ASIAN JOURNAL
 OF ORGANIC CHEMISTRY

Supporting Information

Water in Organic Solvents: Rapid Detection by a Terbium-based turn-off Luminescent Sensor

Ajay Kumar ${ }^{+}$, Manaranjan Sahu ${ }^{+}$, and Uday Maitra*This manuscript is part of a special collection celebrating the 10th Anniversary of the Asian Journal of Organic Chemistry.

Experimental details

Materials

Terbium (III) chloride hexahydrate ($\mathrm{TbCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$, Sigma-Aldrich, 99.9%) and Salicylic acid (SRL, 99.9\%) were used directly without further purification. Ultrapure Milli-Q water (18.2 M cm , Ultrapure) was used as the source of water. Methanol (Qualigens, HPLC grade, 99.9\%, less than 0.05\% water), THF (SDFCL, LR grade, 99.5\%), EtOH (Analytical CS reagent, 99.9\%), and $\mathrm{CH}_{3} \mathrm{CN}$ (SDFCL, HPLC grade, 99.8\%) were dried by following literature procedure. ${ }^{[1]}$ The dried solvents were used throughout the entire sets of experiments.

Photo-physical characterizations

UV-Visible spectra were recorded on a Shimadzu-3600 spectrophotometer. Excitation and emission spectra were recorded on a Cary-Varian Eclipse fluorescence spectrophotometer with a high power xenon flash lamp with multichannel scaling (MCS). The quantum yields of $\mathrm{Tb}-\mathrm{SA}$ in MeOH , and with different percentages of water were measured using an integrating sphere on an Edinburgh FLS 980 fluorescence instrument. The lifetimes of the Tb-SA in MeOH and at different percentages of water were also measured on an Edinburgh FLS 980 fluorescence instrument.

Preparation of Tb (III)/Salicylic acid solution

Terbium (III) chloride (20 mM), salicylic acid (6.4 mM and 0.4 mM) solutions were prepared in dry MeOH and EtOH and stored in sealed round bottom flasks on molecular sieves at room temperature. The optimized concentration of terbium (2.5 mM) and $\mathrm{SA}(0.1 \mathrm{mM})$ were used for the preparation of Tb-SA systems. For the preparation of Tb-SA, methanolic solutions of terbium chloride ($100 \mu \mathrm{~L}, 20 \mathrm{mM}$) and of $\mathrm{SA}(12.5 \mu \mathrm{~L}, 6.4 \mathrm{mM}$) were mixed in a test tube (4 mL) and diluted with $\mathrm{MeOH}(688 \mu \mathrm{~L})$. For the preparation of Tb -SA with 0.1% of water, $600 \mu \mathrm{~L}$ of terbium chloride (20 mM), $1200 \mu \mathrm{~L}$ of $\mathrm{SA}(0.4 \mathrm{mM}), 2996 \mu \mathrm{~L}$ of MeOH and $4.8 \mu \mathrm{~L}$ of water were added in a glass vial (8 mL). In this way, $\mathrm{Tb}-\mathrm{SA}$ with various water percentages were prepared by increasing the quantity of water (and reducing the volume of MeOH). To determine water in other solvents (THF, $\mathrm{CH}_{3} \mathrm{CN}$), Tb-SA system was prepared in MeOH , diluted with an equal volume of the other solvents ($\mathrm{THF}, \mathrm{CH}_{3} \mathrm{CN}$) because terbium salts were not soluble in these solvents (THF, $\mathrm{CH}_{3} \mathrm{CN}$). For the preparation of $\mathrm{Tb}-\mathrm{SA}$ at $100 \% \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{D}_{2} \mathrm{O}$, all the solutions were prepared in in $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{D}_{2} \mathrm{O}$ and by using dried terbium chloride salt and salicylic acid.

Optimization of probe concentrations

To optimize the concentrations of Tb (III) and SA in the solution, the relative decrease in emission intensity upon successive addition of water in five systems [Tb-SA], 2.5-0.1 mM (Figure 1b), 2.5-0.2 mM (Figure S1a), 5-0.1 mM (Figure S1b), 5-0.2 mM (Figure S1c), and 10-0.2 mM (Figure S1d)] were compared. In all these cases, a significant decrease in emission intensity ($72 \%, 72 \%, 68 \%, 72 \%, 72 \%$, and 74%, respectively) was observed with 2% water in the solution. These results made us to choose the system with the lowest concentration of Tb (III) (2.5 mM) and $\mathrm{SA}(0.1 \mathrm{mM})$ for further studies.

Figure S1 Plots for the decrease in emission at 545 nm by addition of water in Tb-SA at various concentrations of Tb (III) and SA (a) 2.5-0.2 mM (b) 5-0.1 mM (c) 5-0.2 mM (d) 10-0.2 $\mathrm{mM} . \mathrm{mM}\left(\lambda_{\text {ex }}=305 \mathrm{~nm}, \mathrm{~nm}, \lambda_{\mathrm{em}}=545 \mathrm{~nm}\right.$; slitwidths $\left.=2.5 / 2.5 \mathrm{~nm}\right)$.

Interaction of SA with Tb(III)

SA ligand remain protonated after Tb-SA complex formation and interaction of SA with Tb (III) was evidenced by absorption studies as discussed below.

The $\mathrm{pK}_{\mathrm{a} 1}(-\mathrm{COOH})$ and $\mathrm{pK}_{\mathrm{a} 2}(-\mathrm{OH})$ of salicylic acid are 2.97 and 13.6, respectively (Figure S2a). Therefore, salicylic acid in water at pH 1.2 (below the $\mathrm{pK}_{\mathrm{a} 1}$) exist in the protonated form (Figure S2b) and at pH 6.8 (above the $\mathrm{pK}_{\mathrm{a} 1}$) exist in the deprotonated form (Figure S2c). The $\lambda_{\text {max }}$ in the UV-Vis spectra of salicylic acid in water at pH 1.2 and pH 6.8 found to be 303 nm and 296 nm , respectively (Figure S3a). These values are consistent with those reported in
the literature. ${ }^{2}$ The blue shift at higher pH is documented to be due to the deprotonation of the carboxylic acid moiety. ${ }^{2}$ Similarly, at pH 2.2 and pH 8.0 the $\lambda_{\max }$ values are 296 and 303 nm , respectively. ${ }^{3}$ This indicated that the increase in pH up to 8.0 did not deprotonate the phenolic -OH obviously because of the higher $\mathrm{pK}_{\mathrm{a} 2}$ of 13.6.

salicylic acid
(a)

salicylic acid in water
(b)

salicylic acid in water
(c)

Figure $\mathbf{S 2}$ (a) Salicylic acid structure indicating pKa1 and pKa2 of carboxylic and phenolic -OH group. (b) protonated form of salicylic acid at pH 1.2 in water. (c) deprotonated form of salicylic acid at pH 6.8 in water.

In our study, the UV-Vis spectral measurement of SA and Tb-SA in MeOH showed $\lambda_{\max }$ of 303 nm and 304 nm , respectively (Figure S3b). The observed 1 nm red shift in Tb-SA mixture is insignificant, but may arise from the coordination of $S A$ with Tb^{3+}. Salicylic acid in methanol exists in the protonated form which is supported by the similar UV-Vis spectra of SA and TbSA in water at pH 1.2 which is below its $\mathrm{pK}_{\mathrm{a} 1}$. On the other hand, SA and $\mathrm{Tb}-\mathrm{SA}$ in water had $\lambda_{\max }$ of 296 nm and 297 nm , respectively, suggesting the deprotonated form of salicylic acid in the system. ${ }^{2}$

Figure S3. Absorption spectra of (a) SA in water at pH 1.2 and 6.8 , (b) SA and Tb-SA in MeOH , (c) SA and Tb-SA in water at pH 1.2, (d) SA and Tb-SA in water (pH 6.8).

Using deuterated solvents

Furthermore, the terbium salt (terbium chloride hexahydrate) used to prepare the probe itself contains six water molecules that account for intrinsically $\approx 0.03 \%$ of water in a 2.5 mM $\mathrm{TbCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$ solution in dry methanol. To minimize the effect of this water, the terbium salt was vacuum dried at 1 mbar for 14 h at about $31^{\circ} \mathrm{C}$ that removed $\approx 83 \%$ of water from the hydrated salt (based on weight loss). followed by the addition of $\mathrm{CH}_{3} \mathrm{OD}$ to prepare a methanolic terbium solution which was used to prepare the Tb-SA probe solutions. Upon using this probe solution, higher emission intensity (58%) was observed. Moreover, an increase in the lifetime (3.27 ms) and QY (40%) of Tb-SA in $\mathrm{CH}_{3} \mathrm{OD}$ (no $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$) compared to the lifetime (1 ms) and QY (22\%) of Tb-SA in $\mathrm{CH}_{3} \mathrm{OH}$ was observed.

Figure S4. Emission spectra of Tb-SA (2.5/0.1 mM) in $\mathrm{CH}_{3} \mathrm{OH}$ (blue), $\mathrm{CD}_{3} \mathrm{OD}: \mathrm{CH}_{3} \mathrm{OH}$ (1:1) (red) and $\mathrm{CH}_{3} \mathrm{OD}$ (black) ($\lambda_{\mathrm{ex}}=305 \mathrm{~nm}$). Lifetime and QY of $\mathrm{Tb}-\mathrm{SA}$ in $\mathrm{CH}_{3} \mathrm{OD}$ (no $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$) were found to be 3.27 ms (Figure S4) and 40\%, respectively.

Stability of probe solutions:

Time-dependent emission spectra of $\mathrm{Tb}-\mathrm{SA}$ in MeOH at higher water concentration, i.e., 0%, $0.4 \%, 2 \%$ and 4% were done (Figure S5a-d). We observed a very slighter decrease in the emission spectra with time upon irradiation for 2.5 h . This indicated the stability of the $\mathrm{Tb}-\mathrm{SA}$ probe solution.

Figure S5 Variation of emission at 545 nm from Tb-SA in (a) MeOH , (b) with 0.4% of water, (c) with 2% of water and (d) with 4% of water. ($\lambda_{\text {ex }}=305 \mathrm{~nm}$, slitwidths $=2.5 / 5 \mathrm{~nm}$)

Tb lifetime measurements in varying $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{D}_{2} \mathrm{O}$ content in Methanol

Figure $\mathbf{S 6}$ Change in life time of Tb-SA in $\mathrm{CH}_{3} \mathrm{OD}$ upon addition of (a) water and (b) $\mathrm{D}_{2} \mathrm{O}$. ($\lambda_{\mathrm{ex}}=305$ $\mathrm{nm}, \lambda_{\mathrm{em}}=545 \mathrm{~nm}$; slitwidths $\left.=2.5 / 5 \mathrm{~nm}\right)$.

Figure S7. Plots for the detection of water by Tb-SA in (a) methanol (b) ethanol (c) acetonitrile and (d) tetrahydrofuran in the range of $0.1-5 \%$ of water. [Tb-SA (2.5-0.1 mM), $\lambda_{\text {ex }}=305 \mathrm{~nm} ; \lambda_{\mathrm{em}}=545 \mathrm{~nm}$].

Figure S8. Plots for $\mathrm{I}_{\mathrm{o}} / \mathrm{l}$ for $\mathrm{Tb}-\mathrm{SA}$ in MeOH for three data sets with error bars. [Tb-SA ($2.5-0.1 \mathrm{mM}$), $\lambda_{\mathrm{ex}}=305 \mathrm{~nm} ; \lambda_{\mathrm{em}}=545 \mathrm{~nm}$].

Quantification of water in MeOH

For the quantification of water content ($\mathrm{x} \%$) in a MeOH sample (y mL), the following procedure was followed. Based on the 'expected' water content in the sample, the volume y can be adjusted in order to have $0-2 \%$ water in the final solution.

1. $\mathrm{TbCl}_{3}(20 \mathrm{mM})$ in $\mathrm{MeOH}[600 \boldsymbol{\mu L}]+$ Salicylic acid $(0.4 \mathrm{mM})$ in $\mathrm{MeOH}[1200 \boldsymbol{\mu L}]+$ Dry MeOH [3000 $\mu \mathrm{L}]=$ solution $\mathbf{A}\left(\mathrm{I}_{0}\right)$
2. $\mathrm{TbCl}_{3}(20 \mathrm{mM})$ in $\mathrm{MeOH}[600 \mu \mathrm{~L}]+$ Salicylic acid $(0.4 \mathrm{mM})$ in $\mathrm{MeOH}[1200 \boldsymbol{\mu L}]+$ Dry MeOH [3000 $\mu \mathrm{L}-\mathrm{y}$] + MeOH sample [y $\mu \mathrm{L}]=$ solution B (I)
3. Phosphorescence of solutions A and B were recorded to find the value of I_{0} and I respectively. The water content can then be calculated as:

$$
x(\%)=\frac{4800}{y} \times 1.62\left(\frac{I_{0}}{I}-1\right)
$$

Quantification of water in EtOH

For the quantification of water content ($\mathrm{x} \%$) in a sample of EtOH (y mL), the following procedure was followed:

1. $\mathrm{TbCl}_{3}(20 \mathrm{mM})$ in EtOH $[600 \mu \mathrm{~L}]+$ Salicylic acid $(0.4 \mathrm{mM})$ in EtOH $[1200 \mu \mathrm{~L}]+$ Dry EtOH [3000 $\mu \mathrm{L}$] = Solution C (I)
2. $\mathrm{TbCl}_{3}(20 \mathrm{mM})$ in EtOH [600 $\left.\mu \mathrm{L}\right]+$ Salicylic acid $(0.4 \mathrm{mM})$ in EtOH [1200 $\left.\mu \mathrm{L}\right]+$ Dry EtOH [3000 $\mu \mathrm{L}-\mathrm{y}]+\mathrm{EtOH}$ sample $[\mathrm{y} \mu \mathrm{L}]=$ Solution D (I)
3. Phosphorescence of solutions C and D were recorded to find the value of I_{0} and I respectively. The water content in EtOH sample can be calculated as:

$$
x(\%)=\frac{4800}{y} \times 1.34\left(\frac{I_{0}}{I}-1\right)
$$

Quantification of water in $\mathrm{CH}_{3} \mathrm{CN}$

For the quantification of water content ($\mathrm{x} \%$) in a sample of $\mathrm{CH}_{3} \mathrm{CN}(\mathrm{y} \mathrm{mL})$, following procedure was followed

1. $\mathrm{TbCl}_{3}(20 \mathrm{mM})$ in $\mathrm{MeOH}[600 \mu \mathrm{~L}]+$ Salicylic acid (0.4 mM) in MeOH [1200 $\boldsymbol{\mu \mathrm { L }}$] + Dry $\mathrm{MeOH}[\mathbf{6 0 0} \boldsymbol{\mu} \mathrm{L}]+$ Dry $\mathrm{CH}_{3} \mathrm{CN}[\mathbf{2 4 0 0} \boldsymbol{\mu L}]=$ Solution $\mathrm{E}=\mathrm{I}_{0}$
2. $\mathrm{TbCl}_{3}(20 \mathrm{mM})$ in MeOH [$\mathbf{6 0 0} \boldsymbol{\mu \mathrm { L }}$] + Salicylic acid (0.4 mM) in MeOH [1200 $\boldsymbol{\mu \mathrm { L }}$] + Dry $\mathrm{MeOH}[600 \mu \mathrm{~L}]+\operatorname{Dry} \mathrm{CH}_{3} \mathrm{CN}[2400 \mu \mathrm{~L}-\mathrm{y}]+\mathrm{CH}_{3} \mathrm{CN}$ sample $[\mathrm{y} \mu \mathrm{L}]=$ Solution $\mathrm{F}=\mathrm{I}$
3. Phosphorescence of solutions E and F were recorded to find the value of I_{0} and I , respectively. The water content in $\mathrm{CH}_{3} \mathrm{CN}$ sample can be calculated as:

$$
(x, \text { in } \%)=\frac{4800}{y} \times 1.46\left(\frac{I_{0}}{I}-1\right)
$$

Quantification of water in THF

For the quantification of water content (x) in a sample of THF (y mL). Following procedure was followed

1. $\mathrm{TbCl}_{3}(20 \mathrm{mM})$ in $\mathrm{MeOH}[\mathbf{6 0 0} \boldsymbol{\mu L}]+$ Salicylic acid $(0.4 \mathrm{mM})$ in MeOH [1200 $\boldsymbol{\mu \mathrm { L }}$] + Dry $\mathrm{MeOH}[600 \mu \mathrm{~L}]+\mathrm{THF}[2400 \mu \mathrm{~L}]=$ Solution G (I_{0})
2. $\mathrm{TbCl}_{3}(20 \mathrm{mM})$ in $\mathrm{MeOH}[600 \mu \mathrm{~L}]+$ Salicylic acid $(0.4 \mathrm{mM})$ in $\mathrm{MeOH}[1200 \mu \mathrm{~L}]+$ Dry MeOH [600 $\mu \mathrm{L}]+$ THF $[2400 \mu \mathrm{~L}-\mathrm{y}]+$ THF sample $[\mathrm{y} \mu \mathrm{L}]=$ Solution H (I)
3. Phosphorescence of solutions G and H were recorded to find the value of I_{0} and I , respectively. The water content in THF sample can be calculated as:

$$
(x, \text { in } \%)=\frac{4800}{y} \times 2.68\left(\frac{I_{0}}{I}-1\right)
$$

References

[1] W. L. F. Armarego, Purif. Lab. Chem. 2017, 1-1176
[2] I. Nugrahani, B. Tjengal, T. Gusdinar, A. Horikawa, H. Uekusa. Crystals 2020, 10, 349.
[3] (a) H. Guo, F. He, B. Gu, L. Liang, J. C. Smith. J. Phys. Chem. A 2012, 116, 11870. (b) M. K. Trivedi, A. Branton, D. Trivedi, H. Shettigar, K. Bairwa and S. Jana. Nat. Prod. Chem. Res. 2015, 3, 1000186.

