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Abstract. Two different notions of approximate Birkhoff-James orthog-
onality in normed linear spaces have been introduced by Dragomir and
Chmielinski. In the present paper we consider a global and a local ap-
proximate symmetry of the Birkhoff-James orthogonality related to each
of the two definitions. We prove that the considered orthogonality is ap-
proximately symmetric in the sense of Dragomir in all finite-dimensional
Banach spaces. For the other case, we prove that for finite-dimensional
polyhedral Banach spaces, the approximate symmetry of the orthogo-
nality is equivalent to some newly introduced geometric property. Our
investigations complement and extend the scope of some recent results
on a global approximate symmetry of the Birkhoff—-James orthogonality.
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1. Introduction

The Birkhoff-James orthogonality is the most natural and well studied notion
of orthogonality in normed linear spaces. In general, the Birkhoff-James or-
thogonality is not symmetric. Chmieliiiski and Wéjcik [5] introduced a notion
of approximate symmetry of the Birkhoff-James orthogonality in normed lin-
ear spaces. It should be noted that the authors of [5] considered this notion
in the global sense, the meaning of which will be clear once we present the
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relevant definition in this section. In this article, our motivation is to consider
the corresponding local version of the aforesaid concept. We also study the
local version of another standard notion of an approximate Birkhoff-James
orthogonality considered in [6]. The advantage of considering the local version
is illustrated by obtaining some useful conclusions in the global case, separately
for finite-dimensional polyhedral Banach spaces and smooth Banach spaces.

Let us first establish the notations and the terminologies to be used in the
present article. Throughout the text, we use the symbols X,Y to denote real
normed linear spaces. Given any two elements z,y € X, let Ty = conv{z,y} =
{(I=t)x+ty:te[0,1]} denote the closed line segment joining = and y. By
Bx ={x e X :|z|| <1} and Sx = {x € X : ||z|| = 1} we denote the unit ball
and the unit sphere of X, respectively, and B(x,d) denotes the open unit ball
in X centered at z and with the radius § > 0. The collection of all extreme
points of Bx will be denoted as Ext Bx.

Let X* denote the dual space of X. Given 0 # x € X, f € Sx- is said to
be a supporting functional at = if f(z) = ||z||. Let J(z) = {f € Sx+ : f(x) =
llz]|}, 0 # = € X, denote the collection of all supporting functionals at . Note
that for each 0 # = € X, the Hahn-Banach theorem ensures the existence of
at least one supporting functional at x.

An element z € Sy is said to be a smooth point if J(z) = {f} for some
f € Sx«. Let smSx denote the collection of all smooth points of Sx. In
particular if sm Sx = Sx, then X is said to be a smooth space. Let X be a

Banach space with a norm || ||. For every 7 > 0, the modulus of smoothness is
defined by
— oyl -2
p(T):Sup{Hx—i—TyH—&—!x el : :v,yESX}.
(X, | 1) is said to be a uniformly smooth space if lin%) @ =0.
Let X be a Banach space with a norm || ||. For every ¢ € (0,2], the

modulus of convexity is defined by

d(e) = inf{l — H352Ly|| : x,y € Bx, ||z —y|| > a}_
(X, | 1) is said to be uniformly convez if §(g) > 0 for all € € (0,2].

It is well known that a Banach space (X, || ||) is uniformly smooth if and
only if its dual space (X*, | ||*) is uniformly convex (see [10] for more details).

For z,y € X, we say that z is Birkhoff-James orthogonal to y [2,7],
written as « Lp y, if || + Ay|| > ||z|| for all A € R. In [7, Theorem 2.1],
James proved that if 0 #£ x € X, y € X, then 1L g y if and only if there exists
f € J(x) such that f(y) = 0. We will use the notations z* = {y € X : 2 Ly}
and *x = {y € X : y Lp z}. Sain [12] characterized the Birkhoff-James
orthogonality of linear operators between finite-dimensional Banach spaces by
introducing the notions of the positive part of x, denoted by z*, and the
negative part of x, denoted by x~, for an element x € X. For any element
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y € X, we say that y € 27 (y € 27) if ||z + Ay|| > ||z|| for all A > 0 (X < 0).
It is easy to see that - =zt Na~.

Dragomir [6] defined an approximate Birkhoff-James orthogonality as
follows. Let € € [0,1) and let =,y € X; then z is said to be approximately
Birkhoff-James orthogonal to y if ||z +Ay|| > (1—¢)||z|| for all A € R. Later on,
Chmieliriski [3] slightly modified the definition given by Dragomir as follows.
Let € € [0,1) and let z,y € X. Then z is said to be approximately Birkhoff—
James orthogonal to y, written as x L5, y, if and only if [|[x+Ay|| > V1 — &2||z||
for all A € R. Due to this modification, in case of a Hilbert space, the present
notion of the approximate orthogonality coincides exactly with the usual no-
tion of the e-orthogonality: [(z,y)| < ellz||||ly||. In [9, Lemma 3.2], Mal et al.
proved that

x1lhy & FfeSx-: |f(x)|>V1-¢&?|z| and f(y)=0. (1.1)

Chmieliriski [3] defined a variation of approximate Birkhoff-James or-
thogonality. Given z,y € X and ¢ € [0,1), « is said to be approximately
orthogonal to y, written as = 15 y, if |x + Ay||? > ||z]|® — 2¢||z||||[\y]| for
all A € R. Later, in [4, Theorems 2.2 and 2.3], Chmieliniski et al. gave two
characterizations of this approximate orthogonality:

r1l3y < 3FJzespan{r,y}: x Lpz and |z—y| <elyl;(1.2)
vlpy & 3Afed@): [f)l<elyl. (1.3)

Given z,y € X and € € [0,1), we will write z 15, y (v 15 y) ifz 15y
(x LS y)but o L3y (x L5 y) for any 0 < ey <e.

In general, the orthogonality relation between two elements x,y € X
need not be symmetric. In other words, for any two elements z,y € X,z Lpy
does not necessarily imply y Lp x. James [8] proved that if dim X > 3 and
the Birkhoff-James orthogonality is symmetric, then the norm is induced by
an inner product. For more details on the recent study of these notions of
approximate Birkhoff-James orthogonality see [14,15].

In [5], Chmielifiski and Wdjcik defined the following notion of approxi-
mate symmetry of the Birkhoff-James orthogonality in a normed linear space.

Definition 1.1 Let X be a normed linear space. Then the Birkhoff-James or-
thogonality is approzimately symmetric if there exists ¢ € [0,1) such that
whenever z,y € X and = Lp y, it follows that y 1% x.

The above definition is global in the sense that ¢ is independent of z and
Y.

In this paper we will work with both of the above mentioned notions
of approximate Birkhoff-James orthogonality. To avoid any confusion we will
call the above notion of approximate symmetry an approximate symmetry
of the Birkhoff-James orthogonality in the sense of Chmielinski or shortly:
C-approximate symmetry of the Birkhoff-James orthogonality.
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In [5], the authors gave an example of a Banach space where the Birkhoff—
James orthogonality is not C-approximately symmetric. In the present article
we will study this example in more detail. The following definition allows us
to study local versions of the C-approximate symmetry of the Birkhoff-James
orthogonality.

Definition 1.2 Let X be a normed linear space and let x € X. We say that x
is C-approximately left-symmetric (C-approzimately right-symmetric) if there
exists €, € [0,1) such that whenever y € X and z Lg y (y Lp ), it follows
that y L7 « (x L5 v).

For A C X we say that the Birkhoff-James orthogonality is
C-approximately symmetric on A if there exists ¢ € [0,1) such that when-
ever ¢,y € Aand z Lp y, it follows that y L5 x.

Let A C X and let x € Sx. We say that x is C-approximately left-
symmetric (C-approximately right-symmetric) on A if there exists e, € [0,1)
such that whenever y € Aand z L y (y Lp ), it follows that y L5 «
(= L5 v)-

Now, with respect to the Dragomir’s definition, we define the following
analogous versions of approximate symmetry considered in Definitions 1.1 and
1.2.

Definition 1.3 Let X be a normed linear space. We say that the Birkhoff—
James orthogonality is approximately symmetric in the sense of Dragomir,
shortly: the Birkhoff-James orthogonality is D-approximately symmetric, if
there exists € € [0, 1) such that whenever z,y € X and z Lp y, it follows that
y 1% z. For z € X, we define © to be D-approximately left-symmetric (D-
approximately right-symmetric), if there exists e, € [0,1) such that whenever
yeXandz Lpy (y Lp x), it follows that y L5 = (z LT y).

Observe that we can restrict ourselves to norm-one elements by virtue of
the homogeneity of all the notions of orthogonality and approximate orthogo-
nality introduced here.

To study the C-approximate left-symmetry and the C-approximate right-
symmetry of elements of a normed linear space X, we define the following
property. We say that the local property (P) holds for « € Sx if

N (z) =0,
where o7 (x) is the collection of all those elements y € Sx for which given any
f € J(y), either f or —f isin J(x).
We say that the property (P) holds for a normed linear space X if the
local property (P) holds for each = € S, that is,
for allz € Sx : the local property (P) holds. (P)

If AC Sx and z € Sx, then we say that the local property (P) holds for
zon Aif xt N (x)NA=0.



Vol. 76 (2021) Local Approximate Symmetry Page 5 of 26 136

It follows trivially that the local property (P) holds for each x € sm Sx.
We will prove that the local property (P) for an « € Sx is equivalent to the
C-approximate left-symmetry of x in the local sense, that is, the local property
(P) holds for x € Sx if and only if for y € 2+ N Sx there exists €., € [0,1)
such that y Lj;’y T.

To study polyhedral Banach spaces, we recall the following definitions
from [13] which are relevant to our work:

Definition 1.4 Let X be an n-dimensional Banach space. A polyhedron P is
a non-empty compact subset of X which is an intersection of finitely many
closed half-spaces of X, that means P = N]_; M;, where M; are closed half-
spaces in X and r € N. The dimension of the polyhedron P is defined to be
the dimension of the subspace generated by the differences x — y of vectors
z,y € P.

An n-dimensional Banach space X is said to be a polyhedral Banach space
if Bx contains only finitely many extreme points, or, equivalently, if Sx is a
polyhedron.

Definition 1.5 Let X be an n-dimensional Banach space. A polyhedron Q C X
is said to be a face of the polyhedron P C X if either Q = P or if we can
write Q@ = P N JM, where M is a closed half-space in X containing P and
0M denotes the boundary of M. If the dimension of @ is i, then @ is called
an i-face of P. (n — 1)-faces are called facets of P and 1-faces of P are called
edges of P.

Definition 1.6 Let X be a finite-dimensional polyhedral Banach space and let
F be a facet of the unit ball Byx. A functional f € Sx~ is said to be a supporting
functional corresponding to the facet F of the unit ball By if the following
two conditions are satisfied:

(a) f attains its norm at some point v of F.
(b) F = (v+ker f)n Sx.

It is easy to see that there is a unique hyperspace H such that an affine
hyperplane parallel to H contains the facet F' of the unit ball Bx. Moreover,
there exists a unique norm-one functional f, such that f attains its norm on
F and ker f = H. In particular, f is a supporting functional to Bx at every
point of F'.

Two elements x,y € Ext Bx of an n-dimensional polyhedral Banach
space X are said to be adjacent if |[tx + (1 —t)y|| = 1 for all t € [0, 1].

Given normed linear spaces X,Y, by B(X,Y) (K(X,Y)) we denote the
space of all bounded (compact) linear operators from X to Y. A bounded linear
operator T' € B(X,Y) is said to attain its norm at x € Sx if | Tz| = ||T||. Let
Mp ={x € Sx : ||Tz| = ||T||} be the collection of all norm attaining elements
of T. If X is a reflexive Banach space and T' € K(X,Y), then My # 0 (see [1]
for details).
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The article is organized as follows. In Sect. 2, we study the D-approximate
symmetry of the Birkhoff-James orthogonality. For this notion the results we
are able to obtain are of the highest level of generality. In particular, we prove
that in all finite-dimensional Banach spaces, the Birkhoff-James orthogonality
is always D-approximately symmetric.

In Sect. 3, we study the C-approximate symmetry of the Birkhoff—James
orthogonality. We prove that in finite-dimensional polyhedral Banach spaces,
the C-approximate symmetry of the Birkhoff-James orthogonality is equiv-
alent to the local property (P) of all elements of Ext By. Apparently, the
results in this section are less general than in Sect. 2. It is caused by the fact
that the notion of the C-approximate symmetry essentially differs from the
D-approximate one and not all properties remain true. Thus we need to use
more subtle methods which usually involve additional assumptions.

In Sect. 4, we study the C-approximate symmetry of the Birkhoff-James
orthogonality for two-dimensional Banach spaces. Even in this case, establish-
ing a satisfactory characterization of the C-approximate symmetry is challeng-
ing. To this aim, we introduce a new property, namely property (P1). We show
that for any finite-dimensional polyhedral Banach space with property (P1),
local property (P) also holds for each element. We also show that the con-
verse is true for any two-dimensional polyhedral Banach spaces but in general
it need not be true. We show that in a two-dimensional regular polyhedral
Banach space with 2n vertices, where n > 3, the Birkhoff-James orthogonal-
ity is C-approximately symmetric. We provide an example to show that the
regularity condition in this case cannot be dropped.

2. D-approximate Symmetry of the Birkhoff-James
Orthogonality

In [5], Chmieliniski and Wéjcik proved that in uniformly convex Banach spaces
and finite-dimensional smooth Banach spaces, the Birkhoff-James orthogonal-
ity is C-approximately symmetric. Our main aim in this section is to prove that
for any finite-dimensional Banach space, the Birkhoff-James orthogonality is
D-approximately symmetric. To achieve this aim, we first prove the following
results.

Theorem 2.1 Let X be a normed linear space and let x,y € Sx with x 15 y
or some € € [0,1) . Then there exist €1,e2 > 0, €3 € (0,1) such that z 153 w
f [ ’ ’ 1 ) D
for all z € B(x,e1) N Sx, w € B(y,e2) N Sx.

Proof. Let 1 > 0 be such that v1 — &2 —ey > 0. If 2 € B(x,e1) N Sy, then

lz+ Myl =llz =2z +a+ Myl = [lz+ Ayl =l — 2| = VI-€? —er.
Thus for all z € B(x,e1) N Sx, we have, z 1§, y where ¢ is such that

V1—g2 —g; =162,
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If [A| > 2, then for any 21,29 € Sx, we have, ||z1 + Aza|| > A\ -1>1>
1—pforall g €]0,1).

Choose €2 > 0 such that V1 — 2 —2e5 > 0. Now, if A € R with |A\| < 2,
then for any z € B(x,e1) N Sx and w € B(y,e2) N Sx, we have,

12+ dwll = [z + Ay + dw = My[| > ||z + Myl = [Allly — wl| > V1 =2 — 2es.

Thus for all z € B(x,&1) N Sx and w € B(y,e2) N Sx, we have, z L5 w where

e3 is such that /1 — 02 — 2e9 = /1 —&3. O

Our next result shows that given any two linearly independent elements
x,y € Sx of a normed linear space X, we can always find an € € [0,1) (de-
pending on x and y) such that x 13, y.

Proposition 2.2 Let X be a normed linear space and let x,y € Sx with x # +y.
Then there exists ., € [0,1) such that x L3

Proof. Since z,y € Sx and x # ty, it follows that x, y are linearly indepen-
dent. Let X = span{z,y} and let {z*,y*} C X be such that {x,y;z*,y*} is
a biorthogonal system in Xg, where z*(z) = y (y) =1, z*(y) = y*(z) = 0.
Now, if we take f = ﬁ, then f € Sx;, f(z) = ”w*” and f(y ) =0.Let f bea
Hahn-Banach extension of f to X*. Then f € Sx-, f(z) = HI*H and f(y) =

If Hw*\l > 1, then for all & € [0,1), we have, f(z) > /1 — 2. If Hw*ll <1, then

we can find ¢ € [0,1) such that f(z) > /T —¢2. Thus (1.1) implies that for
given x,y € Sx, with « # +y, there exists £, , € [0,1) such that J_E“ Y
D

Theorem 2.3 Let X be a finite-dimensional Banach space. Then the Birkhoff-
James orthogonality is D-approximately symmetric in X.

Proof. Let x € Sx and let y € 2+ N Sx. Then by Proposition 2.2, there exists
€2y € [0,1) such that y L35 x. Let ¢}, be the infimum of all such &, ,. We

claim that ¢ := sup  sup ¢;, < 1. If e = 1, then we can choose {z,},

ze€Sx yexzltnSx
{yn} C Sx, en /1 such that z,, L g y, and y,, L xn Since Sx is compact,
there exist convergent sub-sequences of {x,, }, {yn} which we again denote by
{z,} and {y,}, respectively. Let xg, yo € Sx be such that z, — z¢ and
Yn — Yo. Then by continuity of the norm it follows that yo € g N Sx. Now
from Proposition 2.2, it follows that yo L7 x¢ for some ¢y € [0,1). Using
Theorem 2.1, we can find 1, €2 > 0 and 3 € (0,1) such that w L5 =z for all
z € B(xzg,e1) N Sx and w € B(yp,e2) N Sx. Thus we can find m € N such
that y, J_% xy for all n > m. This leads to a contradiction as y, J_i,;' x, for

en /" 1. Thus € < 1 and the Birkhoff-James orthogonality is D-approximately
symmetric in X. O
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Remark 2.4 Tt follows from the above theorem that each element of a finite-
dimensional Banach space is both D-approximately left-symmetric and D-
approximately right-symmetric.

We will use the following result from [11] in the proof of the next result.

Theorem 2.5 [11, Theorem 2.1] Let X be a reflexive Banach space and let' Y
be a normed linear space. Let T, A € K(X,Y) with |T|| = ||A|| = 1. Then
T 15 A fore €[0,1) if and only if either (a) or (b) holds.

(a) There exists x € My such that Az € (Tx)" and for each A € (-1 —
V1 —e2,—1++1—¢e2), there exists xy € Sx such that |Txy+ AAx,| >
V1—eg2

(b) There exists y € My such that Ay € (Ty)~ and for each X € (1 —
V1 =214+ V1 —¢€2), there exists yy € Sx such that | Tyx + Ay, | >

V1—¢g2.

Let X be a reflexive Banach space and let Y be a normed linear space.
Let T, A € Sk(x,y) be such that T L p A. Then by Proposition 2.2, there
exists € € [0,1) such that A 15, T. We now estimate the infimum of such &’s.

Theorem 2.6 Let X be a reflexive Banach space and'Y a normed linear space.
Suppose that T, A € K(X,Y) with |T| = ||A|| = 1 and that the set A= {z €
Sx : Tz # MNAx for all X € R} is nonempty. If A Lp T, then T L5, A, where
V1 —¢e?2 =sup,cyinfrcr [Tz + XAz

Proof. Let g € A. Then Txg # 0 and by continuity of the function f(\) =
ITzo + AAxgl|, A € R and the fact that f(\) — oo as A — +o0, it follows
that infy [|[Tzo + AAxg|| > 0. Also, infy [|[Tzo + AAxo|| < [|[Tzo] < 1. Let g4, €
[0,1) be such that infy || Tz + AAxgl| = /1 —¢2 . If z € X, then it follows
from [12, Proposition 2.1] that either Az € (T'z)" or Az € (T'x)~. Since X is
a reflexive Banach space and T' € K(X,Y), it follows that My # (. Now, by
using Theorem 2.5, we get T 150 A. If we fix a = sup, ¢ 4 infacr || Tz + Az,
then clearly o € (0,1]. Let € € [0,1) be such that « = V1 —¢2. Then T' 15, A
and this completes the proof. O

Remark 2.7 The proof of the above theorem suggests that if zp € A and
infy | Txo+AAzo| = /1 — €2, then T 150 A. Thus V1 — €2 = sup, 4 infrer
|| T2+ AAz|| provides the best possible estimate for ¢ € [0,1) such that T' 15, A.

As an application of the above theorem, for finite-dimensional spaces X,
Y and operators T', A € Sp(x,y) with A L g T', we now obtain an estimate of
e such that 7' 1%, A.

Theorem 2.8 Let X,Y be finite-dimensional Banach spaces. Let T, A € B(X,Y)
with [T = |A|l =1 and let A = {x € Sx : Tx # XAz for all X € R}. If
AlpT, thenT L5 A, where V1 — &2 = sup,¢ 4 infrer |Tx + NAz]|.
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Proof. In order to apply Theorem 2.6, we need to show that A # (). Suppose
on the contrary that A = (). Then for each # € Sx, there exists A, € R such
that Tz = A\ Azx. Clearly, A L g T implies that there does not exist A € R
such that Tz = AAx for all x € X. We now consider the following two cases.

Let rank A > 2 and let {Axq,..., Azi} be a basis for range A, where
1y, € Sx, 2 <k <n, where dim X =n. Let {x1,..., 2k, Thy1,---,Tn}
be a basis for X, where {xg41,...,2,} C Sx is a basis for ker A.

In this case there are following two possibilities:

(i) there exist 1 < ,j < k such that Tx; = A\, Az; and Tw; = Ay, Az
for Az, # e,

(i) there exists a A € R such that T'z; = MAx; for each 1 <i < k.

First consider the case (i). In this case

275 + 4| i + 4]

Using the assumption A = ), let A\ € R be such that

i + 4] l|2: + 5]

Thus (Az; =A)Az;+(Az; —A)Az; = 0 and this proves that A = \;, = A,
This leads to a contradiction as A, # Ay, -

Now, we will consider the case (i) as above. In this case z;, & ker T for
at least one ig, k + 1 < iy < n, otherwise T' = AA. Clearly Tx;, # M\Ax;, for
all A € R. This contradicts that A = (). Thus if rank A > 2, then A # 0.

Now, consider the case when rank A = 1. Let range A = span {Ax1}
where x; € Sx and {z2,...,2z,} C Sx be a basis for ker A. By the assumption
A = 0 and thus Tz; = A, Az for some \,, € R. Clearly, A Lp T implies
Zi, & ker T for at least one ig, 2 < iy < n. This implies T'z;, # AAxz;, for all
X € R. This contradicts that A = () and thus in this case also A # §). Now, the
result follows from Theorem 2.6.

O

The above theorem can be extended to compact operators on a reflexive
Banach space, under the additional assumption of injectivity of A or T

Theorem 2.9 Let X be a reflexive Banach space and Y any normed linear
space. Assume that T, A € K(X,Y) with |T|| = ||A|| = 1 and either A or T
is one to one operator. Define A = {x € Sx : Ta # NAx for all X € R}. If
AlpT, thenT 15, A, where /1 —e? =sup,¢ 4 infacr || Tz + NAz|.

Proof. To prove the result we need to show that A # (). Suppose on the
contrary that A = (). Then for each x € Sx, there exists A\, € R such that
Tx = A Az. Clearly A L g T implies that there exist x,y € Sx such that

Te =X Az and Ty= \,Ay (2.1)
for A, # Ay. This implies = and y are linearly independent in X.
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Let A € R be such that

T<x+y):AA<x+y>. (2.2)
=+ yll [z +yll
Also, we have,
( T+y > _ AsAz 4 )\yAy. 23)
[l + vl [z +yl

Let us first assume that A is one to one operator. Now, using (2.2), (2.3)
we have A((A\z — A)z+ (Ay — A)y) = 0 and using the assumption that A is one
to one we get (Az —A)z+(Ay—A)y = 0. It follows from the linear independence
of z,y that A, = A = A,. But this leads to a contradiction as A\, # A,. This
implies that A # (). Thus in this case the result follows from Theorem 2.6.

Now, we assume that T is one to one operator. It follows from this as-
sumption on T that in (2.1) Ay, Ay # 0 and also in (2.2), we have A # 0. After
rewriting (2.2) and using (2.1), we get,

1T(x+y>A<x+y),
A Uz +yl lz + yll

1 1
Iz + Iz +
Thus T((5+ — §)z + (5= — §)y) = 0 and using the assumption that T is

one to one we get (- — %)x—i— (s+ — §)y = 0. Now, the result follows from the
x y
similar arguments as those used in the previous case. O

3. C-approximate Symmetry of the Birkhoff-James
Orthogonality

It was observed in [5], that in (R?,| ||) the Birkhoff-James orthogonality
is not C-approximately symmetric. In the following proposition we study the
C-approximate left-symmetry and the C-approximate right-symmetry of ele-
ments of (R™, || ||oo) in detail. In particular, the following result illustrates that
in the local sense, the C-approximate left-symmetry is not equivalent to the
C-approximate right-symmetry of the Birkhoff-James orthogonality. It is well
known that the dual of (R", || ||«) can be identified with (R™, ] ||1), where the
dual action is given by f(z) =Y 1", fix; for all x = (21,...,2,) € (R™, ]| |le)
and f = (f1,..., fn) € (R™,]| |]1). If t € R, then sgnt denotes the sign function,
that is, sgnt = ﬁ for ¢t # 0 and sgn 0 = 0.

Proposition 3.1 Let X = (R™,|| |loo). Then

(i) any smooth point x© € Sx is C-approximately left-symmetric but not C-
approximately right-symmetric;

(ii) any extreme point x of Sx is C-approzimately right-symmetric but not
C-approximately left-symmetric.
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Proof. Observe that from the symmetry of Sx, it is sufficient to prove the
result for any one of the extreme points and smooth points of Sx.

(i) Let © = (1,29,...,2,) € Sx be a smooth point. Then |z;| < 1 for
all 2 < i < n and J(z) = {f} where f = (1,0,...,0) € Sx~. Let y =
(y1,92,---,4yn) € Sx be such that x L g y. Then by using (1.3), it follows
that y; = 0. As y € Sx, there exists 2 < iy < n such that |y;,| = 1. Let
g =(0,0,...,0,v,,0,...,0) € Sx~, where y;, is the ip-th co-ordinate. Then
g € J(y) and |g(z)] = |z4| < 1. Thus (1.3) implies that y L3 x, where
g0 = |24,|. Now, if we take ¢ = QIE&XH\@L then ¢ € [0,1) and y L5 x whenever

z lpy. Hence x is C—approxima_te_ly left-symmetric.

Now, we show that x is not C-approximately right-symmetric. If 2; = 0
for all 2 < i < n, then z Lg x, where z = (1,1,...,1). As |f(2)| = 1, there
does not exist any £ € [0,1) such that x L% z. Without loss of generality we
now assume that xo # 0. Let w = (1, —sgnxs,x3,...,x,) € Sx. Then for
any A > 0 we have ||lw 4+ Az|| > |1 + A] > 1. Also, for any A < 0, we have
llw+ Ax|| > | —sgnag + Azxa| > 1.

This shows that w L g x. As | f(w)| = 1, there does not exist any € € [0,1)
such that # 15 w. Thus, (1.3) implies that z is not C-approximately right-
symmetric. Figure 1, given below, illustrates this situation for n = 2.

(#4) Consider z = (1,1,...,1) € Ext Bx. It follows from the arguments
of (7) that = is not C-approximately left-symmetric.

We now prove that = is C-approximately right-symmetric. Consider y =
(y1,92,---,Yn) € Sx such that y L g x. Since y € Sx, there exists 1 <i < n
such that |y;| = 1. Let {i1,42,...,ix} C {1,2,...,n} be a maximal subset such
that |y;,| = 1for 1 < j < k. We now claim that & > 1. Suppose on the contrary
that k = 1. Then y € sm Sx, J(y) = {f}, where f = (0,0,...,0,1,0,...,0) €
Sx+ and 1 is the i;-th co-ordinate. But f(x) # 0 and this contradicts that
y lp .

We now claim that there exist 1 < [ # m < k such that y;, = —y,,,. If
yi, = ¥i,, for all 1 < I, m <k, then for sufficiently small absolute value A, it
is easy to see that ||y + Az| = |y;, + A|. This clearly contradicts that y Lp «
and hence there exist 1 <1 # m < k such that y;, = —y;,, . Now, if we take
g=1(0,0,...,0,3,0,...,0,1,0,...,0) € Sx-, where 3 is at i1-th and i,,-th co-
ordinates. Then g € J(z) and g(y) = 0. This shows that x is right-symmetric
and hence C-approximately right-symmetric. Figure 2, given below, illustrates
this situation for n = 2. O

Remark 3.2 The proof of the above proposition suggests that in X = (R™, || /o)
the C-approximate right-symmetry (the C-approximate left-symmetry) of any
x € sm Sx (z € Ext Bx) fails because there exists y € *2NSx (y € 2+ NSx)
such that either f € J(y) or —f € J(y) (f € J(z) or —f € J(x)) where

J(@) ={f} (f € I(y))
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FIGURE 1. Approximate left-symmetry - not approximate
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FIGURE 2. Approximate right-symmetry - not approximate
left-symmetry.

The above remark is the main motivation behind considering the local
property (P) for € Sx introduced in the first section. Recall that the local
property (P) holds for x € Sy if

zt N (z) =0,

where 7 (x) is the collection of all those elements y € Sx for which given any
f € J(y), either f or —f is in J(z). Also, recall that the property (P) holds
for a normed linear space X if the local property (P) holds for each z € Sx.

We now show that in finite-dimensional Banach spaces, the local property
(P) for all elements of Ext Bx implies the property (P) globally for X.

Theorem 3.3 Let X be a finite-dimensional Banach space and suppose that the
local property (P) holds for each x € Ext Bx. Then the local property (P) holds
for each y € Sx.

Proof. Tt follows easily that in any normed linear space, the local property
(P) holds for each smooth point. Thus, to prove the result we need to show
that the local property (P) holds for any y € Sx \ (sm Sx U Ext Bx). Let
y € Sx \ (sm Sx UExtBx). Since Sx is contained in the convex hull of
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Ext Bx, let x1,...,z; € Ext Bx, k < |Ext Bx|, be such that y = Zle oG,
a; >0foralll <i<kand Zleaizl.

Now, we claim that if f € J(y), then f € J(z;) for all 1 <i < k. Clearly,
|f(zi)] <1forall 1 <i<k. Suppose on the contrary that f(z;) <1 for some
1< j < k. Then

k k
1=fy) = Zaif(xi) < Zai =1
i=1 i=1

This clearly leads to a contradiction and thus if f € J(y), then f € J(x;) for
all 1 <i<k.

Let z € y* N Sx. Then there exists g € J(y) such that g(z) = 0. But
g € J(x;) for all 1 <i < k; this gives x; Lp 2z for all 1 <i <k.

We now claim that there exists some gg € J(z) such that |go(y)| < 1.
Suppose on the contrary that for any g € J(z) we have |g(y)| = 1, that is, for
any g € J(z) either g or —g is in J(y). Thus for any g € J(z) either g or —g is
in J(z;) for all 1 < i < k. This clearly contradicts the local property (P) of z;,
1 <4 < k. Thus there exists some go € J(z) such that |go(y)| < 1 and hence
the local property (P) of y follows. O

The next result shows that the local property (P) of € Sx is equivalent
to the C-approximate left-symmetry of x in the local sense.

Lemma 3.4 Let X be a normed linear space. Then the local property (P) holds

for x € Sx if and only if for y € ¥+ N Sx, there exists £, € [0,1) such that
Ez,y

yLlg"

Proof. We first prove the necessary part of the lemma. Suppose on the contrary
that there exists y € - N Sx such that y /% x for any ¢ € [0,1). Clearly,
if f € J(y), then |f(z)| < 1. Thus for all f € J(y) we have |f(z)] = 1 and
consequently either f € J(z) or —f € J(x). This contradicts that the local
property (P) holds for x and thus the necessary part follows.

We now prove the sufficient part of the lemma. Let y € 2-NSx. It follows
from the assumption that yJ_%”yx and, equivalently, there exists f € J(y) such
that | f(z)| < ezy < 1,hence £f ¢ J(x). Thus y ¢ <7 () and the local property
(P) of x follows. O

Observe that in the proof of Theorem 2.1, choosing €; = 0 instead of
€1 > 0, we obtain a weaker version of that theorem. The following result is
analogous to it.

Lemma 3.5 Let X be a normed linear space and let x,y € Sx with x L% y
for some € € [0,1). Then there exists § € (0,1 — ) such that x L5 2 for all
z € B(y,d) N Sx.

Proof. Since x 1% y for some £ € [0,1), there exists f € J(x) such that
|f(y)] < e. Now, if we choose § € (0,1 — ¢), then for all z € B(y,d) N Sx, we
have,
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If) = 1f(z) = f) + fWI < 1fF W+ 1f(z) — fy) < e +0.
Thus = 157 2 for all z € B(y,d) N Sx. O

Lemma 3.5 says that the C-approximate orthogonality is stable with re-
spect to the second vector (small perturbation of it does not cause loss of
approximate orthogonality). However, as opposed to D-approximate orthogo-
nality (see Theorem 2.1), there is no analogous stability with respect to the
first vector. Namely, as it can be observed in the following example, the impli-
cation

r15y = 35€(0,1—e)VzeB(x,d)NSx: 2157y  (3.1)
need not be true.

Ezample 5.6 Let X = R? with the mazimum norm. Let ¢ € [0,1) and take
x = (1,1), y = (-1,—¢), yo = (—1,0). Since zLpyy and ||y — woll = &, it
follows, via (1.2), that z1%y. Assuming that (3.1) is true we take a suitable
5 € (0,1—¢)and set 2 = (1,1 —3). Then z € B(z,d) N Sx whence z15y with
¢’ = e+ 6 < 1. It would mean, again by (1.2), that there exists ' € Sx such
that 21 gy’ and ||y’ — y|| < &’ < 1. However, since z+ N Sx = {(0,1), (0, —1)},
we have y' = (0,1) or ¥/ = (0,—1) but in both cases ||y —¢'|| > 1 — a
contradiction.

We now prove a complete characterization of the C-approximate right-
symmetry on any compact subset of Sx for any normed linear space X.

Theorem 3.7 Let X be a normed linear space and let A C Sx be a compact
subset. Then any y € A is C-approximately right-symmetric on A if and only
if the local property (P) on A holds for each x € A.

Proof. We first prove the necessary part. Suppose on the contrary that x € A
is such that z fails to have the local property (P) on A. This implies that there
exists y € - N o/ (z) N A. Now, the C-approximate right-symmetry of y € A
on A implies that there exist € € [0,1) and g € J(y) such that |g(x)| < e. This
leads to a contradiction since y € &7 (x) implies |g(x)| = 1.

We now prove the sufficient part. Suppose on the contrary that there
exists y € A such that y is not C-approximately right-symmetric on A. Observe
that if z €ty N A, then it follows from similar arguments as those used in
Lemma 3.4 that there exists €., € [0,1) such that y 15" z. Let ez, be the
infimum of all such €, ,. By the assumption y is not C-approximately right-
symmetric on A, this implies that e, = sup,c1,n 4%, = 1. Thus we can find

{zn} CtyNn A such that y J.gb zp for €, /1. Now, from the compactness of A
we can find a convergent subsequence of {z,,} which we again denote by {z,}.
Let z, — zg, then by continuity of the norm and compactness of A, it follows
that zy €ty N .A. Again, from similar arguments as those used in Lemma, 3.4,
it follows that y L 5% 2o for some ., ,, € [0,1).
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Now, if we choose § € (0,1 —¢€.,,,), then it follows from Lemma 3.5 that

there exists some m € N such that y J_;fo‘”M z, for all £k > m. This leads to
a contradiction and thus the result follows. O

As an immediate consequence of the above theorem, we obtain the fol-
lowing complete characterization of the C-approximate right-symmetry of el-
ements of Sy for any finite-dimensional Banach space.

Corollary 3.8 Let X be a finite-dimensional Banach space. Then any y € Sx
is C-approzimately right-symmetric if and only if the property (P) holds for
X.

Now, we present a complete characterization of the C-approximate sym-
metry of the Birkhoff-James orthogonality in finite-dimensional polyhedral
Banach spaces. In the proof of this characterization we will use the following
result.

Lemma 3.9 Let X be a finite-dimensional polyhedral Banach space. Then for
any sequence {x,} C Sx, we can find a sub-sequence {x,,} C {x,} such that
J(xn,) = J(wp;) for alli,j € N.

Proof. If infinitely many elements of {z,,} are smooth points of Sx, then by the
fact that there are only finitely many faces in Sx, we can find a sub-sequence
{Zn,} € {x,} Nsm Sx such that all the elements of the sub-sequence {x,, }
lie in the interior of the same facet of Sx. Thus there exists f € Sx» such that
J(xn,,) = {f} for all k € N.

Without loss of generality we now assume that all elements of {z,} are
non-smooth points. If there exists xo € Ext Bx such that x,, = z¢ for infinitely
many n, then clearly the result follows. If not, then we can choose an edge of
Sx such that its interior contains infinitely many x,,, as Sx has only finitely
many edges. It follows from [13, Theorem 2.1] that every supporting functional
of any z € Sx is a convex combination of the supporting functionals of the
facets containing z. Thus the points lying in the interior of the same edge have
identical set of support functionals and hence the result follows. O

Theorem 3.10 Let X be a finite-dimensional polyhedral Banach space. Then
the following properties are equivalent:

(a) the Birkhoff-James orthogonality is C-approzimately symmetric in X;
(b) any y € Sx is C-approzimately left-symmetric;

(c) the property (P) holds for X ;

(d) the local property (P) holds for all x € Ext Bx.

Proof. Observe that (a) trivially implies (b).

Let us now prove (b) = (c¢). Suppose on the contrary that there exists
x € Sx such that the local property (P) fails for . Thus there exists some
y € z- N/ (z). Now, y € o/ (z) implies that if g € J(y), then |g(z)| = 1. Thus
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there does not exist any € € [0,1) such that y 1% x. This contradicts that
is C-approximately left-symmetric and (c) follows.

(¢) = (d) is obvious and (d) = (¢) follows from Theorem 3.3.

We now show that (¢) = (b). Let y € Sy and z € y* N Sx; then from
Lemma 3.4 it follows that z L3)* y for some e, € [0,1). Let ¢} . be the
infimum of all such ¢, .. Let ¢, = sup,c,1qg,.y ,, then g, < 1. If g, =1,

then we can find {z,} C y* N Sx such that 2, J_EBIL y for e, /" 1. Now, from
the compactness of Sx we can find a convergent sub-sequence of {z,}, which
we again denote by {z,}, and let z, — zy. Then by continuity of the norm
it follows that zy € y~ N Sx. Using Lemma 3.4, it follows that z J_EB”’ZO y for
some &, 5, € [0,1). If z, = 2o for infinitely many n’s, then clearly we obtain a
contradiction. Thus without loss of generality we can assume that z, # zg for
alln e N.

Now, it follows from Lemma 3.9 that we can choose a sub-sequence
{zn,} € {2n} such that J(z,,) = J(zy,) for all 4,5 € N.

Let €1 € [0, 1) be such that z,, L3 y. Then the choice of the sub-sequence
{#n, } will ensure that z,, J_%l y for all & > 1. This leads to a contradiction.
Thus e, < 1, 2 J_%y y and hence y is C-approximately left-symmetric.

Now, we show that (b) = (a). Suppose on the contrary that the Birkhoff—
James orthogonality is not C-approximately symmetric in X. From the equiv-
alence of (b) and (c), it follows that each x € Sx has the local property (P). If
xz,y € Sx are such that x L y, then it follows by Lemma 3.4 that there exists
€2,y € [0,1) such that y J_Z?’y z. Let {x,}, {yn} € Sx be such that z,, L yn,

UYn J_;” T, for e, /" 1. Since Sx is compact, it follows that there exist con-
vergent sub-sequences of {z,}, {yn}, which we again denote by {z,}, {yn},
respectively. Let xq, yg € Sx be such that x,, — x¢ and y,, — yo. Now, from
the continuity of the norm it follows that x¢ 1 yo. Using Lemma 3.4, we can
find e,,.4, € [0,1) such that yo L 5" xo.

We now prove that we can choose {z,} such that x,, # x¢ for almost all
n € N. If there exists a sub-sequence {z,, } C {x,} such that z,, = z( for all
k € N, then zy L yp,, for all £ € N. Then by taking A = Sx in Theorem 3.7,
it follows that y,, L5° xo for some &,, € [0,1) and for all k& € N. Thus
Ynp L350 @p, for some e, € [0,1) and for all k € N. Clearly, this contradicts
that y, J_EB:" x, for g, /" 1. Thus we can assume that x, # xg for almost all
n € N. Also, by using the similar arguments we can assume that v, # yo for
almost all n € N.

It follows from Lemma 3.9 that we can find sub-sequences {zy, }, {yn, }
of {x,}, {yn}, respectively, such that J(z,,) = J(z,,) and J(yn,) = J(Yn,)
for all ¢,5 € N. Observe that x,,, Lp y,, for all £ € N and each = € Sx has
local property (P) which implies the following:

(i) if {zn,}, {¥n.} € Sx \ (sm Sx U Ext Bx), then elements of {z,, } and
{Yn, } lie in the interiors of different edges of Sx.
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(ii) for all other cases elements of {zy, }, {yn,} lie on different facets of Sx.

Now, from the choice of the sub-sequences {z,,} and {y,,} it follows
that

Tn, LB yn, forall i,j€N.

Thus zo Lp yn, for all j € N. Using (b) we can find £,, € [0,1) such that
Yn, L5° @0 for all j € N.

Let f € J(yn,) be such that |f(zo)| < &4,. Now, if we choose ¢ € (0,1 —
€0 ), then for z € B(xzg,d) N Sx, we have,

[ <1f(2) = f@o)| + | f(wo)| <0+ €ay-

The choice of {y,, } implies that f € J(y,,) for all j € N. Thus we can
find m € N such that
Yn, J_?OH T, forall j>m.
This clearly contradicts that z,, J_g‘ yn for €, /" 1. Thus the Birkhoff-
James orthogonality is C-approximately symmetric in X. O

In view of Theorems 3.7 and 3.10 we would like to propose the following
conjecture.

Conjecture 3.11 Let X be a finite-dimensional Banach space. Then the Birkhoff—
James orthogonality is C-approximately symmetric in X if and only if the local
property (P) holds for each « € Ext Bx.

The above conjecture is not true in general. In [5, Example 3.7], an
infinite-dimensional smooth space (hence the local property (P) holds for each
x € Sx), which is not C-approximately symmetric was constructed.

In [5, Theorem 4.2], Chmieliriski and Wdjcik proved that in finite-
dimensional smooth Banach spaces, the Birkhoff-James orthogonality is C-
approximately symmetric. We now generalize the result by proving that in
uniformly smooth Banach spaces, the Birkhoff-James orthogonality is
C-approximately symmetric on any compact subset of Sx.

Theorem 3.12 Let X be a uniformly smooth Banach space and let A C Sx be
a compact subset. Then the Birkhoff-James orthogonality is C-approzimately
symmetric on A.

Proof. For € Sx let J(z) = {f.}. First we claim that if {x,} C Sx and
r € Sx such that x, — x, then f, —— f.. Suppose on the contrary that
xn, — x and f;, #/— fz. Then for given ¢ > 0 there exists {z,, } C {z,} such
that || fs, —fs| > e forallk € N. Clearly, ¢ < 2. Since X is uniformly smooth,
X* is uniformly convex. Thus there exists d(¢) > 0 such that [|f., + fu <
2 —0(e) for all k € N. Also, for all k¥ € N, we have,

”fxnk +f:6|| > fmnA (xnk) + fm(xnk) =1+ fm(mnk)



136 Page 18 of 26 J. Chmieliniski et al. Results Math

As x,, — xz, we get,
2< lim Hfo:nk + fw” <2- 6(5)'
k— 00

This leads to a contradiction and thus our claim follows.

It follows from the smoothness of X that any x € Sx has local property
(P). If z, y € Sx are such that L y, then by using Lemma 3.4, we can find
€4y € [0,1) such that y L5 x.

Now, we will prove that the Birkhoff-James orthogonality is C-approximately
symmetric on any compact subset A C Sx. Suppose on the contrary that the
Birkhoff-James orthogonality is not C-approximately symmetric on some com-
pact subset A C Sx. Thus we can find {z,}, {yn} C A such that =, Lg y,
and y, J_‘Z; x, for some e, 1.

From compactness of A we can find convergent sub-sequences of {z,},
{yn} which we again denote by {z,,} and {y,}, respectively. Let xqg, yo € A
be such that z,, — x¢ and y,, — yo. Using continuity of the norm it follows
that zo Lp yo and thus there exists e € [0,1) such that yo L5 zo.

Let &1 € (0,1 — ¢). Then there exists mq € N such that || f,, — ful < &1
for all n > my. Thus for all n > my, we have,

[ fyn (@0)| < | fy, (@0) = fyo(@o)| + | fyo (wo)| S €1+ €
and this implies
YUn J_‘}:;'El 0.

Now, if we choose 6 € (0,1 — ¢ — 1), then we can find ms € N such that
Zn € B(xg,0) for all n > ma.

Let m = max{mi, ms}. Then for all z € B(x,d) and for all n > m, we
have,
| fyn ()] < |y (2) = fyn (@0)| + [fy, (0)| < |2 = 2ol + [y (z0)] <0 +e+er.

Thus

Yn L?H“ r, forall n>m.

This clearly leads to a contradiction and thus the result follows. 0

For a normed linear space X, the following constant was defined in [16]:
R(X) :=sup{||lz —y|| : Ty C Sx }.

Remark 3.13 If X is a finite-dimensional polyhedral Banach space and R(X) <
1, then the local property (P) holds for each 2 € Ext Bx. To see this observe
that if the local property (P) fails for # € Ext By, then there exists y € Sx
such that  Lp y and if f € J(y), then either f € J(x) or —f € J(x). This
implies that one of the following holds true:

(i) y lies in the interior of one of the associated edges of x or —u;
(ii) y lies in the interior of one of the associated facets of x or —z.
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Thus either Ty C Sx or —xy C Sx. If Ty C Sy, then = 1 g y implies

R(X) > [z =yl = [l«] = 1.

Now, we assume that —zy C Sx. By the homogeneity of orthogonality
and x L gy we get —x L y. Thus,

R(X) > [(=2) =yl = | -zl = 1.

The following example shows that the converse is not true, that is, a
two-dimensional polyhedral Banach space satisfying the local property (P)
for each z € Ext Bx need not necessarily satisfy R(X) < 1. Consider a two-
dimensional polyhedral Banach space X = R?, whose unit sphere is determined
by the extreme points v; = (2,2), va = (1,3), vs = (0,3.5), v4 = (—1,3),
vs = (—2,2), vg = —v1, V7 = —Ug, Vg = —V3, Vg = —Uy4, V19 = —vs5. For this
space R(X) > 1, Figs. 3 and 4, show that the local property (P) holds for
each z € Ext Bx. In Fig. 3, f is the supporting functional corresponding to
the edge v1v10, ¢ is the supporting functional corresponding to the edge v1v3
and h is the supporting functional corresponding to the edge v5v3. In Fig. 4, h
is the supporting functional corresponding to the edge v3vy, g is the supporting
functional corresponding to the edge v405 and f is the supporting functional
corresponding to the edge U5vg.

As a consequence of Theorem 3.10 and Remark 3.13 we obtain the next
result.

Theorem 3.14 Let X be a finite-dimensional polyhedral Banach space such that
R(X) < 1. Then the Birkhoff-James orthogonality is C-approximately sym-
metric.

Remark 3.15. The previous example shows that the converse of the above
theorem is not true. It follows also from [5, Corollary 3.9] that for any finite-
dimensional Banach space X (not necessarily polyhedral) if R(X) < 1, then
the Birkhoff-James orthogonality is C-approximately symmetric. However,
polyhedralness is essential for R(X) = 1. Indeed, consider the I3 — I norm
on the plane (see Fig. 5) and vectors z = (1,1), y = (0,1). Then L gy but
y Y5 for any € € [0,1).

4. C-approximate Symmetry for Two-Dimensional Polyhedral
Banach Spaces

We introduce yet another property of a normed linear space X:
ifzyCc Sx and z lpy, then x,y¢€ ExtBx. (P1)

We first prove that in any finite-dimensional polyhedral Banach space
property (P1) always implies the local property (P) for each « € Sx.
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FIGURE 4. Property (P) and R(X) > 1.

Lemma 4.1 Let X be a finite-dimensional polyhedral Banach space such that
property (P1) holds for X. Then the local property (P) holds for each x € Sx.

Proof. 1t follows from Theorem 3.3 that it is sufficient to prove that the local
property (P) holds for each z € Ext Bx. Suppose on the contrary that there
exists © € Ext Bx such that the local property (P) fails for z. Thus there
exists y € 1 N Sx such that if f € J(y), then either f € J(x) or —f € J(z).
This clearly shows that either Ty C Sx or —xy C Sx. Now, property (P1) of
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FiGURE 5. Nonpolyhedral, not approximately symmetric
ly-ls, space with R(X) = 1.

FIGURE 6. 3-dimensional space with property (P) but not
property (P1).

X shows that y € Ext Bx. This contradicts that the local property (P) fails
for x and thus the result follows. 0

We will see that the converse is also true in two-dimensional spaces but
in general it is not true. To exhibit this we now give an example of a three-
dimensional polyhedral Banach space X, for which the local property (P) holds
for all elements of Sx but X fails to have the property (P1).

Ezample 4.2 Consider a three-dimensional polyhedral Banach space X = R?,
whose unit sphere is given in Fig. 6. Observe that the local property (P) holds
for each x € Sx. If we consider any extreme point of By which is black in
color, then it is orthogonal to all the elements which lie in the intersection
of Sx and the plane passing through all the extreme points of Bx which are
white in color. This shows that X fails to have property (P1).
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We now show that for any two-dimensional polyhedral Banach spaces the
property (P1) and the local property (P) for each z € Sx are equivalent. The
next result provides a complete characterization of the C-approximate sym-
metry of the Birkhoff-James orthogonality in a two-dimensional polyhedral
Banach space.

Theorem 4.3 Let X be a two-dimensional polyhedral Banach space. Then the
following properties are equivalent:
(a) the property (P1) holds for X;
(b) if x € Ext Bx and y € Sx are such that x Lp y, then y does not lie in
the interior of any of the associated edges of +x;
(c) the local property (P) holds for each x € Sx;
(d) the Birkhoff-James orthogonality is C-approzimately symmetric in X.

Proof. Equivalence of (¢) and (d) follows from Theorem 3.10. To complete the
proof we now prove the equivalence of (a), (b) and (c).

We first prove (a) = (b). Let * € Ext Bx and y € ot N Sx. If y does
not lie on the associated edges of £z, then the result follows trivially. Suppose
that y lies on one of the associated edges of x or —x. Then either Ty C Sx or
—zy C Sx. Now, it follows from (a) that y € Ext Bx and thus (b) follows.

We now show (b) = (¢). Observe that to show (c), it is sufficient to show
that the local property (P) holds for any « € Ext Bx. Let « € Ext Bx and let
y € v N Sx. It follows from (b) that y does not lie in the interior of any of the
associated edges of +x. Thus there exists some f € J(y) such that +f & J(x)
and hence (c) follows.

Now, we prove that (¢) = (a). Let z € Sx and let y € x N Sx be such
that Ty C Sx which implies that € Ext Bx. The local property (P) of x
implies that y cannot be an interior point of any of the associated edges of z.
Thus y € Ext Bx and (a) follows. This completes the proof. O

Applying Theorem 3.14, we now prove that in any two-dimensional reg-
ular polyhedral Banach space with at least 6 vertices, the Birkhoff-James
orthogonality is C -approximately symmetric. Regularity here means that all
edges of the unit sphere are of the same length with respect to the Euclidean
metric and all the interior angles are of the same measure.

Theorem 4.4 Let X be a two-dimensional reqular polyhedral space with 2n ver-
tices, n € N, n > 3. Then the Birkhoff-James orthogonality is C-approximately
symmetric in X.

Proof. Without loss of generality we assume that all the vertices of the polygon
lie on the Euclidean unit sphere and they are:

27 —1 27 —1
vj = (cos( J )ﬂ,sin( J )W), j=1...,2n

2n 2n
(for n = 3 and n = 4 the situation is illustrated in Figs. 7 and 8).
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FI1GURE 7. Two-dimensional regular polyhedral space with 6
vertices.
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FicURE 8. Two-dimensional regular polyhedral space with 8
vertices.

Let the ordinate meet the boundary of the polygon at £(0, ). Then
g =1ifnisodd and 8 = cos 5, > cos g > 0.9 if n is even.

Let L = U103,. The value of R(X) is equal to the length of L. To deter-
mine the latter one we will translate L by the vector —wvs,,, which means that
V9, is moved to the origin o and v; to some point u on the ordinate.

The Euclidean length of L is equal to |L| = 2sin 5. Then |L| = 1 for
n =3 and |L| <2sin§ < 0.8 < § for n > 4. Therefore u lies on the boundary
of the polygon for n = 3 and inside it for n > 4, hence the length of L (with
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FIGURE 9. Two-dimensional not regular polyhedral space.

respect to the introduced norm) is not greater than 1. Thus we have R(X) < 1
and the assertion follows now from Theorem 3.14. O

The following example shows that in Theorem 4.4, the regularity condi-
tion cannot be avoided. Consider a two-dimensional polyhedral Banach space
X = R?, whose unit sphere is given in Fig. 9.

Clearly, y € vs- N Sx. Also, y lies in the interior of the edge v3v3. The
only supporting linear functional for y is the supporting functional g € Sx-
corresponding to the edge T3v3 such that g(x) = 1 for all € Tav3. Thus vs is
not C-approximately left-symmetric.
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