ChemistrySelect

Supporting Information

Effects of Multiple OH/SH Substitution on the H-Bonding/Stability versus Aromaticity of Benzene Rings: From Computational Insights

Sarvesh Kumar Pandey* and Elangannan Arunan*

Author Contributions

S.P. Conceptualization:Lead; Data curation:Lead; Formal analysis:Lead; Funding acquisition:Lead; Investigation:-Lead; Methodology:Lead; Project administration:Lead; Resources:Lead; Software:Lead; Supervision:Lead; Validation:Lead; Visualization:Lead; Writing – original draft:Lead; Writing – review & editing:Lead E.A. Writing – review & editing:Supporting

Supporting Information Summary

Table S1

System	B3LYP (r, v) (in Å, cm ⁻¹)	MP2 (r, v) (in Å, cm ⁻¹)
1a	O-H(R): (0.968, 3778.8)	O-H(R): (0.971, 3762.8)
1b	O-H(R): 0.965, (sym: 3819.7, antisym: 3818.6)	O-H(R): 0.968, (sym: 3803.4, antisym: 3803.8)
2a	S-H(R): 1.359, (sym: 2635.8, antisym: 2632)	S-H(R): (1.355, 2702.2)
2b	S-H(R): 1.355, (sym: 2680.3, antisym: 2680.6)	S-H(R): 1.351, (sym: 2741.2, antisym: 2742.6)
3 a	O-H(R): 0.974, 3644	O-H(R): 0.976, 3653.3
3b	S-H(M): 1.354, 2696	S-H(L): 1.350, 2756.4
3c	O-H(R): 0.965, 3821.6; S-H(M): 1.356, 2675.1	O-H(R): 0.968, 3803.2; S-H(M): 1.351, 2741.7
4a	O-H(L): 0.968, 3833.3; O-H(M): 0.971, 3792;	O-H(L): 0.968, 3818.8; O-H(M): 0.971, 3768.6;
	O-H(R): 0.972, 3775.6	O-H(R): 0.972, 3759
4b	O-H(L): 0.964, 3835.3; O-H(M): 0.971, 3739.2;	O-H(L): 0.967, 3820.2; O-H(M): 0.970, 3782.6;
	O-H(R): 0.965, 3821.8	O-H(R): 0.968, 3806.3
5a	S-H(L): 1.360, 2627.5; S-H(M): 1.360, 2611.2;	S-H(L): 1.355, 2699.8; S-H(M): 1.356, 2979.6;
	S-H(R):1.359, 2631.4	S-H(R):1.354, 2705.3
5b	S-H(L): 1.358, 2632.9; S-H(M): 1.360, 2627.8;	S-H(L): 1.354, 2708.9; S-H(M): 1.355, 2696.7;
	S-H(R):1.357, 2652.1	S-H(R):1.352, 2734.7
5c	S-H(L): 1.358, (sym: 2648.3, antisym: 2646.6);	S-H(L): 1.352 (sym: 2731.5, antisym: 2730.6);
	S-H(M): 1.360, 2631.5; S-H(R):1.358, (sym:	S-H(M): 1.355, 2701.5; S-H(R):1.352, (sym:
	2648.3, antisym: 2646.6)	2731.5, antisym: 2730.6)
6a	S-H(L): 1.354, 2690; O-H(M): 0.970, 3751.1;	S-H(L): 1.350, 2750.7; O-H(M): 0.967, 3819.8;
	O-H(R):0.964, 3831.8	O-H(R):0.968, 3817
6b	S-H(L): 1.361, 2621.3; O-H(M): 0.974, 3648;	S-H(L): 1.355, 2707.2; O-H(M): 0.977, 3647.5;
	O-H(R):0.968, 3774.9	O-H(R):0.972, 3755.6
6с	S-H(L): 1.356, 2676.3; O-H(M): 0.968, 3780;	S-H(L): 1.351; 2742.9; O-H(M): 0.972, 3756;
	O-H(R):0.964, 3832.4	O-H(R): 0.968, 3816.6
7a	O-H(L): 0.965, 3823.3; S-H(M): 1.354, 2692.4;	O-H(L): 0.968, 3805.7; S-H(M): 1.351, 2751.6;
	O-H(R):0.965, 3822.4	O-H(R):0.968, 3803.4
7b	O-H(L): 0.965, 3813.6; S-H(M): 1.360, 2620.7;	O-H(L): 0.969, 3800; S-H(M): 1.354, 2713.8;
	O-H(R):0.975, 3623.7	O-H(R):0.977, 3642.6
7c	O-H(L): 0.975, (sym: 3686.2, antisym:3677.8);	O-H(L): 0.972; (sym: 3685.1, antisym:3675.2;
	S-H(M): 1.357, 2692; O-H(R):0.975, (sym:	S-H(M): 1.363, 2600.1; O-H(R): 0.972, (sym:
	3686.2, antisym:3677.8)	3685.1, antisym: 3675.2)

System	B3LYP (r, v) (in Å, cm ⁻¹)	MP2 (r, v) (in Å, cm ⁻¹)
8a	O-H(L): 0.974, 3635.9; S-H(M): 1.362,	O-H(L): 0.977, 3646.4; S-H(M): 1.356, 2701.2;
	2615.6; S-H(R): 1.357, 2662.4	S-H(R): 1.352, 2731.8
8b	O-H(L): 0.965, 3819.4; S-H(M): 1.354,	O-H(L): 0.969, 3800.6; S-H(M): 1.351, 2743.9;
	2680.4; S-H(R): 1.359, 2633.2	S-H(R): 1.355, 2703.5
8c	O-H(L): 0.965, 3821.6; S-H(M): 1.353,	O-H(L): 0.968, 3801.8; S-H(M): 1.350, 2751.1;
	2696.9; S-H(R): 1.355, 2679.1	S-H(R): 1.350, 2744.9
8d	O-H(L): 0.965, 3820.3; S-H(M): 1.360,	O-H(L): 0.969, 3800.3; S-H(M): 1.355, 2694.6;
	2635.2; S-H(R): 1.355, 2678.9	S-H(R): 1.355, 2701.3
8e	O-H(L): 0.974, 3648; S-H(M): 1.362,	O-H(L): 0.976, 3655.1; S-H(M): 1.356, 2697.8;
	2609.6; S-H(R): 1.359, 2634.7	S-H(R): 1.353, 2715
9a	S-H(L): 1.354, 2695.1;O-H(M): 0.975,	S-H(L): 1.350, 2753.8;O-H(M): 0.978, 3618.3;S-
	3617.6;S-H(R): 1.361, 2618.5	H(R): 1.355, 2706.4
9b	S-H(L): 1.356, 2671;O-H(M): 0.975,	S-H(L): 1.351, 2740;O-H(M): 0.977, 3640.2;S-
	3634.5;S-H(R): 1.361, 2618.5	H(R):1.355, 2707
10a	S-H LU: 1.360, 2606.5; LD: 1.361,	S-H LU: 1.359; LD: 1.358; RU: 1.358; RD:
	2597.7; RU : 1.361, 2596.2	1.359
	Mixed S-H stretching vibrations: 2596.2,	Mixed S-H stretching vibrations: 2680.2, 2682.3,
	2597.7, 2606.5, 2614.8, 2624.5, 2632.8	2685.2, 2693, 2697.2, 2699.2
10b	S-H LU: 1.359 LD: 1.358; RU: 1.358;	S-H LU: 1.355, ; LD: 1.355, ; RU: 1.355, ; RD:
	RD : 1.359	1.355
	Mixed S-H stretching vibrations: 2614.3,	Mixed S-H stretching vibrations: 2685.4, 2687.3,
	2615.5, 2633.7, 2636.7, 2639.8, 2641.2	2697.4, 2700.5, 2703.2, 2704.6

 Table S1 Continued.....

NCI-RDG Isosurface Plots

Identification and graphical envision of noncovalent interactions (NCIs) regions along with the nature and strength involved therein, have been basically produced by means of the NCI-reduced density gradient (NCI-RDG) approach, which allows an inclusive description of hydrogen bonds (HBs), van der Waals (vdW) interactions, and steric repulsion in all species. Generally, localized blue lentils show the strong attractive interactions (*i.e.* HBs), thin and delocalized green regions characterize the vdW interactions, and red isosurfaces reveal the steric clashes (for example: see Figure **1a**, right side figure). The electron density (ED) and its derivatives allowing synchronized analysis and visualization of a broad range of NCIs types as real space surfaces and playing a keyrole to a chemist's arsenal, we havemade effortsin giving outline for the H-bonded species.

The RDG isosurface displayed on horizontal axis is 0.5 (ranging from -0.05 to +0.05). The $\Omega(\mathbf{r})$ values ranging from -0.035 atomic unit (au) to +0.02 au on vertical axis (right side) show the colored surfaces of the species on a blue-green-red scale. The detailed description of the NCI tool clarifies that the higher density values ($\Omega(\mathbf{r}) < 0$) show the stronger attractive interactions while the very low-density values ($\Omega(\mathbf{r}) > 0$) indicate the repulsive interactions. Moreover, for example, in the case of H-bonded **1a** system, blue-green mixed color spike (values lying between -0.015 and -0.02*i.e.* very close to -0.02) in the scatter map (2D plot) as well as green colored disc-shaped NCI isosurfaces (3D representation) between two atoms 0 (proton acceptor) and H, signifying the attractive interaction) which is also supported by the QTAIM ED based topological parameters (alteration in the rho value of the H-bonded O-H and its free form). The presence of steric effect is evidently shown by the low-gradient spikes appearing at positive side (+0.015 to +0.02)(see Figure **1a**, right side figure). This effect as shown by the red ellipsoid depicts the electron density depletion which is because of the electrostatic repulsion.

2D color filled scatter plot

3a

4a

5a

7c

10b