu- 
rious memories. If we assume that the vectors to be stored are 
independent r a n d m  variables with equal probability of then 
the connection strengths in equation 1 are sums of ;,!dependent raii- 

dom variables, and hence are normal. Consider a random binary 
input vector which may or may not be one of the htored patterns. 
Without loss of geilerality we can consider this to l)e composed of 

X : dimens.cnaiity L A  
I 

Figure 2: variation of q with angle and dimensiuna!ity 

+Is. The probability, p, that this is an equilibrium poino of the 
network is given by 

p=Prob{Fl  E ~ ~ , F ~ E R ~ , .  . , F ~ ~ E E , )  

and the txpected numbei of real equilibrium points of tile network 
by ~ 2 ~ .  ’This section concentrates on the calculaticm of p .  

In this we assume that the weights uik and ujl are independent 
N(0,l) random variables. This is equivalent to the assumption 
under which the expected number of spurious equilibrium points of 

Since the network is asymmetric, the net inputs F,, at different. 
units are independent. Hence 

the real Hopfield. model is calculated to be ( 1.0505)2°.28744N [41[51. 

p = qN, where q = Prob{F; F Rl} 

Letting I j ;  = G; + jH; ,  we can calculate that both Gi and are 
N(0, (Pi- 1)) and are uncorrelated (and hence independent). Then 

where n ( z ,  p5, C J ~ ;  y, pv ,  ui; p) is the bivariate Gdussim density func- 
tion with means pz and pv,  and variances u: and g,” with correlation 
coefficient p .  Because of symmetry of the integrand, the value of the 
integral is the fraction of the area of the complex plane enclosed by 
R:, which is (see figure 1). So p = 3 and the expected number 
of spurious equilibria is 2 N p  = &. 

The above calculation is confirmed by simulations. A network 
with N = 16 and 4 = 150” for the output function was simulated. 
Both the real and imaginary parks of the weights wert”(0,l). Each 
of the 216 binary vectors was checked for equilibrium condition 
None of the vectors were equilibrium points of the ietwork. 

2.2 Realistic calculation 
The above calculation assumes random asymmetry 

weights learned using equation 1 havc functional a,ymrnc:tr; 
Bv4 

i 
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asymptotic calculation of the expected number of spurious equilib- 
ria is beset with technical difficulties mentioned in 41 i.e., we need 
to consider an increasing number of weights. Since exact calcula- 
tion seems impossible, we indicate below why the expected number 
of spurious equilibria should be small for some values of 4. 

If we use equation 1 to calculate the weights, the weights are 
related in the following way: 

1. u;k and vik are h ‘ ( 0 , M Y )  and N ( 0 , M F )  respec- 
tively; their covariance is M ( c o s d ~ ’ ) .  

2. for k f I ,  E{uikuir} = M ( F ) * ,  
E{uikv;l} = M ( F ) ( ? ) ,  and E(v;kv;I} = M ( ‘ 9 ) ’ .  

Using the above results, it can be proved that G; and H; are 
N(0,ab) ai l ( :  N(O,a&) and are uncorrelated where 

1 + cos 4 
2 

I + c(is* 4 
2 

)2 + NM(------ ) and a; = N(N-l)M(- 

sin2 4 
2 

a; = NM(--) 

By change of variable, we get 

n(u ,  0 , l ;  v ,  0 ,1;  0) du dv 
q = J J R i  

where Ri is bound by lines v = fm’v where m‘ = (%)me The 
angle enclosed by the lines is 2 tan-’[(z)m] and hence the above 
integral has the value 

UG 

OH 

= - 1 tan-’(m-) 
7r 

q is independent of M and depends only on N and 9. The values 
of q are shown in figure 2. The figure also shows the equivalent of 
q in the real Hopfield network, which is Prob{F, > 0) = 1/2. From 
the figure it can be seen that the values of q in the complex model 
are always less than 1/2, approaching it when 4 approaches 180”. 

As already mentioned the calculation of p froin q is difficult. 
Since q for the complex model is less than that of the real Hop- 
field model, we can expect that the expected number of spurious 
equilibria is also less. 

3 Capacity and content addressability 
What is the maximum number of memories that can be stored and 
retrieved by the model? In this section we answcr this question 
through simulation studies. The capacity of the i n ~ d e l  depends on 
the angle 4. A network with N = L25 was simulatod. The perfor- 
mance of the network was studied for 4 = go”, 120°, 135”, 150’, and, 
175”. For each value of 4, the maximum number of 1:atterns retriev- 
able was noted. This results are shown in figure 3. It is clear from 
the figure that as q5 gets closer to 180°, the capacity tends to the 
capacity of the real Hopfield model. We also tested 1000 random 
vectors for the equilibrium condition in each case none of them 
were equilibrium points. 

The foregoing study concerns the equilibrium properties of the 
network. Because of asymmetry the general dynamics is difficult to 
analyze. The model does possess content addressability property. 
Error correction of up to 15 bits for all memories is possible for a 
125-dimensional network, storing 5 patterns with 4, = 150’. 
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Figure 3: effect of angle on capacity 

4 Discussion 
We have proposed a model for CAM whose performance depends 
on the parameter 4. The performance of the mode-1 depends cru- 
cially on d. We conjecture that the expected number of spurious 
memories for this class of models varies as kc?. We have shown 
that c = 1/4 for the random complex asymmetric case; it can be 
proved that c = 1 for random real asymmetric cast’; and c = 1.22 
for the real symmetric case from a result quoted earlier and the fact 
that 2°.2s74N = 1.2N. In the complex model, c depends on 4. Since 
the real model is a special case of the complex model for # = 180°, 
and the values of q are less than the real model fov 4 < 180” (see 
fignre 2), there should exist a range of values foi q5 lor which c < 1. 
This conjecture remains to be proved. 

The capacity of the model is small for small valucas of 4 as can be 
seen form figure 3. Hence there is a conflict betweeii the selectivity 
and capacity of the model. The best values of 4 setam to be in the 
range 120” to 150” as N varies from 20 to 100. This can be see 
from figure 2 where there is a transition in the values of q from 
high-low-high in this range. 
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