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Abstract
Let G be a noncompact semisimple Lie group with finite centre. Let X = G∕K be the asso-
ciated Riemannian symmetric space and assume that X is of rank one. The generalized 
spectral projections associated to the Laplace-Beltrami operator are given by P

�
f = f ∗ Φ

�
 , 

where Φ
�
 are the elementary spherical functions on X. In this paper, we prove an Ingham 

type uncertainty principle for P
�
f  . Moreover, similar results are obtained in the case of 

generalized spectral projections associated to Dunkl Laplacian.
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1 Introduction

An old paper of Ingham [13] written in 1934 investigates the admissible decay of the 
Fourier transform of a compactly supported function on ℝ. Since any decay of the form 
|f̂ (y)| ≤ Ce−a|y|, a > 0 is ruled out, due to the holomorphic extendability of f, Ingham con-
sidered a slightly slower decay |f̂ (y)| ≤ Ce−a|y| 𝜃(|y|) where � ∶ [0,∞) → [0,∞) is a decreas-
ing function vanishing at infinity. He proved that this kind of decay is admissible for a 
compactly supported function f if and only if ∫ ∞

1
𝜃(t)t−1dt < ∞. It follows that under the 

assumption ∫ ∞

1
�(t)t−1dt = ∞, any nontrivial function f for which |f̂ (y)| ≤ Ce−a|y| 𝜃(|y|) can-

not vanish on the complement of any compact set. We can view this as a result on the 
decay of the generalized spectral projections associated to Δ on ℝ. Indeed, by defining 
P
𝜆
f (y) = f̂ (𝜆)ei𝜆y + f̂ (−𝜆)e−i𝜆y, we see that P

�
f  are eigenfunctions of Δ with eigenvalues 

−�2 and the decay |P
�
f (y)| ≤ Ce−a|�|�(|�|) where ∫ ∞

1
�(t)t−1dt = ∞ is ruled out if f vanishes 
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on the complement of any compact set. We remark that in the above statement we can 
replace the complement of a compact set by any open set V.

Ingham’s theorem has received considerable attention in recent years and analogues 
have been proved for Fourier series [3] and Fourier transforms on symmetric spaces [4] 
and nilpotent Lie groups [1, 3]. In this note we would like to recast some of the results 
as uncertainty principles for generalized spectral projections associated to Laplace-Belt-
rami operators on Riemannian symmetric spaces. Recall that such a space is of the form 
X = G∕K where G is a semisimple Lie group and K a maximal compact subgroup. When 
the sectional curvature of the underlying Riemannian manifold is positive, which hap-
pens when G is compact, we are in the setting of compact symmetric spaces. In this case, 
we have already proved a version of Ingham’s theorem for the spectral projections for the 
Laplace-Beltrami operator ΔX in [12]. In the same work, we have also treated the spectral 
projections associated to Hermite and special Hermite operators.

Here we would like to treat the remaining case of noncompact Riemannian symmetric 
spaces. We first assume that the sectional curvature is negative. The generalized spectral 
projections P

�
f  associated to ΔX are given by convolutions with elementary spherical func-

tions, thus P
�
f = f ∗ Φ

�
 where Φ

�
 are the elementary bounded spherical functions on X. 

Under the assumption that symmetric space X is of rank one, we prove the following result.

Theorem  1.1 Let � be a positive decreasing function defined on [0,∞) that vanishes at 
infinity. Assume that ∫ ∞

1
�(t) t−1dt = ∞. Let X = G∕K be a rank one symmetric space of 

noncompact type. Let f ∈ L1(X) be a nontrivial function vanishing on an open set V. Then 
the estimate sup

x∈V

|f ∗ Φ
�
(x)| ≤ Ce−��(�) cannot hold uniformly for all � . Moreover, if V con-

tains the identity, then the uniform estimate sup
x∈Vc

|f ∗ Φ
�
(x)| ≤ Ce−��(�) , is also not 

possible.

We show that in order to prove the first part of the above theorem, it is enough to prove 
a version of Ingham’s theorem for Jacobi transform. As in the case of compact symmetric 
spaces (see [12]) this is achieved by considering the spherical means on the symmetric 
spaces. For the second part of the theorem, we need a refined version of Ingham’s theorem 
for the Helgason Fourier transform on X.

As an immediate consequence of the above theorem, the usual version of Ingham’s the-
orem where the decay condition is assumed on the Fourier transform side, can be obtained. 
In order to describe that we need some more notations. For f ∈ L1(X) , the Helgason Fou-
rier transform of f defined on �∗ × K∕M , is denoted by f̃  . The generalized spectral projec-
tions can be represented in terms of f̃  as follows:

For the unexplained notations and more details we refer the reader to Section  3. Now 
from the above formula it is easy to see that |f̃ (𝜆, b)| ≤ Ce−|𝜆|𝜃(|𝜆|), ∀𝜆 ∈ �∗ implies that 
|f ∗ Φ

𝜆
(x)| ≤ Ce−𝜆𝜃(𝜆), 𝜆 > 0 whence we have the following result:

Corollary 1.2 Let � be a positive decreasing function defined on [0,∞) that vanishes at 
infinity.  Let X = G∕K be a rank one symmetric space of noncompact type. Let f ∈ L1(X) 
be a nontrivial function vanishing on an open set V whose Helgason Fourier transform 
satisfies

f ∗ Φ
𝜆
(x) = ∫K∕M

e(−i𝜆+𝜌)A(x,b) f̃ (𝜆, b)db.
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If ∫ ∞

1
�(t) t−1dt = ∞ , then f = 0.

We remark that the above result has been discussed in [4, Theorem 4.2] for noncom-
pact Riemannian symmetric spaces of arbitrary rank.

We now turn our attention to the case of flat symmetric spaces. Let G be a noncom-
pact semisimple Lie group with finite centre with Lie algebra �. Let K be a maximal 
compact subgroup of G and let � = �⊕ � be the corresponding Cartan decomposition. 
The group K acts on � via the adjoint representation. Forming the semidirect product 
G0 = K ⋉ �, the flat symmetric space is defined as G0∕K which can be identified with �. 
Here the Cartan motion group G0 is of general rank. For more on flat symmetric spaces 
and its connection with G/K we refer to Orsted-Ben Said [2]. Inside � we choose a maxi-
mal abelian subspace � . We denote by Σ the set of restricted roots with multiplicities 
m

�
, � ∈ Σ and consider it to be a subset of � by identifying � with �∗ via the Killing form 

B. We let W stand for the Weyl group, acting on �. It turns out that W is an example 
of a finite reflection group associated to a root system R and the function � defined by 
�
�
=

1

4

∑
�∈Σ∩ℝ� m�

 is a multiplicity function. Thus we are in the setting of Dunkl opera-
tors introduced and studied by Dunkl [10].

Associated to the root system R and the multiplicity function � we have the Dunkl 
transform F

�
 and the Dunkl Laplacian Δ

�
. The spherical Fourier transform of K-invar-

iant functions on G0∕K are given by integrating against spherical functions which are 
expressible in terms of the Dunkl exponential E

�
(ix, �). The action of the radial part of 

the Laplace-Beltrami operator Δ acting on a K-invariant function f on G0∕K is given by 
Δ

�
f� where f� is the restriction of f to �, see Remarks 4.27 (2) in de Jeu [14]. Thus the 

following result includes an Ingham’s theorem for the generalized spectral projections 
associated to Δ on G0∕K.

Let Δ
�
 be the Dunkl Laplacian associated to a general root system R and a multiplicity 

function �. Let P
𝜆
f = f ∗

𝜅
𝜑
𝜅,𝜆, 𝜆 > 0 be the generalized spectral projections associated 

to Δ
�
. In the above, �

�,� are Bessel functions of certain order and ∗
�
 stands for the Dunkl 

convolution. We refer to Sect. 4 for more details on all the unexplained concepts and terms 
related to Dunkl analysis. We prove the following:

Theorem  1.3 Let � be a positive decreasing function defined on [0,∞) that vanishes at 
infinity. Assume that ∫ ∞

1
�(t) t−1dt = ∞. Let f ∈ L1(ℝn, h2

�
dx) be a nontrivial function van-

ishing on an open set V. Then the estimate sup
x∈V

|f ∗
�
�
�,�(x)| ≤ Ce−��(�) cannot hold uni-

formly for all � for the generalized spectral projections associated to the Dunkl Laplacian. 
Moreover, if V contains the origin, then the uniform estimate sup

x∈Vc

|f ∗
�
�
�,�(x)| ≤ Ce−��(�) 

is also not possible.

As in the case of the symmetric space G/K the above theorem will be proved by making 
use of an Ingham’s theorem for the Hankel transform. This reduction is facilitated by con-
sidering the spherical means f ∗

�
�r(x) on ℝn where �r is the normalised surface measure 

on the sphere |x| = r. As in the case of standard spherical means, which corresponds to 
� = 0 these are Dunkl multipliers given by the Bessel functions �

�
(r) which explains the 

connection with the Hankel transform, see Section 4.
Also similar to the symmetric space case, we have a version of Ingham’s theorem for 

Dunkl transform which is an easy consequence of the above theorem.

|f̃ (𝜆, b)| ≤ Ce−|𝜆|𝜃(|𝜆|), ∀𝜆 ∈ �∗ and ∀b ∈ K∕M.
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Corollary 1.4 Let � be a positive decreasing function defined on [0,∞) that vanishes at 
infinity. Let f ∈ L1(ℝn, h2

�
(x)dx) be such that its Dunkl transform F

�
f  satisfies

If f vanishes on a nonempty open set and ∫ ∞

1
�(t) t−1dt = ∞ , then f = 0.

Using a different approach, recently this result has been proved in [7]. Moreover, we 
remark that putting � = 0 in the above result we can get a version of Ingham’s theorem for 
the Fourier transform on ℝn which was proved in [3] using a several variable version of 
the classical Denjoy-Carleman theorem for the quasi-analytic functions. Consequently, our 
result in the paper provides a new and simple proof of Ingham type uncertainty principle 
for the Fourier transform on ℝn.

We conclude this introduction by briefly describing the organisation of the paper. In 
Sect. 2, we prove a version of Chernoff’s theorem for Bessel and Jacobi operators. Using 
this, in Sect. 3, we prove a refined version of Ingham’s theorem for the Helgason Fourier 
transform on rank one Riemannian symmetric spaces of noncompact type. Making use of 
the spherical means, we then prove an Ingham type uncertainty principle for the general-
ized spectral projections associated to the Laplace-Beltrami operator. Finally, in Sect. 4, 
we prove similar Ingham type results for the generalized spectral projections associated to 
Dunkl Laplacian.

2  Chernoff’s theorem for Bessel and Jacobi operators

In 1975, P. R. Chernoff proved an L2 version of classical Denjoy-Carleman theorem which 
deals with quasi analytic functions on ℝn. In his paper [9], he used iterates of the Laplacian 
to prove a sufficient condition for a smooth function to be quasi analytic (See [9, Theo-
rem 6.1]). Because of its usefulness in proving Ingham type uncertainty theorems, study of 
this in different settings has received considerable attention in recent years. See the works 
[1, 7, 12] in this regard. Also it is worth pointing out that the full power of Chernoff’s 
theorem is not required to prove Ingham type results. As can be seen from the above works, 
only a weaker version is sufficient for this purpose.

Our aim in this section is to prove a weaker version Chernoff’s theorem for a differential 
operator L under certain assumptions on its eigenfunction expansion. Later in this section 
we will see that typical examples of L includes Bessel and Jacobi operators. Suppose w and 
w̃ be positive functions on ℝ+ and ℝ respectively. We assume that w̃ is an even function. 
Let T ∶ L2(ℝ+,w(r)dr) → L2(ℝ, w̃(𝜆)d𝜆) be a transformation defined by

where �
�
 ’s are bounded eigenfunctions (not necessarily in L2 ) of the operator L with eigen-

values (�2 + �
2) for some 𝛿 > 0, i.e., L�

�
= (�2 + �

2)�
�
. We also assume that �

�
 are nor-

malised so that �
�
(0) = 1 and �

�
(r) = �−�(r). As a matter of fact, Tf (�) is an even function 

of � . We further assume that there are following versions of inversion and Plancherel for-
mulas for this transform. Let the inversion formula which is assumed to be held for a suit-
able dense class of functions, read as

|F
�
f (�)| ≤ Ce−|�|�(|�|), ∀� ∈ ℝ

n.

Tf (�) ∶= ∫
∞

0

f (r)�
�
(r)w(r)dr,
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for some constant c > 0. The Plancherel formula for f ∈ L2(ℝ+,w(r)dr) is assumed to be

Under all the assumptions described above, on the eigenfunction expansion of L, we prove 
the following version of Chernoff’s theorem for L.

Theorem 2.1 Let f ∈ L2(ℝ+,w(r)dr) be such that Lmf ∈ L2(ℝ+,w(r)dr) for all m ∈ ℕ and 
satisfies the Carleman condition 

∑∞

m=1
‖Lmf‖−1∕(2m)

2
= ∞. Assume that w̃ has at most poly-

nomial growth. Then f cannot vanish in a neighbourhood of 0 unless it is identically zero.

We remark that this theorem is actually a continuous version of Theorem 2.2 in [12] . In 
order to prove this theorem, we need the following result due to de Jeu [15].

Theorem  2.2 Let � be a finite positive Borel measure on ℝ for which all the moments 
M(m) = ∫ ∞

−∞
tmd� are finite. If we further assume that the moments satisfy the Carleman 

condition 
∑∞

m=1
M(2m)−1∕2m = ∞, then polynomials are dense in Lp(ℝ, d𝜇), 1 ≤ p < ∞.

As remarked in [3] (see Remark 3.6), if the measure � is even, then even polynomials 
are dense in Lpe(ℝ, d�) , the subspace of even functions in Lp(ℝ, d�). We will make use of 
this observation in the following proof. We remark that the proof given below is already 
present in [3] but for the sake of convenience of the reader we reproduce it here.

Proof of Theorem 2.1 Let f be as in the statement of the theorem. We consider the following 
measure �f  defined on the Borel subsets of ℝ by

Hence it follows that

But by Cauchy-Schwarz inequality, we have

where C2
j
= ∫ ∞

0
(𝜆2 + 𝛿

2)−2jw̃(𝜆)d𝜆. Note that Cj is finite for large enough j in view of our 
assumption that w̃(𝜆) has polynomial growth in �. Now if we denote the mth order moment 
of the measure �f  by M(m), then from the above observations it follows that

f (r) = c∫
∞

−∞

Tf (𝜆)𝜓
𝜆
(r)w̃(𝜆)d𝜆

‖f‖2
L2(ℝ+ ,w(r)dr)

= c∫
∞

−∞

�Tf (𝜆)�2w̃(𝜆)d𝜆.

𝜇f (E) = ∫E

|Tf (𝜆)|w̃(𝜆)d𝜆.

�
∞

−∞

t2md𝜇f (t) = �
∞

−∞

𝜆
2m|Tf (𝜆)|w̃(𝜆)d𝜆 ≤ �

∞

−∞

(𝜆2 + 𝛿
2)m|Tf (𝜆)|w̃(𝜆)d𝜆.

�
∞

−∞

t2md𝜇f (t) ≤ Cj

�

�
∞

0

(𝜆2 + 𝛿
2)2(m+j)�Tf (𝜆)�2w̃(𝜆)d𝜆

� 1

2

= Cj‖L(m+j)f‖2

∞�

m=1

M(2m)−1∕2m ≥
∞�

m=1

C
−1∕2m

j
‖L(m+j)f‖−1∕2m

2
=

∞�

m=1

C
−1∕2m

j

�
‖L2(m+j)f‖−1∕2(m+j)

2

� m+j

m

.
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Hence from the hypothesis 
∑

m=1 ‖Lmf‖
−

1

2m

2
= ∞, combined with Lemma 3.3 in [4] 

it follows that 
∑∞

m=1
M(2m)−1∕2m = ∞. So, by Theorem  2.2, and the remark follow-

ing it, even polynomials are dense in L1
e
(ℝ, d�f ) . Since f ∈ L2(ℝ,w(r)dr) , by Plancherel 

Tf ∈ L2
e
(ℝ, w̃(𝜆)d𝜆). Clearly the function �(�) = Tf (�) is even and

proving that � ∈ L1
e
(ℝ, d�f ) . Now given 𝜀 > 0 , there exists an even polynomial q such that

But notice that |Tf (�)|2 = (Tf (�) − q(�))Tf (�) + q(�)Tf (�). So from the Plancherel for-
mula, we see that

Now under the assumption that f vanishes on (0, �) , for some 𝜂 > 0 , it follows that, for 
0 < r < 𝜂 and for any m ∈ ℕ we have

Since q is an even polynomial, we can find another polynomial p such that 
p(�2 + �

2) = q(�). Therefore, 2.2 along with the fact that �
�
(0) = 1 gives

which together with 2.1 proves that ‖f‖2
2
< 𝜀. As this is true for every 𝜀 > 0, it follows that 

f = 0 completing the proof of the theorem.   ◻

Remark 2.3 A close examination of the above proof shows that Theorem 1.2 is valid under 
the weaker assumption that lim

r→0
Lmf (r) = 0 for all m.

In the following subsections, we discuss two very important examples of the operator L. 
We will be using them later in this article.

2.1  Bessel differential operator‑Hankel transform

Let 𝛼 > −
1

2
 . Suppose Δ

�
 stands for the operator

Let J
�
(t) stand for the Bessel function of order � defined by

∫
∞

−∞

|𝜑(𝜆)|d𝜇f (𝜆) = ∫
∞

0

|Tf (𝜆)|2w̃(𝜆)d𝜆 < ∞,

(2.1)∫
∞

0

|Tf (𝜆) − q(𝜆)||Tf (𝜆)|w̃(𝜆)d𝜆 < 𝜀.

‖f‖2
2
≤ �

∞

0

�Tf (𝜆) − q(𝜆)��Tf (𝜆)�w̃(𝜆)d𝜆 + �
∞

0

q(𝜆)Tf (𝜆)w̃(𝜆)d𝜆.

(2.2)Lmf (r) = c∫
∞

0

(𝜆2 + 𝛿
2)mTf (𝜆)𝜓

𝜆
(r)w̃(𝜆)d𝜆 = 0.

∫
∞

0

q(𝜆) Tf (𝜆)w̃(𝜆)d𝜆 = lim
r→0 ∫

∞

0

p(𝜆2 + 𝛿
2) Tf (𝜆)𝜓

𝜆
(r)w̃(𝜆)d𝜆 = 0

Δ
�
f (r) = r−(2�+1)

d

dr

(
r2�+1

d

dr
f (r)

)
.

J
�
(t) =

∞∑

k=0

(−1)k2−�−2kt�+2k

Γ(k + 1)Γ(k + � + 1)
.
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It is well known that for a suitable choice of c
�
 the functions ��

�
(r) = c

�
J
�
(�r)(�r)−� are 

solutions of the equation

It is convenient to subtract a positive constant from Δ
�
 and work with that. We define 

Δ
�,a ∶= Δ

�
− a2 where a ≠ 0. Clearly ��

�
 are eigenfunctions of Δ

�,a with eigenvalue 
−(�2 + a2) and they are even as a function of �. Also one can easily check that Δ

�,a is self-
adjoint on L2(ℝ+, r2�+1 dr) . The Hankel transform of order � for a suitable function f is 
defined as

It is easy to see from the definition of Bessel function that ��

−�
(r) = �

�

�
(r) and hence 

H
(�)f (�) is an even function of � . We remark that Dunkl transform of a radial function on 

ℝ
n is given by Hankel transform of order � for some � . For more details see Section 4. Now 

using the self-adjointness of the operator under consideration, we have

The inversion and Plancherel formula for the Hankel transform are described in the follow-
ing theorem.

Theorem 2.4 Assume that 𝛼 > −
1

2
 . We have the following inversion and Plancherel theo-

rem for the Hankel transform. 

(1) (Inversion) If f ∈ S(ℝ+) , then 

(2) (Plancherel) The map f → H
(�)f  extends as an isometry of L2(ℝ+, r2�+1dr) onto 

L2
e
(ℝ, |�|2�+1d�).

With these, finally we are ready to give a version of Chernoff’s theorem for L = −Δ
�,a . 

In fact, the proof is already done in Theorem  2.1. Note that here w(r) = r2�+1 and 
w̃(𝜆) = |𝜆|2𝛼+1 both have polynomial growth and Δ

�,a satisfies all the hypothesis of Theo-
rem 2.1.So, we have

Theorem 2.5 Let f ∈ L2(ℝ+, r2�+1dr) be such that Δm
�,a
f ∈ L2(ℝ+, r2�+1dr) for all m ∈ ℕ 

and satisfies the Carleman condition 
∑∞

m=1
‖Δm

�,a
f‖−1∕(2m)

2
= ∞. Then f cannot vanish in a 

neighbourhood of 0 unless it is identically zero.

2.2  Jacobi operators and Jacobi transforms

We briefly discuss some results from Jacobi analysis here. For more details we refer the 
reader to Koornwinder [20].

(Δ
�
+ �

2)f (r) = 0, f (0) = 1.

H
(�)f (�) = ∫

∞

0

f (r)��

�
(r)r2�+1dr.

H
(�)(Δ

�,af )(�) = −(�2 + a2)H(�)f (�).

f (r) = ∫
∞

0

H
(�)f (�)��

�
(r)�2�+1d�.
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Let �, �, � ∈ ℂ and −� ∉ ℕ. The Jacobi functions �(�,�)

�
 of type (�, �) are solutions of the 

initial value problem

where L
�,� is the Jacobi operator defined by

and � = � + � + 1. Thus Jacobi functions �(�,�)

�
 are eigenfunctions of L

�,� with eigenvalues 
−(�2 + �

2). These are even functions on ℝ and are expressible in terms of hypergeomet-
ric functions. For certain values of the parameters (�, �) these functions arise naturally as 
spherical functions on Riemannian symmetric spaces of noncompact type. We shall see 
this later.

The Jacobi transform of a suitable function f on ℝ+ is defined as

where the weight function w̃
𝛼,𝛽(r) = (2 sinh r)2𝛼+1(2 cosh r)2𝛽+1. This is also called the Fou-

rier-Jacobi transform of type (�, �). Since �(�,�)

−�
(r) = �

(�,�)

�
(r) , f̃ (𝜆) is an even function of � . 

It can be checked that the operator L
�,� is self-adjoint on L2(ℝ+, w̃

𝛼,𝛽(r)dr) and that

Under certain assumptions on � and � the inversion and Plancherel formula for this trans-
form take nice forms as described below.

Theorem  2.6 Let �, � ∈ ℝ , 𝛼 > −1 and |�| ≤ � + 1. Suppose c
�,�(�) denotes the Harish-

Chandra c-function defined by

(1) (Inversion) For f ∈ C∞
0
(ℝ) which is even we have 

(2) (Plancherel) For f , g ∈ C∞
0
(ℝ) which are even, the following holds 

The mapping f ↣ f̃  extends as an isometry from L2(ℝ+, w̃
𝛼,𝛽(r)dr) onto 

L2
e
(ℝ, |c

�,�(�)|−2d�).
Notice that L = −L

�,� satisfies the hypothesis of Theorem 2.1 with w(r) = w̃
𝛼,𝛽(r) . Also 

the weight w̃(𝜆) = |c
𝛼,𝛽(𝜆)|−2 is even and has polynomial growth (e.g., see [21].). Hence we 

have the following version of Chernoff’s theorem for the Jacobi operator:

(L
�,� + �

2 + �
2)�

(�,�)

�
(x) = 0, �

(�,�)

�
(0) = 1

L
�,� ∶=

d2

dr2
+ ((2� + 1) coth r + (2� + 1) tanh r)

d

dr

f̃ (𝜆) = ∫
∞

0

f (r)𝜑
(𝛼,𝛽)

𝜆
(r)w̃

𝛼,𝛽(r)dr

�L
𝛼,𝛽 f (𝜆) = −(𝜆2 + 𝜚

2)f̃ (𝜆).

c
�,�(�) =

2�−i�Γ(� + 1)Γ(i�)

Γ
(

1

2
(i� + �)

)
Γ
(

1

2
(i� + � − � + 1)

)

f (r) =
1

𝜋 ∫
∞

−∞

f̃ (𝜆)𝜑
(𝛼,𝛽)

𝜆
(r)|c

𝛼,𝛽(𝜆)|−2d𝜆

∫
∞

0

f (r)g(r)w̃
𝛼,𝛽(r)dr =

1

𝜋 ∫
∞

−∞

f̃ (𝜆)g̃(𝜆)|c
𝛼,𝛽(𝜆)|−2d𝜆.
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Theorem  2.7 Let �, � ∈ ℝ , 𝛼 > −1 and |�| ≤ � + 1. Suppose f ∈ L2(ℝ+, w̃
𝛼,𝛽(r)dr) is 

such that Lm
𝛼,𝛽

f ∈ L2(ℝ+, w̃
𝛼,𝛽(r)dr) for all m ∈ ℕ and satisfies the Carleman condition ∑∞

m=1
‖Lm

�,�
f‖−1∕(2m)

2
= ∞. Then f cannot vanish in a neighbourhood of 0 unless it is identi-

cally zero.

In the following sections we use the above results to prove Ingham type uncer-
tainty principles for spectral projections associated to Laplace-Beltrami operator and 
Dunkl-Laplacian.

3  Ingham’s theorem for rank one symmetric spaces

3.1  Preliminaries on Riemannian symmetric spaces of non‑compact type

In this section we briefly describe the harmonic analysis on rank one Riemannian sym-
metric spaces of noncompact type. General references for this section are the books of Hel-
gason [18] and [19].

Let G be a connected, noncompact semisimple Lie group with finite centre and K be 
the maximal compact subgroup of G. Suppose X = G∕K is the associated Riemannian 
symmetric space. Assume that X is of rank one. In view of the Iwasawa decomposition 
G = NAK with N nilpotent and A one-dimensional, every g ∈ G can be expressed uniquely 
as g = n(g) expA(g)k(g) where A(g) belongs to the Lie algebra of A. Let � and � denote 
the Lie algebra of G and K respectively. Then the corresponding Cartan decomposition 
reads as � = �⊕ �. Let � be the maximal abelian subspace of � . Since G is of rank one, the 
dimension of � is one. It is well known that the nonzero roots of the pair (�, �) are given by 
either {±�} or {±� ,±2�} where � is a positive root with respect to a positive weyl chamber. 
Let � ∶= (m

�
+ m2� )∕2 where m

�
 and m2� denote the multiplicities of the roots � and 2� 

respectively. The Haar measure dg on G is given by

The measure dx on X is induced from the Haar measure dg via the relation

Let o denote the identity eK in X = G∕K where e is the identity element of the group G. It 
is known that the tangent space of X at the point o can be identified with � . The restriction 
of the Killing form � of � on � induces a G-invariant Riemannian metric on X which is 
denoted by dX . Using this metric we define the open ball of radius l and centered at gK by

Suppose M denotes the centralizer of A in K. Then the function A ∶ X × K∕M → � defined 
by A(gK, kM) = A(k−1g) is right K-invariant in g and right M-invariant in K. In what fol-
lows we denote the elements of X and K/M by x and b respectively. Let �∗ denote the dual 
of � and �∗

ℂ
 be its complexification. Here in our case �∗ and �∗

ℂ
 can be identified with ℝ 

and ℂ respectively. For each � ∈ �∗
ℂ
 and b ∈ K∕M , the function x → e(i�+�)A(x,b) is a joint 

∫G

f (g)dg = ∫K ∫A ∫N

f (katn)e
2�tdkdtdn.

∫G

f (gK)dg = ∫X

f (x)dx.

B(gK, l) = {hK ∶ h ∈ G, dX(gK, hK) < l}.
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eigenfunction of all invariant differential operators on X. For f ∈ C∞
c
(X) , its Helgason Fou-

rier transform is a function f̃  on �∗
ℂ
× K∕M defined by

Moreover, we know that if f ∈ L1(X) then f̃ (., b) is a continuous function on �∗ which 
extends holomorphically to a domain containing �∗. The inversion formula for f ∈ C∞

c
(X) 

says that

where d� stands for usual Lebesgue measure on ℝ (i.e., �∗ ) , db is the normalised meas-
ure on K/M and c(�) is the Harish Chandra c-function. The constant cX appearing in the 
above formula is explicit and depends on the symmetric space X (See e.g., [19]). Also 
for f ∈ L1(X) with f̃ ∈ L1(�∗ × K∕M, |c(�)|−2dbd�),the above inversion formula holds 
for a.e. x ∈ X. Furthermore, the mapping f → f̃  extends as an isometry of L2(X) onto 
L2(�∗

+
× K∕M, |c(�)|−2d�db) which is known as the Plancherel theorem for the Helgason 

Fourier transform.

3.2  Ingham’s theorem for the Helgason Fourier transform

In this subsection we prove a version of Ingham’s theorem for the Helgason Fourier trans-
form. In order to state the result we need to consider certain irreducible representations of 
K with M-fixed vectors. Suppose K̂0 denotes the set of all irreducible unitary representa-
tions of K with M fixed vectors. Let � ∈ K̂0 and V

�
 be the finite dimensional vectors space 

on which � is realised. We know that V
�
 contains a unique normalised M-fixed vector (See 

Kostant [22]). Let v1 ∈ V
�
 be the M-fixed vector in V

�
 . Consider an orthonormal basis 

{v1, v2, ..., vd
�
} for V

�
 with v1 being the unique M-fixed vector. For � ∈ K̂0 and 1 ≤ j ≤ d

�
 , 

we define

It is clear that Y
�,1(eK) = 1 and Y

�,1 is M- invariant.

Proposition 3.1 ([19]) The set {Y
�,j ∶ 1 ≤ j ≤ d

�
, � ∈ K̂0} forms an orthonormal basis for 

L2(K∕M).

We can get an explicit realisation of K̂0 by identifying K/M with the unit sphere in � . 
Denoting Hm to be the space of homogeneous harmonic polynomials of degree m restricted 
to the unit sphere, we have the following spherical harmonic decomposition

It is known that each V
�
 is contained in some Hm and hence the functions Y

�,j can be identi-
fied with spherical harmonics.

Given � ∈ K̂0 and � ∈ �∗
ℂ
(i.e.,ℂ in our case) we consider the spherical functions of type 

� defined by

f̃ (𝜆, b) = ∫X

f (x)e(−i𝜆+𝜌)A(x,b)dx, 𝜆 ∈ �∗
ℂ
, b ∈ K∕M.

f (x) = cX ∫
∞

−∞ ∫K∕M

f̃ (�, b)e(i�+�)A(x,b)|c(�)|−2dbd�

Y
�,j(kM) = (vj, �(k)v1), kM ∈ K∕M.

L2(K∕M) = ⊕
∞
m=0

H
m.
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These are eigenfunctions of the Laplace-Beltrami operator ΔX with eigenvalue −(�2 + �
2). 

When � is the unit representation, Y
�,1 = 1. In this case Φ

�,� is called spherical function, 
denoted by Φ

�
 . More precisely,

Note that these functions are K-biinvariant. The spherical functions can be expressed 
in terms of Jacobi functions. In fact, if x = gK and g = kark

� (polar decomposition), 
Φ

�,�(x) = Φ
�,�(ar) . Suppose

For each � ∈ K̂0 there exists a pair of integers (p, q) such that

where �(�+p,�+q)

�
 are the Jacobi functions of type (� + p, � + q) and Q

�
 are the Kostant poly-

nomials given by

In the above we have used the notation (z)m = z(z + 1)(z + 2)...(z + m − 1). We also require 
the following result proved in Helgason [19]

Proposition 3.2 Let � ∈ K̂0 and 1 ≤ j ≤ d
�
 . Then we have

We are now ready to state and prove our version of Ingham’s theorem. In order to do 
so, given a suitable function f on X we consider the function

where � ∈ K̂0 and Q
�
 are as above. The following result is the analogue of Theorem 5.1 in 

[24] proved in the context of Hardy’s theorem.

Theorem 3.3 Let f ∈ L1(X) be such that f vanishes on an open neighbourhood of the iden-
tity V. Suppose for each � ∈ K̂0 and 1 ≤ j ≤ d

�
 the following estimate holds

where � is a positive decreasing function on [0,∞) which vanishes at infinity. Then, if 
∫ ∞

1
�(t)t−1dt = ∞ , f is identically zero.

Φ
�,�(x) ∶= ∫K

e(i�+�)A(x,kM)Y
�,1(kM)dk.

Φ
�
(x) = ∫K

e(i�+�)A(x,kM)dk.

� =
1

2
(m

�
+ m2� − 1), � =

1

2
(m2� − 1).

(3.1)Φ
�,�(x) = Q

�
(i� + �)(� + 1)−1

p
(sinh r)p(cosh r)q�

(�+p,�+q)

�
(r)

Q
�
(i� + �) =

(
1

2
(� + � + 1 + i�)

)

(p+q)∕2

(
1

2
(� − � + 1 + i�)

)

(p−q)∕2
.

(3.2)∫K

e(i�+�)A(x,k
�
M)Y

�,j(k
�

M)dk
�

= Y
�,j(kM)Φ

�,�(ar), x = kar ∈ X.

F̃
𝛿,j(𝜆) ∶= Q

𝛿
(i𝜆 + 𝜌)−1 ∫K

�f (𝜆, kM)Y
𝛿,j(kM)dk

(3.3)
|||F̃𝛿,j(𝜆)

||| ≤ C
𝛿,je

−𝜆𝜃(𝜆), 𝜆 > 0
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Proof Without loss of generality, we may assume that f vanishes on an open ball B(o, l). 
For � ∈ ℝ , we denote

Using the definition of Helgason Fourier transform, we obtain

So an application of Fubini along with the formula stated in the Proposition 3.2 reduces 3.4 
to

Now we define

But since f is right-K-invariant, it follows that f
�,j is a K-biinvariant function on G. More-

over, note that given x = gK ∈ B(o, l) , for any k�

∈ K , using the G-invariance of dX we 
have dX(o, k

�

x) = dX(eK, k
�

gK) = dX(o, gK) < l which shows that B(o, l) is left K-invariant, 
proving that f

�,j also vanishes on B(o, l). Now writing x = kar and making little abuse of 
notation we denote

It follows that f
�,j(r) vanishes on a neighbourhood of 0. Using this notations, integrating 

the RHS of 3.5 in polar coordinates, we have

where recall that the weight w̃
𝛼,𝛽 is given by w̃

𝛼,𝛽(r) = (2 sinh r)2𝛼+1(2 cosh r)2𝛽+1. Now as 
mentioned above, Φ

�,� ’s are known explicitly in terms of Jacobi functions :

for some integers p and q. Now recalling the definition of w̃
𝛼,𝛽 and writing

from 3.6 we have

F
�,j(�) = ∫K

f̃ (�, kM)Y
�,j(kM)dk.

(3.4)F
�,j(�) = ∫K ∫G∕K

f (x)e(−i�+�)A(x,kM)Y
�,j(kM)dxdk.

(3.5)F
�,j(�) = ∫G∕K

f (x)Y
�,j(kM)Φ

�,�(ar)dx.

f
�,j(x) = ∫K

f (k�x)Y
�,j(k

�M)dk�, x ∈ X.

f
�,j(r) = ∫K

f (k�ar)Y�,j(k
�M)dk�.

(3.6)F
𝛿,j(𝜆) = ∫

∞

0

f
𝛿,j(r)Φ𝜆,𝛿(ar)w̃𝛼,𝛽(r)dr

Φ
�,�(ar) = Q

�
(i� + �)(� + 1)−1

p
(sinh r)p(cosh r)q�

�+p,�+q

�
(r)

f̃
�,j(r) =

4−(p+q)

(� + 1)p
f
�,j(r)(sinh r)

−p(cosh r)−q

(3.7)�F
𝛿,j(𝜆) = ∫

∞

0

�f
𝛿,j(r)𝜑

𝛼+p,𝛽+q

𝜆
(r)w̃

𝛼+p,𝛽+q(r)dr
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where F̃
�,j(�) = Q

�
(i� + �)−1F

�,j(�). Hence it is clear that F̃
�,j(�) represents the Jacobi 

transform of type  (� + p, � + q) of the function f̃
�,j. Hence in view of the inversion formula 

for the Jacobi transform we get

Now considering the Jacobi operator L
�+p,�+q with parameters � + p, � + q , from the 

Plancherel formula we obtain

where d = � + � + p + q + 1. But from the hypothesis we have

Hence we have

Now under the assumption that �(�) ≥ 2�−1∕2 for � ≥ 1 , it is a routine matter to check that 
‖Lm

�+p,�+q
f̃
�,j‖2 satisfies the Carleman condition, see e.g., [4]. Since f̃

�,j vanishes in a neigh-
bourhood of zero, from Theorem 2.7 we conclude that f̃

�,j = 0. But this is true for every 
� ∈ K̂0 and any 1 ≤ j ≤ d

�
 . Hence f = 0. Now we consider the general case.

Recall that f vanishes on B(o, l). Let Ψ(t) = c(1 + t)−1∕2 , for t > 0 . Then it is easy to see 
that ∫ ∞

1
Ψ(t)t−1dt < ∞. Now by the rank one version of Theorem 4.2 of [4], there exists a 

smooth K-biinvariant function on G such that supp(g) ⊂ B(o, l∕2) and its spherical trans-
form satisfies

Now let us consider the function F ∶= f ∗ g. Then using the G-invariance of the Riemann-
ian metric, it can be shown that F vanishes on B(o, l/2). Also we see that, for kM ∈ K∕M 
and any �

Hence it follows that for any 𝜆 > 0

and also (� + Ψ)(�) ≥ 2�−1∕2 for � ≥ 1. Therefore, from the first part of the proof, it follows 
that F = 0. So we have �f (𝜆, kM)g̃(𝜆) = 0 for all � and kM. But we know that g̃(𝜆) is real 
analytic. Hence f = 0 proving the theorem.   ◻

f̃
�,j(r) =

1

2� ∫
∞

0

F̃
�,j(�)�

�+p,�+q

�
(r)|c

�+p,�+q(�)|−2d�.

‖Lm
𝛼+p,𝛽+q

�f
𝛿,j‖2L2(ℝ+ ,w̃

𝛼+p,𝛽+q(r)dr)
= C ∫

∞

0

(𝜆2 + d2)2m��F
𝛿,j(𝜆)�2�c𝛼+p,𝛽+q(𝜆)�−2d𝜆

|�F
𝛿,j(𝜆)| ≤ C

𝛿,je
−𝜆𝜃(𝜆), 𝜆 > 0.

(3.8)‖Lm
𝛼+p,𝛽+q

�f
𝛿,j‖2L2(ℝ+ ,w̃

𝛼+p,𝛽+q(r)dr)
≤ C

𝛿,j �
∞

0

(𝜆2 + d2)2me−2𝜆𝜃(𝜆)�c
𝛼+p,𝛽+q(𝜆)�−2d𝜆.

|g̃(𝜆)| ≤ Ce−|𝜆|Ψ(|𝜆|).

�F(𝜆, kM) = �f (𝜆, kM)g̃(𝜆).

||||
Q

�
(i� + �)−1 �K

F̃(�, kM)Y
�,j(kM)dk

||||
≤ C

�,je
−�(�+Ψ)(�)
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3.3  Ingham’s theorem for spectral projections

In this subsection we prove Theorem  1.1. We first consider the part of the theorem 
where the decay of the spectral projections is assumed to hold on the complement of 
the open set V over which f vanishes. This part is easily proved, thanks to Theorem 3.3 
proved in the previous subsection. For the other part we require some properties of the 
spherical means.

To begin with, we first describe the generalized spectral projections on X. Recall that 
the inversion formula for the Helgason Fourier transform says that

We define   

Now in view of the above inversion formula we have

Now recall that the elementary spherical functions are defined as

which together with the following formula (see Bray [8])

yields P
�
f = f ∗ Φ

�
. So, P

�
f  are eigenfunctions of the Laplace-Beltrami operator ΔX with 

eigenvalues −(�2 + �
2) . Therefore, these are the generalized spectral projections associated 

to ΔX and the equation 3.10 can be thought of as the resolution of the identity with respect 
to the operator ΔX . For more details about generalized spectral projections, we refer the 
reader to Bray [8].

Proof of Theorem 1.1 From the above discussion we note that

where x = gK ∈ X. But now from the definition of the Helgason Fourier transform, it fol-
lows that

Under the assumption that sup
x∈Vc

|f ∗ Φ
�
(x)| ≤ Ce−��(�) we see that

f (x) = cX ∫
∞

−∞ ∫K∕M

f̃ (�, b)e(i�+�)A(x,b)|c(�)|−2dbd�.

(3.9)P
�
f (x) ∶= ∫K∕M

f̃ (�, b)e(i�+�)A(x,b)db.

(3.10)f (x) = cX ∫
∞

0

P
�
f (x)|c(�)|−2d�.

Φ
�
(x) = ∫K

e(i�+�)A(x,kM)dk

Φ
�
(h−1g) = ∫K∕M

e(−i�+�)A(hK,b)e(−i�+�)A(gK,b)db

(3.11)f ∗ Φ
𝜆
(x) = ∫K∕M

e(−i𝜆+𝜌)A(x,b) f̃ (𝜆, b)db

(3.12)∫G∕K

f ∗ Φ
𝜆
(x)f̄ (x)dx = ∫K∕M

|f̃ (𝜆, b)|2db.
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which along with the identity 3.12 yields

This will guarantee the condition 3.3 of the Theorem 3.3. Hence by that theorem we con-
clude that f = 0.

Now in order to prove the remaining part, namely that the spectral projections cannot 
have that particular pointwise decay on V, we consider the spherical means Ahf  defined by

Observe that Ahf (g) is a right K-invariant function of g ∈ G and hence we can consider it 
as a function on the symmetric space X. Also since f is right K-invariant, it can be easily 
checked that the function Fg defined by

is a K-biinvariant function on G. So, we have

An application of Fubini yields

which, by a change of variable transforms to

Recalling the fact that Φ
�
(h) = Φ

�
(h−1) , K-biinvariance of Φ

�
 gives

Now in view of inversion formula for spherical Fourier transform we have the following 
spectral form :

But since Φ
�
 ’s are eigenfunctions of the Laplace-Beltrami operator ΔX with eigenvalue 

−(|�|2 + �
2) , we have

(3.13)�G∕K

f ∗ Φ
𝜆
(x)f̄ (x)dx = �Vc

f ∗ Φ
𝜆
(x)f̄ (x)dx ≤ Ce−𝜆𝜃(𝜆)

(3.14)�K∕M

|f̃ (𝜆, b)|2db ≤ e−𝜆𝜃(𝜆)

(3.15)Ahf (g) = ∫K

f (gkh)dk .

Fg(h) = Ahf (g)

F̃g(�) = ∫G

(

∫k

f (gkh)dk

)
Φ

�
(h)dh.

F̃g(�) = ∫K ∫G

f (gkh)Φ
�
(h)dh dk

F̃g(�) = ∫K ∫G

f (h)Φ
�
(k−1g−1h)dh dk.

(3.16)F̃g(�) = ∫G

f (h)Φ
�
(h−1g) = f ∗ Φ

�
(g).

(3.17)Fg(h) = C ∫
∞

0

Φ
�
(h)f ∗ Φ

�
(g)|c(�)|−2d�.

Δ̃m
X
Fg(�) = −(|�|2 + �

2)mf ∗ Φ
�
(g).
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Hence from Plancherel theorem it follows that

Now from x = gK ∈ V  , by hypothesis we obtain

So we can check that ‖Δm
X
Fx‖2 satisfies the Carleman condition. But since f vanishes on V 

and x ∈ V  , it follows that Fx vanishes on a neighbourhood of identity. Hence by Chernoff’s 
theorem ( [4, Theorem 1.3]) we get Fx = 0. But then form 3.16 it follows that

But since f ∗ Φ
�
 are eigenfunctions of the Laplace-Beltrami operator which is elliptic, 

f ∗ Φ
�
 is real analytic. So vanishing on V forces f ∗ Φ

�
 to be zero identically. Since this is 

true for every � , it follows that f = 0.   ◻

Remark 3.4 The above theorem is sharp in the sense that if ∫ ∞

1
𝜃(t)t−1dt < ∞ , there exists 

f ∈ C∞
c
(G∕∕K) such that |P

�
f (x)| ≤ Ce−��(�). Indeed, by Theorem  4.2 in [4], there exist 

f ∈ C∞
c
(G∕∕K) such that |f̃ (𝜆)| ≤ Ce−𝜆𝜃(𝜆) for all 𝜆 > 0. Now from the definition 3.9 it fol-

lows that P
𝜆
f (x) = f̃ (𝜆)Φ

𝜆
(x). Using the fact that |Φ

�
(x)| ≤ Φ0(x) ≤ C (See Bray [8]), we 

obtain |P
�
f (x)| ≤ Ce−��(�) proving the claimed sharpness.

We conclude this section by briefly describing a version of Ingham type theorem for 
right K-invariant functions on rank one semisimple Lie groups, which can be obtained as 
an immediate consequence of Theorem 3.3. We need some preparations for that.

For � ∈ �∗
ℂ
 which is just ℂ in our case, we consider the irreducible representations �

�
 

on the rank one semisimple Lie group G under consideration acting on the Hilbert space 
L2(K∕M) , defined by

where g = k(g)expA(g)n(g) is the Iwasawa decomposition of g ∈ G . It is well known that 
�
�
 is unitary if and only if � is real (i.e., in �∗ ). These are called the class-1 principle series 

representations. We know that the group Fourier transform for right K-invariant function 
on G takes the form

Now considering f as a function on X = G∕K , the Helgason Fourier transform of f is 
related to the group Fourier transform via the relation

Here Y0 is the function corresponding to the unit representation of K̂0. It is easy to see that 
for any � ∈ K̂0 and 1 ≤ j ≤ d

�
 we have

‖Δm
X
Fg‖22 = C ∫

∞

o

(�2 + �
2)2m�f ∗ Φ

�
(g)�2�c(�)�−2d�.

‖Δm
X
Fx‖22 ≤ C �

∞

o

(�2 + �
2)2me−2��(�)�c(�)�−2d�.

f ∗ Φ
�
(x) = 0, for all x ∈ V

�
�
(g)f (k) = e(i�+�)A(g,k)f (k(g−1k))

�
�
(f ) = ∫G

f (g)�
�
(g)dg.

f̃ (�, b) = �
�
(f )Y0(b), b ∈ K∕M.
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This observation together with Theorem 3.3 yields the following result:

Corollary 3.5 Let � be a positive decreasing function defined on [0,∞) that vanishes at 
infinity. Suppose f is a right K- invariant, integrable function on G which vanishes on an 
open neighbourhood of identity. Assume that for any � ∈ K̂0 and 1 ≤ j ≤ d

�

Then ∫ ∞

1
�(t)t−1dt = ∞ implies f = 0.

4  Spectral projections associated to Dunkl‑laplacian

In this section we prove an uncertainty principle for the spectral projections for the Dunkl-
Laplacian. To begin with, we first describe the basic theory of Dunkl transform in the fol-
lowing subsection.

4.1  Background for Dunkl transform

For v(≠ 0) ∈ ℝ
n , the reflection rv with respect to hyperplane perpendicular to v is given by 

rv(x) ∶= x − 2
�
⟨x, v⟩∕‖v‖2

�
v, x ∈ ℝ

n. Let R be a reduced root system in ℝn i.e., R consists 
of finite number of nonzero vectors in ℝn with the property that ru(v) ∈ R for any u, v ∈ R 
and moreover if u = av then a = ±1. Let us fix a set of positive roots R+. Suppose G is a 
subgroup of the orthogonal group O(n) generated by the reflections {rv ∶ v ∈ R}.

Let � ∶ R+
→ [0,∞) be a multiplicity function which is G invariant. Associated to this 

root system R and the multiplicity function � , Dunkl considered the first-order differential-
difference operators defined by

where ej ’s are standard unit vectors in ℝn . These operators commute with each other i.e., 
DjDi = DiDj, ∀i, j . Let V

�
 denote the unique operator which intertwines the algebra gener-

ated by Dj ’s and the algebra of partial differential operators, determined by

where Pm denotes the space of homogeneous polynomials of degree m. Given x, y ∈ ℝ
n , 

consider the function E(x, y) ∶= V
�
(e⟨.,y⟩)(x) . It is known that for fixed y, the function E(., 

y) is the unique solution of Djf (x) = ⟨y, ej⟩f (x), f (0) = 1 . Moreover, E can be extended to 
ℂ

n × ℂ
n holomorphically. Several important properties of this function are listed in the fol-

lowing proposition:

∫K∕M

f̃ (�, b)Y
�,j(b)db = ⟨�

�
(f )Y0, Y�,j⟩.

���Q�
(i� + �)−1⟨�

�
(f )Y0, Y�,j⟩

��� ≤ C
�,je

−��(�).

Djf (x) =
�f

�xj
+

�

v∈R+

�v

f (x) − f (rv(x))

⟨x, v⟩ ⟨v, ej⟩, 1 ≤ j ≤ n

V
𝜅
Pm ⊂ Pm, V𝜅

1 = 1 and DjV𝜅
= V

𝜅

𝜕

𝜕xj
, 1 ≤ j ≤ n
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Proposition 4.1 For any z,w ∈ ℂ
n and � ∈ ℂ , E(z,w) = E(w, z) , E(�z,w) = E(z, �w) and 

E satisfies the estimate |E(z,w)| ≤ e|z|.|w| for all z,w ∈ Cn. Moreover,

where the constant c
�
 is defined by c−1

�
∶= ∫

ℝn e
−|x|2∕2h2

�
(x)dx.

In the above proposition, the weight function h2
�
 is defined by

It is easy to see that this function is positive homogeneous of degree 2� where 
� ∶=

∑
v∈R+ �v . Moreover, it is invariant under the reflection group G. We are now ready to 

define Dunkl transform. Note that the preceding proposition suggests that E(x, iy) plays the 
role of ei⟨x,y⟩ in Euclidean harmonic analysis.

Given f ∈ L1(ℝn, h2
�
(x)dx) , the Dunkl transform of f is defined as

It is worth pointing out that when � = 0 , then V
�
= id and h2

�
= 1 , thus the Dunkl trans-

form coincides with the Fourier transform. In this sense, this serves as a generalisation 
of Euclidean Fourier transform. We also have Plancherel and inversion formula for Dunkl 
transform. We record those in the following theorem:

Theorem 4.2 

(1) (Plancherel) F
�
 extends to the whole of L2(ℝn, h2

�
(x)dx) as an isometry onto itself.

(2) (Inversion) For f and FKf ∈ L1(ℝn, h2
�
(x)dx) we have the following inversion formula 

The Dunkl-Laplacian is defined as Δ
�
∶=

∑n

j=1
D2

j
. Let Hm(h

2
�
) denote the space of 

all h-harmonic polynomials of degree m i.e., all those P ∈ Pm such that Δ
�
P = 0. The 

spherical h-harmonics are restriction of h-harmonic polynomials to Sn−1 . We consider 
the following inner product

where a−1
�

= ∫
Sn−1

h2
�
(�)d�(�). With respect to this inner product, the space L2(Sn−1, h2

�
d�) 

can be decomposed as L2(Sn−1, h2
�
d�) =

⨁∞

m=0
Hm(h

2
�
). We also have the following very 

useful formula proved in [11]

Proposition 4.3 Let r > 0 . Given Sh
m
∈ Hm(h

2
�
) , for x = |x|x� ∈ ℝ

n we have

c
� ∫

ℝn

E(z, x)E(w, x)h2
�
(x)e−|x|

2∕2dx = ez
2+w2

E(z,w)

h2
�
(x) ∶=

�

v∈R+

�⟨x, v⟩�2�v , x ∈ ℝ
n.

Fkf (�) = c
� ∫

ℝn

f (x)E(x,−i�)h2
�
(x)dx, � ∈ ℝ

n.

f (x) = c
� ∫

ℝn

F
�
f (�)E(ix, �)h2

�
(�)d�, a.e. x ∈ ℝ

n.

(f , g)
�
= a

� ∫Sn−1
f (�)g(�)h2

�
(�)d�(�)
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where �
�
= � + (n − 2)∕2 . Moreover, the function given by the above integral is an eigen-

function of Δ
�
 with eigenvalue −r2.

As an immediate consequence of this result, we conclude that the Dunkl transform of 
reasonable radial function f on ℝn is given by the Hankel transform H

�
�
f .

For suitable functions f, the generalised translation operator is defined by

Using this one can define the Dunkl convolution as

It can be easily checked that F
�
(f ∗

�
g) = F

�
fF

�
g. For more about this translation and 

convolution, we refer the reader to work of Thangavelu-Yu [25].

4.2  Ingham’s theorem for the Dunkl transform

In this subsection we prove a version of Ingham type theorems for Dunkl transform. We 
start with constructing a compactly supported function whose Dunkl transform has Ingham 
type decay. In order to do so, we need a Paley-Wiener type theorem for Hankel transform. 
For that we first define a function space H as follows: we say that a function g on ℂ belongs 
to H if g is an even entire function and there are positive constants A and Cm such that for 
all z ∈ ℂ and for all m = 0, 1, 2, ... , g satisfies the following:

We have the following Paley-Wiener type theorem described in Koornwinder [20].

Theorem 4.4 Let 𝛼 > −1∕2. The mapping f → H
�
f  is a bijection from C∞

0
(ℝ)e , the set of 

all compactly supported even smooth function on ℝ , onto H.

As a consequence we obtain

Proposition 4.5 Let � be a positive decreasing function defined on [0,∞) that van-
ishes at infinity. Assume that ∫ ∞

1
𝜃(t) t−1dt < ∞. Then there exist a nontrivial radial 

smooth function f on ℝn , supported in a small neighbourhood of the origin, satisfying 
|F

�
f (�)| ≤ Ce−|�|�(|�|).

Proof Since ∫ ∞

1
𝜃(t) t−1dt < ∞ , by Ingham’s theorem (see [13]) there exist an even com-

pactly supported smooth function f0 on ℝ , whose Fourier transform satisfies

a
� ∫Sn−1

Sh
m
(�)E(x,−ir�)h2

�
(�)d�(�) = (−i)m2��Sh

m
(x�)(r|x|)−�� Jm+�

�
(r|x|),

�yf (x) ∶= c
� ∫

ℝn

F
�
f (�)E(ix, �)E(iy, �)h2

�
(�)d�, x ∈ ℝ

n.

f ∗
𝜅
g(x) = c

𝜅 ∫
ℝn

f (y)𝜏xǧ(y)h
2
𝜅
(y)dy.

|g(z)| ≤ Cm(1 + |z|)−meA|Im(z)|.

(4.1)|f̂0(𝜉)| ≤ Ce−|𝜉|𝜃(|𝜉|), 𝜉 ∈ ℝ.
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But in view of the Paley-Wiener theorem for the Fourier transform (See e.g., [23]), f̂0 ∈ H. 
Therefore, applying Theorem  4.4 with � = �

�
 we get g ∈ C∞

0
(ℝ)e such that H

𝜆
𝜅
g = f̂0. 

Now define f on ℝn by f (x) = g(|x|), x ∈ ℝ
n. Finally using the estimate 4.1, recalling the 

fact that Dunkl transform of radial function is given by Hankel transform of type �
�
 we are 

done.   ◻

Theorem 4.6 Let f ∈ L1(ℝn, h2
�
(x)dx) be such that f vanishes on an open neighbourhood of 

the origin V ⊂ ℝ
n. For each non-negative integer m and Sh

m
∈ Hm(h

2
�
) assume that

where � is a positive decreasing function on [0,∞) which vanishes at infinity. Then, if 
∫ ∞

1
�(t)t−1dt = ∞ , f is identically zero.

Proof Without loss of generality we can assume that f vanishes on a ball B(0, l) of radius l 
for some l > 0 . Note that using the definition of Dunkl transform we have

Now in view of Proposition 4.3, we have

Now writing  fm(r) = ∫
Sn−1

f (rw)Sh
m
(w)h2

�
(w)d�(w) where x = rw, w ∈ Sn−1,the polar coor-

dinate representation transforms the above equation to

Again letting g(r) = fm(r)r
−m , we have

Now by the hypothesis, it is clear that g vanishes on a neighbourhood of zero. Let us denote 
�
�
+ m by � . Hence using the Plancherel theorem for Hankel transform (See Theorem 2.6), 

for any k ∈ ℕ we have

Under the assumption that �(�) ≥ 2�−1∕2 for � ≥ 1 , it is a routine matter to check that 
‖Δk

�,a
g‖2 satisfies the Carleman condition (see [4]) and hence by Theorem 2.5, we obtain 

g = 0. So fm = 0 i.e., (f (r.), Sh
m
)
�
= 0 which is true for any h-spherical harmonics. There-

fore, f = 0.
To treat the general case we take �(t) = c(1 + t)−1∕2 . Then it can be easily checked that 

∫ ∞

1
𝜓(t)t−1dt < ∞. By Proposition 4.5, there exist a radial h ∈ C∞

c
(ℝn) supported in B(0, 

l/2) such that |F
�
h(�)| ≤ Ce−|�|�(|�|). Define F ∶= f ∗

�
h . Then in view of [25, Proposition 

3.13], F vanishes on B(0, l/2). Moreover, since F
�
(F)(�,�) = Fkf (�,�)F�

h(�) , we see that

||||
𝜆
−m �Sn−1

Fkf (𝜆,𝜔)S
h
m
(𝜔)h2

𝜅
(𝜔)d𝜎(𝜔)

||||
≤ Cme

−𝜆𝜃(𝜆), 𝜆 > 0

∫Sn−1
Fkf (�,�)S

h
m
(�)h2

�
(�)d�(�) = c

� ∫
ℝn

(

∫Sn−1
E(−ix, ��)Sh

m
(�)h2

�
(�)d�(�)

)
f (x)h2

�
(x)dx.

(4.2)∫Sn−1
Fkf (�,�)S

h
m
(�)h2

�
(�)d�(�) = ∫

ℝn

(�|x|)−�� Jm+�
�
(�|x|)Sh

m

(
x

|x|

)
h2
�
(x)dx.

(4.3)∫Sn−1
Fkf (�,�)S

h
m
(�)h2

�
(�)d�(�) = C�m ∫

∞

0

fm(r)r
−m

J
�
�
+m(�r)

(�r)��+m
r2(��+m)+1dr.

(4.4)�
−m ∫Sn−1

Fkf (�,�)S
h
m
(�)h2

�
(�)d�(�) = CH

�
�
+mg(�).

‖Δk
�,a
g‖2

2
= C �

∞

0

(�2 + a2)2k�H
�
g(�)�2�2�+1d� ≤ C �

∞

0

(�2 + a2)2ke−2��(�)�2�+1d�.
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where (� + �)(�) ≥ 2�−1∕2 for � ≥ 1 . Hence by the previous case, F = 0 and since h is a 
nontrivial function, we conclude that f = 0 . This completes the proof.   ◻

4.3  Ingham’s theorem for the spectral projections

For 𝜆 > 0, 𝜔 ∈ Sn−1 we write the Dunkl transform in the form

Then we can rewrite the inversion formula as

But in view of the Proposition 4.3

which allows us to write the inversion formula in the following form:

With the above definition, it is easy to see that

and consequently the Plancherel theorem takes the form

We remark that given a reasonable function f, the function

is an eigenfunction of Δ
�
 with eigenvalue −�2 (See Proposition 4.3). Therefore, these are 

just the generalized spectral projections associated to the Dunkl-Laplacian. We have the 
following Ingham type uncertainty principle for these generalized spectral projections.

Proof of Theorem 1.3 Assume that supx∈Vc |f ∗ �
�,�(x)| ≤ Ce−��(�) . Then as f vanishes on V

||||
�
−m �Sn−1

FkF(�,�)S
h
m
(�)h2

�
(�)d�(�)

||||
≤ Cme

−�(�+�)(�)

F
�
f (��) = c

� ∫
ℝn

f (x)E(x,−i��)h2
�
(x)dx.

f (x) = c
� ∫

∞

0

(

∫Sn−1
F

�
f (��)E(ix, ��)h2

�
(�)d�(�)

)
�
2�

�
+1d�.

�
�,�(x) ∶= ∫Sn−1

E(ix, ��)h2
�
(�)d�(�) = 2��a−1

�

J
�
�
(�|x|)

(�|x|)��

f (x) = c
� ∫

∞

0

f ∗
�
�
�,�(x)�

2�
�
+1d�.

c
𝜅 ∫

ℝn

f ∗
𝜅
𝜑
𝜅,𝜆(x)f̄ (x)h

2
𝜅
(x)dx = ∫Sn−1

|F
𝜅
f (𝜆𝜔)|2 h2

𝜅
(𝜔)d𝜎(𝜔)

c
� ∫

∞

0

⟨f ∗
�
�
�,�, f ⟩�2��+1d� = ∫

ℝn

�f (x)�2h2
�
(x)dx.

(4.5)f ∗
�
�
�,�(x) = ∫Sn−1

F
�
f (��)E(ix, ��)h2

�
(�)d�(�)
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Now expanding F
�
f (�, .) in terms of the h−Spherical harmonics, we see that the hypothesis 

of Theorem 4.6 is satisfied. Hence f = 0.

To treat the other case we consider the Dunkl spherical means f ∗
�
�r which has the 

integral representation

For any fixed x ∈ V  we consider the radial function Fx(r) = f ∗
�
�r(x) which vanishes in a 

neighbourhood of zero. Since �
�
(r) is an eigenfunction of Δ

�
�
,a with eigenvalue −(�2 + a2) 

it follows that

We can check that the sequence ‖Δm
�
�
,a
Fx‖2 satisfies the Carleman condition and hence by 

Chernoff’s theorem we conclude f ∗
�
�r(x) = 0 for all r > 0. But then the Plancherel theo-

rem for the Hankel transform gives

for all x ∈ V . Thus, the real analytic function f ∗ �
�,� vanishes on V and hence vanishes 

everywhere. As this is true for any � we get f = 0.   ◻

Remark 4.7 This theorem is sharp in the sense that when ∫ ∞

1
𝜃(t)t−1dt < ∞ , there exist 

f ∈ C∞
c
(ℝn) which is radial and satisfies |f ∗

�
�
�,�(x)| ≤ Ce−��(�) for all 𝜆 > 0. The proof 

of this is not very difficult. In fact, by Proposition 4.5, there exist compactly supported 
smooth radial function f on ℝn satisfying |F

�
f (�)| ≤ Ce−|�|�(|�|) for all � ∈ ℝ

n. Now by 4.5, 
it follows that f ∗

�
�
�,�(x) = F

�
f (�)�

�,�(x) . Finally we use the boundedness of Bessel 
functions to conclude that |f ∗

�
�
�,�(x)| ≤ Ce−��(�).

Remark 4.8 Recall that when � = 0 the above analysis reduces to the usual Fourier analysis 
on ℝn. Consequently, the generalized spectral projections associated to the Laplacian 
Δ ∶=

∑n

j=1

�
2

�x2
j

 on ℝn take the form

where f̂ (𝜆𝜔) denotes the Euclidean Fourier transform written in polar coordinates. So, as 
an immediate consequence of the above theorem we have the following uncertainty princi-
ple for the generalized spectral projections:

Corollary 4.9 Let � be a positive decreasing function defined on [0,∞) that vanishes at 
infinity. Assume that ∫ ∞

1
�(t) t−1dt = ∞. Let f ∈ L1(ℝn, dx) be a nontrivial function vanish-

ing on an open set V. Then the estimate supx∈V |f ∗ �
�
(x)| ≤ Ce−� �(�) uniformly for all � 

cannot hold. If V contains an open neighbourhood of the origin, then the uniform estimate 
supx∈Vc |f ∗ �

�
(x)| ≤ Ce−� �(�) can also not hold.

(4.6)�Sn−1
|F

𝜅
f (𝜆,𝜔)|2 h2

𝜅
(𝜔)d𝜎(𝜔) = c

𝜅 �Vc

f ∗
𝜅
𝜑
𝜅,𝜆(x)f̄ (x)h

2
𝜅
(x)dx ≤ Ce−𝜆𝜃(𝜆).

f ∗
�
�r(x) = c

� ∫
∞

0

f ∗
�
�
�,�(x)��,�(r) �

2�
�
+1d�.

‖Δm
�
�
,a
Fx‖22 = �

∞

0

(�2 + a2)2m�f ∗
�
�
�,�(x)�2�2��+1d� ≤ C �

∞

0

(�2 + a2)2me−2� �(�)�2��+1d�.

∫
∞

0

|f ∗ �
�,�(x)|2 �2��+1d� = 0

f ∗ 𝜑
𝜆
(x) = (2𝜋)−n∕2 ∫Sn−1

f̂ (𝜆𝜔)ei𝜆x.𝜔d𝜎(𝜔)
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