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Abstract Let T = (T1, . . . , Tn) be a commuting tuple of bounded linear operators on a Hilbert space
H. The multiplicity of T is the cardinality of a minimal generating set with respect to T . In this paper,
we establish an additive formula for multiplicities of a class of commuting tuples of operators. A special
case of the main result states the following: Let n ≥ 2, and let Qi, i = 1, . . . , n, be a proper closed shift
co-invariant subspaces of the Dirichlet space or the Hardy space over the unit disc in C. If Q⊥

i , i = 1, . . . , n,
is a zero-based shift invariant subspace, then the multiplicity of the joint Mz = (Mz1 , . . . , Mzn )-invariant
subspace (Q1 ⊗ · · · ⊗ Qn)⊥ of the Dirichlet space or the Hardy space over the unit polydisc in Cn is
given by

multMz |(Q1⊗···⊗Qn)⊥
(Q1 ⊗ · · · ⊗ Qn)⊥ =

n∑
i=1

(multMz |Q⊥
i

(Q⊥
i )) = n.

A similar result holds for the Bergman space over the unit polydisc.

Keywords: Hardy space; Dirichlet space; Bergman and weighted Bergman spaces; polydisc; rank;
multiplicity; joint invariant subspaces; semi-invariant subspaces; zero-based invariant
subspaces; tensor product Hilbert spaces
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1. Introduction

This paper is concerned with an additive formula for a numerical invariant of commuting
tuples of bounded linear operators on Hilbert spaces. The additive formula arises naturally
in connection with a class of simple invariant subspaces of the two-variable Hardy space
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H2(D2) [5]. From the function Hilbert space point of view, our additive formula is more
refined for zero-based invariant subspaces of the Dirichlet space, the Hardy space, the
Bergman space and the weighted Bergman spaces over the open unit polydisc Dn in Cn.

To be more specific, let us first define the numerical invariant. Given an n-tuple of
commuting bounded linear operators T := (T1, . . . , Tn) on a Hilbert space H, we denote
by

multT (H) = min{#G : [G]T = H, G ⊆ H},
where

[G]T = span{T k (G) : k ∈ Zn
+},

and T k = T k1
1 · · ·T kn

n for all k = (k1, . . . , kn) ∈ Zn
+. If

multT (H) = m < ∞,

then we say that the multiplicity of T is m. One also says that T is m-cyclic. If m = 1,
then we also say that T is cyclic. A subset G of H is said to be generating subset with
respect to T if [G]T = H.

We pause to note that the computation of multiplicities of (even concrete and simple)
bounded linear operators is a challenging problem (perhaps due to its inherent dynamical
nature). We refer Rudin [17] for concrete (as well as pathological) examples of invariant
subspaces of H2(D2) of infinite multiplicities and [4, 5, 11–13] for some definite results
on computations of multiplicities (also see [7]).

The following example, as hinted above, illustrates the complexity of computations of
the multiplicities of general function Hilbert spaces. As a first step, we consider the Hardy
space H2(D) over D (the space of all square summable analytic functions on D) and the
multiplication operator Mz by the coordinate function z. Let S be a closed Mz-invariant
subspace of H2(D). Then Q = S⊥ is a closed M∗

z -invariant subspace of H2(D). It then
follows from Beurling that

multMz|S (S) = 1,

that is, Mz|S on S is cyclic. Moreover, taking into account that multMz
(H2(D)) = 1,

we obtain (cf. Proposition 2.1)

multPQMz|Q(Q) = 1,

where PQ denotes the orthogonal projection of H2(D) onto Q.
Now we consider the commuting pair of multiplication operators Mz = (Mz1 ,Mz2) on

H2(D2) (the Hardy space over the bidisc). Observe that H2(D2) ∼= H2(D) ⊗ H2(D). Let
Q1 and Q2 be two non-trivial closed M∗

z -invariant subspaces of H2(D). Then Q1 ⊗Q2 is a
joint (M∗

z1
,M∗

z2
)-invariant subspace of H2(D2), and so (Q1 ⊗Q2)⊥ is a joint (Mz1 ,Mz2)-

invariant subspace of H2(D2). Set Mz |(Q1⊗Q2)⊥ = (Mz1 |(Q1⊗Q2)⊥ ,Mz2 |(Q1⊗Q2)⊥). An
equivalent reformulation of Douglas and Yang’s question (see page 220 in [6] and also
[5]) then takes the following form: Is

multMz |(Q1⊗Q2)⊥ (Q1 ⊗Q2)⊥ = 2?

The answer to this question is yes and was obtained by Das along with the first two
authors in [5]. This result immediately motivates (see page 1186, [5]) the following natural

Downloaded from https://www.cambridge.org/core. 20 Jul 2021 at 06:30:25, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


Multiplicities, invariant subspaces and an additive formula 281

question: Consider the joint Mz = (Mz1 , . . . ,Mzn
)-invariant subspace (Q1 ⊗ · · · ⊗ Qn)⊥

of H2(Dn) where Q1, . . . ,Qn are non-trivial closed M∗
z -invariant subspaces of H2(D).

Is then

multMz |(Q1⊗···⊗Qn)⊥ (Q1 ⊗ · · · ⊗ Qn)⊥ = n?

This can be reformulated more concretely as follows: Let Hi be the Dirichlet space, the
Hardy space, the Bergman space, or the weighted Bergman spaces over D (or, more gener-
ally, a reproducing kernel Hilbert spaces of analytic functions on D for which the operator
Mz of multiplication by the coordinate function z on Hi is bounded), i = 1, . . . , n. Suppose
Q⊥

i is an Mz-invariant closed subspace of Hi, i = 1, . . . , n. Is then

multMz |(Q1⊗···⊗Qn)⊥
(Q1 ⊗ · · · ⊗ Qn)⊥ =

n∑
i=1

(multMz|Q⊥
i

(Q⊥
i ))?

In this paper, we aim to propose an approach to verify the above equality for a large class
of function Hilbert spaces over Dn. The methods and techniques used in this paper are
completely different from [5] and can also be applied for proving more powerful results
in the setting of general Hilbert spaces. There is indeed a more substantial answer, valid
in a larger context of tensor products of Hilbert spaces (see Theorem 4.3).

Let H ⊆ O(D) be a reproducing kernel Hilbert space and let the operator Mz is bounded
on H. Suppose S is a Mz-invariant closed subspace of H. We say that S is a zero-based
invariant subspace if there exists λ ∈ D such that f(λ) = 0 for all f ∈ S.

A particular case of our main theorem is the following: Let Hi be the Dirichlet space,
the Hardy space, the Bergman space, or the weighted Bergman spaces over D. Let Si be
an M∗

z -invariant closed subspace of Hi, i = 1, . . . , n. Suppose Si := Q⊥
i is a zero-based

Mz-invariant closed subspace of Hi such that

dim(Si � zSi) < ∞ and [Si � zSi]Mz|Si
= Si,

for all i = 1, . . . , n, then

multMz |(Q1⊗···⊗Qn)⊥ (Q1 ⊗ · · · ⊗ Qn)⊥ =
n∑

i=1

(multMz|Q⊥
i

(Q⊥
i )) =

n∑
i=1

dim(Si � zSi).

Note that the finite dimensional and generating subspace assumptions are automatically
satisfied if Hi is the Hardy space or the Dirichlet space. However, if S is an Mz-invariant
closed subspace of the Bergman space over D, then

dim(S � zS) ∈ N ∪ {∞}.
We refer the reader to [2, 8, 9] for more information. See also [10] for related results in
the setting of weighted Bergman spaces over D.

The proof of the above additivity formula uses generating wandering subspace property,
geometry of (tensor product) Hilbert spaces, and subspace approximation technique.

The paper is organized as follows. In § 2, we set up notation and prove some basic
results on weak multiplicity of (not necessarily commuting) n-tuples of operators on
Hilbert spaces. In § 3, we study a lower bound multiplicity of joint invariant subspaces
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of a class of commuting n-tuples of operators. The main theorem on additivity formula
is proved in § 4. The paper is concluded in § 5 with corollaries of the main theorem and
some general discussions.

2. Notation and basic results

In this section, we introduce the notion of weak multiplicities and describe some prepara-
tory results. This notion is not absolutely needed for the main results of this paper as
we shall mostly work in the setting of multiplicities. However, we believe that the idea
of weak multiplicities of (not necessary commuting) tuples of operators might be of inde-
pendent interest. Throughout this paper, the following notation will be adopted: Ti is a
bounded linear operator on a separable Hilbert space Hi, i = 1, . . . , n, and n ≥ 2. We set

H̃ = H1 ⊗ · · · ⊗ Hn

and

T̃ = (T̃1, . . . , T̃n).

where

T̃i = IH1 ⊗ · · · ⊗ IHi−1 ⊗ Ti ⊗ IHi+1 ⊗ · · · ⊗ IHn
∈ B(H̃),

for all i = 1, . . . , n. It is now clear that (T̃1, . . . , T̃n) is a doubly commuting tuple of
operators on H̃ (that is, T̃iT̃j = T̃j T̃i and T̃ ∗

p T̃q = T̃qT̃
∗
p for all 1 ≤ i, j ≤ n and 1 ≤ p <

q ≤ n). Moreover, if multTi
(Hi) = 1 for all i = 1, . . . , n, then multT̃ (H̃) = 1. We denote

by Dn the unit polydisc in Cn and by z the element (z1, . . . , zn) in Cn.
The above notion of ‘tensor product of operators’ is suggested by natural (and analytic)

examples of reproducing kernel Hilbert spaces over product domains in Cn. For instance,
if {α1, . . . , αn} ⊆ N, then

Kα(z ,w) :=
n∏

i=1

1
(1 − ziw̄i)αi

(z ,w ∈ Dn),

is a positive definite kernel over Dn, and the multiplication operator tuple (Mz1 , . . . ,Mzn
)

defines bounded linear operators on the corresponding reproducing kernel Hilbert space
L2

α(Dn) (known as the weighted Bergman space over Dn with weight α = (α1, . . . , αn)).
It follows that (cf. [19])

H̃ = L2
α1

(D) ⊗ · · · ⊗ L2
αn

(D), and M̃z = (M̃z1 , . . . , M̃zn
),

where Mzi
denotes the multiplication operator Mz on L2

αi
(D), i = 1, . . . , n. In particular,

if α = (1, . . . , 1), then H̃ = H2(Dn) is the well-known Hardy space over the unit polydisc.
We also refer the reader to Popescu [14, 15] for elegant and rich theory of ‘tensor product
of operators’ in multivariable operator theory.
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Let H be a Hilbert space, and let A = (A1, . . . , An) be an n-tuple (not necessarily
commuting) of bounded linear operators on H. Let

w-multA(H) = min{#G : [G]A = H, G ⊆ H},
where

[G]A = span{Ak (G) : k ∈ Zn
+},

and Ak = Ak1
1 · · ·Akn

n for all k ∈ Zn
+. If w-multA(H) = m < ∞, then we say that the weak

multiplicity of A is m. We say that A is weakly cyclic if w-multA(H) = 1. A subset G of
H is said to be weakly generating with respect to A if [G]A = H.

Now let L be a closed subspace of H. Then

WA(L) := L �
n∑

i=1

AiL,

is called the wandering subspace of L with respect to PLA|L. If, in addition

L =
∨

k∈Zn
+

(PLA|L)k (WA(L)),

then we say that PLA|L satisfies the weakly generating wandering subspace property. Here
PLA|L = (PLA1|L, . . . , PLAn|L) and

(PLA|L)k = (PLA1|L)k1 · · · (PLAn|L)kn ,

for all k ∈ Zn
+.

Note that if A is commuting and L is joint A-invariant subspace (that is, AiL ⊆ L
for all i = 1 . . . , n), then weakly generating wandering subspace property is commonly
known as generating wandering subspace property.

We now proceed to relate weak multiplicities and dimensions of weakly generating
wandering subspaces. Let A be an n-tuple of bounded linear operators on H, L be a joint
A-invariant subspace of H, and let M be a closed subspace of L. Then

PWA(L)([M]A) = PWA(L)(M),

since
PWA(L)(AkM) = 0 for all k ∈ Zn

+ \ {0}.
Now suppose that [M]A = L, that is, M is a weakly generating subspace of L with
respect to A. Then

WA(L) = PWA(L)(M).

Hence
w-multA|L(L) ≥ dimWA(L).

Moreover, if L satisfies the weakly generating wandering subspace property, then

w-multA(L) = dimWA(L).

Therefore, we have proved the following:
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Proposition 2.1. Let L be a closed joint A-invariant subspace of H. If L satisfies the
weakly generating wandering subspace property with respect to AL, then w-multA(L) =
dimWA(L).

We now proceed to a variation of Lemma 2.1 in [5] which relates the multiplicity of
a commuting tuple of operators with the weak-multiplicity of the compressed tuple to a
semi-invariant subspace.

Lemma 2.2. Let A be an n-tuple of bounded linear operators on a Hilbert space H.
Let L1 and L2 be two joint A-invariant subspaces of H and L2 ⊆ L1. If L = L1 � L2,
then

w-multPLA|L(L) ≤ w-multA|L1
(L1).

Proof. We have PLAjPL = PLAjPL1 − PLAjPL2 and thus by AjL2 ⊆ L2 we infer
that

PLAjPL = PLAjPL1 ,

for all j = 1, . . . , n. Since AjL1 ⊆ L1, we have

(PLAiPL)(PLAjPL) = PLAiPL1AjPL1 ,

that is
(PLAiPL)(PLAjPL) = PL(AiAj)PL1 ,

for all i, j = 1, . . . , n, and so

(PLAPL)k = PLAkPL1 ,

for all k ∈ Zn
+. Clearly, if G is a minimal generating subset of L1 with respect to A|L1 ,

then PLG is a generating subset of L with respect to PLA|L, and thus w-multPLA|L(L) ≤
w-multA|L1

(L1). This completes the proof of the lemma. �

In particular, if L1 = H, then Q := H�L2 is a joint (A∗
1, . . . , A

∗
n)-invariant subspace

of H. In this case, denote by Ci = PQAi|Q the compression of Ai, i = 1, . . . , n, and define
the n-tuple on Q as

CQ = (C1, . . . , Cn).

Then we have the following estimate:

w-multCQ(Q) ≤ w-multA(H).

Moreover, we also have

Corollary 2.3. Let A = (A1, . . . , An) be a commuting tuple of bounded linear
operators on a Hilbert space H. If Q is a closed joint A∗-invariant subspace of H, then

multCQ(Q) ≤ multA(H).

This has the following immediate (and well-known) application: Suppose A is a
commuting tuple on H. If A is cyclic, then CQ on Q is also cyclic.
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3. A lower bound for multiplicities

In this section, we first lay out the setting of joint invariant subspaces of our discussions
throughout the paper. Then we present a lower bound of multiplicities of those joint
invariant subspaces. We begin by recalling the following useful lemma (cf. Lemma 2.5,
[18]):

Lemma 3.1. If {Ai}n
i=1 is a commuting set of orthogonal projections on a Hilbert

space K, then L =
∑n

i=1 ranAi is a closed subspace of K, and

PL = I −
n∏

i=1

(I − Ai)

= A1(I − A2) . . . (I − An) ⊕ A2(I − A3) . . . (I − An) ⊕ . . . + An−1(I − An) ⊕ An.

Next, we introduce the invariant subspaces of interest. Again, we continue to follow
the notation as introduced in § 2.

Let Hi be a Hilbert space, Ti a bounded linear operator on Hi, and let Qi be a closed
T ∗

i -invariant subspace of Hi, i = 1, . . . , n. Set Si = Q⊥
i and

Pi = PSi
and Qi = IHi

− PSi
,

for all i = 1, . . . , n. Recall again that

P̃i = IH1 ⊗ . . . ⊗ IHi−1 ⊗ PSi
⊗ IHi+1 ⊗ . . . ⊗ IHn

∈ B(H̃),

and

P̃iP̃j = P̃jP̃i,

for all i, j = 1, . . . , n. By Lemma 3.1, it then follows that

S =
n∑

i=1

ranP̃i, (3.1)

is a joint T̃ -invariant subspace of H̃. Moreover,

S = (Q1 ⊗ · · · ⊗ Qn)⊥.

Our main goal is to compute the multiplicity of the commuting tuple T̃ |S =
(T̃1|S , . . . , T̃n|S) on S.
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For each i = 1, . . . , n, define Xi ∈ B(H̃) by

Xi = P̃iQ̃i+1 . . . Q̃n.

Then X2
i = Xi = X∗

i and
XpXq = 0,

for all i = 1, . . . , n, and p �= q. This implies that {Xi}n
i=1 is a set of orthogonal projections

with orthogonal ranges. Then, by virtue of (3.1), one can further rewrite S as

S =
n∑

i=1

ranP̃i =
n⊕

i=1

ranXi, (3.2)

and by Lemma 3.1, one represents PS as

PS =
n⊕

i=1

Xi.

Define
F = ranX1 ⊕ ran(Q̃1X2) ⊕ · · · ⊕ ran(Q̃1 · · · Q̃n−1Xn). (3.3)

Then, as easily seen
Q̃iXj = XjQ̃i,

for all 1 ≤ i ≤ j and j = 1, . . . , n, it follows that

ran(Q̃1 · · · Q̃pXp+1) ⊆ ranXp+1,

for all p = 1, . . . , n − 1, and consequently

S ⊇ F .

Our first aim is to analyse the closed subspace F and to construct n − 1 nested (and
suitable) closed subspaces {Fi}n−1

i=1 such that

S ⊇ F1 ⊇ · · · ⊇ Fn−1 = F .

To this end, first set

F1 = ranX1 ⊕ ranX2 ⊕ · · · ⊕ ranXn−1 ⊕ ran(Q̃n−1Xn),

and define

F2 = ranX1 ⊕ ran(Q̃1X2) ⊕ · · · ⊕ ran(Q̃1Xn−1) ⊕ ran(Q̃1Q̃n−1Xn).

We then proceed to define Fi, i = 2, . . . , n − 1, as

Fi = ran

(
X1 ⊕ Q̃1X2 ⊕ · · · ⊕

(
i−1∏
t=1

Q̃t

)
Xi ⊕ · · · ⊕

(
i−1∏
t=1

Q̃t

)
Xn−1

⊕
(

i−1∏
t=1

Q̃tQ̃n−1

)
Xn

)
.
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Therefore

PFi
= X1 ⊕ Q̃1X2 ⊕ · · · ⊕

(
i−1∏
t=1

Q̃t

)
Xi ⊕ · · · ⊕

(
i−1∏
t=1

Q̃t

)
Xn−1 ⊕

(
i−1∏
t=1

Q̃tQ̃n−1

)
Xn,

(3.4)

for all i = 2, . . . , n − 1. Therefore, denoting

A =

(
i−2∏
t=1

Q̃t

)
P̃i−1,

we have
PFi−1�Fi

= A(Xi ⊕ Xi+1 ⊕ · · · ⊕ Xn−1 ⊕ Q̃n−1Xn), (3.5)

for all i = 2, . . . , n − 1. Since AXp = XpA for all p = i, . . . , n, the above formula yields

PFi−1�Fi
= (Xi ⊕ Xi+1 ⊕ · · · ⊕ Xn−1 ⊕ Q̃n−1Xn)A.

Let i ∈ {2, . . . , n − 1} be a fixed natural number. We claim that Fi−1 �Fi is a joint
PFi−1 T̃PFi−1-invariant subspace, that is

PFi−1 T̃j(Fi−1 �Fi) ⊆ Fi−1 �Fi.

or, equivalently
(PFi−1 T̃jPFi−1)PFi−1�Fi

= PFi−1�Fi
T̃j |Fi−1�Fi

,

for all j = 1, . . . , n. There are four cases:

Case I: If j > i, then one has T̃jA = AT̃j and so

PFi−1�Fi
T̃jPFi−1�Fi

= A(Xi ⊕ Xi+1 ⊕ · · · ⊕ Q̃n−1Xn)T̃j(Xi ⊕ Xi+1 ⊕ · · · ⊕ Q̃n−1Xn).

On the other hand, since

PFi−1 T̃jPFi−1�Fi
= PFi−1AT̃j(Xi ⊕ · · · ⊕ Xj ⊕ · · · ⊕ Q̃n−1Xn),

and

PFi−1 = X1 ⊕ (Q̃1X2) ⊕ · · · ⊕
(

i−2∏
t=1

Q̃tXi−1

)
⊕
(

i−2∏
t=1

Q̃tXi

)

⊕ · · · ⊕
(

i−2∏
t=1

Q̃tXn−1

)
⊕
(

i−2∏
t=1

Q̃tQ̃n−1Xn

)
,

it follows that

PFi−1 T̃jPFi−1�Fi
= A(Xi−1 ⊕ Xi ⊕ · · · ⊕ Q̃n−1Xn)T̃j(Xi ⊕ · · · ⊕ Q̃n−1Xn),

as XtA = 0 for all t = 1, . . . , i − 2, and
∏i−2

t=1 Q̃tA = A. Moreover, since

Xi−1T̃j = (P̃i−1Q̃i · · · Q̃j · · · Q̃n)T̃j = P̃i−1Q̃i · · · Q̃jTjQj · · · Q̃n,
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it follows that

Xi−1T̃jXt = 0,

for all t = i, . . . , n. This leads to

PFi−1 T̃jPFi−1�Fi
= A(Xi ⊕ Xi+1 ⊕ · · · ⊕ Q̃n−1Xn)T̃j(Xi ⊕ Xi+1 ⊕ · · · ⊕ Q̃n−1Xn).

Case II: If j = i, then

T̃iPFi−1�Fi
= A((T̃iPiQ̃i+1 · · · Q̃n) ⊕ T̃iXi+1 ⊕ · · · ⊕ T̃iQ̃n−1Xn),

implies that

PFi−1 T̃iPFi−1�Fi
=

(
i−2∏
t=1

Q̃t

)
(Xi−1 ⊕ Xi ⊕ · · · ⊕ Q̃n−1Xn)T̃iPFi−1�Fi

=

(
i−2∏
t=1

Q̃t

)
(Xi−1 ⊕ Xi ⊕ · · · ⊕ Q̃n−1Xn)T̃iA

× (Xi ⊕ Xi+1 ⊕ · · · ⊕ Q̃n−1Xn)

= A(Xi−1 ⊕ Xi ⊕ · · · ⊕ Q̃n−1Xn)T̃i(Xi ⊕ Xi+1 ⊕ · · · ⊕ Q̃n−1Xn)

= PFi−1�Fi
T̃iPFi−1�Fi

,

where the next-to-last equality follows from the fact again that AT̃i = T̃iA, (
∏i−2

t=1 Q̃t)A =
A and Xi−1T̃iXt = 0 for all t = i, . . . , n.

Case III: Let j = i − 1. Since

T̃i−1A =

(
i−2∏
t=1

Q̃t

)
˜Ti−1Pi−1 = A ˜Ti−1Pi−1,

by setting

Â =

(
i−2∏
t=1

Q̃t

)
˜Ti−1Pi−1,

it follows that

T̃i−1PFi−1�Fi
= ÂXi ⊕ ÂXi+1 ⊕ · · · ⊕ ÂXn−1 ⊕ ÂQ̃n−1Xn.

Then XpÂ = ÂXp for all p = i, . . . , n, and AÂ = Â implies that

PFi−1 T̃i−1PFi−1�Fi
= Â(Xi ⊕ Xi+1 ⊕ · · · ⊕ Xn−1 ⊕ Q̃n−1Xn)

= PFi−1�Fi
T̃i−1PFi−1�Fi

,

where the second equality follows from (3.5) and the fact that Ti−1Pi−1 = Pi−1Ti−1Pi−1.
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Case IV: Let j < i − 1. Then it is clear that

T̃jPFi−1�Fi
= Â(Xi ⊕ Xi+1 ⊕ · · · ⊕ Xn−1 ⊕ Q̃n−1Xn),

where Â = T̃jA, that is

Â = Q̃1 · · · Q̃j−1T̃jQjQ̃j+1 · · · Q̃i−2P̃i−1.

Note that XtÂ = ÂXt for all t = i, . . . , n, and

AÂ = Q̃1 · · · Q̃j−1Q̃jTjQjQ̃j+1 · · · Q̃i−2P̃i−1.

Since XpXq = δpqXp for all p and q, it follows that

PFi−1 T̃jPFi−1�Fi
= AÂ(Xi ⊕ Xi+1 ⊕ · · · ⊕ Xn−1 ⊕ Q̃n−1Xn).

On the other hand, the representation of T̃jPFi−1�Fi
above and (3.5) yields

PFi−1�Fi
T̃jPFi−1�Fi

= AÂ(Xi ⊕ Xi+1 ⊕ · · · ⊕ Xn−1 ⊕ Q̃n−1Xn)

and proves the claim.
We turn now to prove that (PFi

T̃1|Fi
, . . . , PFi

T̃n|Fi
) is a commuting tuple for all

i = 1, . . . , n − 1, that is

PFi
T̃sPFi

T̃tPFi
= PFi

T̃tPFi
T̃sPFi

,

for all s, t = 1, . . . , n. Fix an i ∈ {1, . . . , n − 1} and let

PFi
= M1 ⊕ · · · ⊕ Mn, (3.6)

where Mj , j = 1, . . . , n, denotes the jth summand in the representation of PFi
in (3.4).

Recalling the terms in (3.4), we see that Mj is a product of n distinct commuting orthog-
onal projections of the form P̃k, Q̃l and ĨHm

, 1 ≤ k, l,m ≤ n. For each s = 1, . . . , n, we
set

Mj = Mj,sM̂j,s,

where Mj,s is the sth factor of Mj and M̂j,s is the product of the same factors of Mj ,
except the sth factor of Mj is replaced by ĨHs

. Note again that Mj,s = P̃s, Q̃s, or ĨHs
.
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We first claim that
Mj T̃sMk = 0, (3.7)

for all j �= k. Indeed, if Mj,s = Q̃s, then Mj T̃sMk = Mj,sM̂j,sT̃sMk yields

Mj T̃sMk = Mj,sT̃sM̂j,sMk = Mj,sT̃sMj,sM̂j,sMk = Mj,sT̃sMjMk = 0,

as Q̃sT̃sQ̃s = Q̃sT̃s. Similarly, if Mj,s = P̃s, then

Mj T̃sMk = MjM̂k,sT̃sMk,s = MjM̂k,sMk,sT̃sMk,s = MjMkT̃sMk,s = 0,

as P̃sT̃sP̃s = T̃sP̃s. The remaining case, Mj,s = ĨHs
, follows from the fact that

Mj T̃sMk = T̃sMjMk.

This proves the claim. Hence the representation of PFi
T̃sPFi

simplifies as

PFi
T̃sPFi

= M1T̃sM1 ⊕ · · · ⊕ MnT̃sMn. (3.8)

Thus,
PFi

T̃sPFi
T̃tPFi

= M1T̃sM1T̃tM1 ⊕ · · · ⊕ MnT̃sMnT̃tMn.

Now if s �= t, then for each j = 1, . . . , n, we have

Mj T̃sMj T̃tMj = MjM̂j,sT̃sMj,sMj,tT̃tM̂j,tMj

= (MjM̂j,sMj,t)T̃sT̃t(Mj,sM̂j,tMj)

= Mj T̃sT̃tMj ,

and hence
(PFi

T̃sPFi
)(PFi

T̃tPFi
) = M1T̃sT̃tM1 ⊕ · · · ⊕ MnT̃sT̃tMn.

This completes the proof of the commutativity property of the tuple (PFi
T̃1|Fi

, . . . ,
PFi

T̃n|Fi
), i = 1, . . . , n − 1. Furthermore, if s = t, then

(Mj T̃sMj)2 = Mj T̃
2
s Mj .

Indeed, if Mj,s = Q̃s, then Mj T̃sMj = Mj T̃sM̂j,s gives us

Mj T̃sMj T̃sMj = Mj T̃sM̂j,sT̃sM̂j,sMj = Mj T̃sT̃sM̂j,sMj = Mj T̃
2
s Mj .

Similarly, if Mj,s = P̃s or ĨHs
, then Mj T̃sMj = T̃sMj , and hence

Mj T̃sMj T̃sMj = Mj T̃
2
s Mj .

Hence we obtain

(PFi
T̃sPFi

)(PFi
T̃tPFi

) = M1T̃sT̃tM1 ⊕ · · · ⊕ MnT̃sT̃tMn, (3.9)

for all s, t = 1, . . . , n.
Therefore, with the notation introduced above, we have proved the following:
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Lemma 3.2. If S = (Q1 ⊗ · · · ⊗ Qn)⊥, then S is a joint T̃ -invariant subspace of H̃
and

S ⊇ F1 ⊇ · · · ⊇ Fn−1 = F ,

where F and Fi are defined as in (3.3) and (3.4), respectively. Moreover,

PFi−1 T̃ |Fi−1 = (PFi−1 T̃1|Fi−1 , . . . , PFi−1 T̃n|Fi−1),

is a commuting tuple and

(PFi−1 T̃j |Fi−1)(Fi−1 �Fi) ⊆ Fi−1 �Fi,

for all i = 2, . . . , n − 1, and j = 1, . . . , n.

We now proceed to estimate a lower bound of multT̃ |S (S). Note first that ran(P̃n−1P̃n)
is a joint T̃ -invariant subspace and

F1 = S � ran(P̃n−1P̃n).

Then F1 is a T̃ -semi invariant subspace, which, by Lemma 2.2, implies that

multT̃ |S (S) ≥ multPF1 T̃ |F1
(F1).

Now consider the commuting n-tuple PF1 T̃ |F1 = (PF1 T̃1|F1 , . . . , PF1 T̃n|F1) on F1. Then
by Lemma 3.2 we infer that F1 �F2 is a joint PF1 T̃ |F1 -invariant subspace of F1. But
since F2 = F1 � (F1 �F2), it follows again by Lemma 2.2 that

multPF1 T̃ |F1
(F1) ≥ multPF2 T̃ |F2

(F2).

In general, by virtue of Lemma 3.2, we have

multPFi−1 T̃ |Fi−1
(Fi−1) ≥ multPFi

T̃ |Fi
(Fi),

for all i = 2, . . . , n − 1, and hence

multT̃ |S (S) ≥ multPF1 T̃ |F1
(F1) ≥ · · · ≥ multPFn−1 T̃ |Fn−1

(Fn−1) = multPF T̃ |F (F),

where (see (3.3))

F = ranX1 ⊕ ran(Q̃1X2) ⊕ · · · ⊕ ran(Q̃1 · · · Q̃n−1Xn),

and Xi = P̃iQ̃i+1 · · · Q̃n, i = 1, . . . , n. We summarize the above discussion in the following
theorem:

Theorem 3.3. Let T1, . . . , Tn be bounded linear operators on Hilbert spaces
H1, . . . ,Hn, respectively. If Qi is a T ∗

i -invariant closed subspace of Hi, i = 1, . . . , n, and

S = (Q1 ⊗ · · · ⊗ Qn)⊥,

then

multT̃ |S (S) ≥ multPF T̃ |F (F).
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4. Additivity of multiplicities

We now proceed to prove the reverse inequality in Theorem 3.3. We start with a simple
but useful lemma.

Lemma 4.1. Let (A1, . . . , An) be an n-tuple of bounded linear operators on a Hilbert
space H. If G is a subset of H and (λ1, . . . , λn) ∈ Cn, then

[G](A1,...,An) = [G](A1−λ1IH,...,An−λnIH).

Proof. Note that, given p ∈ C[z1, . . . , zn] there exists q ∈ C[z1, . . . , zn] such that

p(A1, . . . , An) = p((A1 − λ1IH + λ1IH), . . . , (An − λnIH + λnIH))

= q((A1 − λ1IH), . . . , (An − λnIH)),

which implies that

[G](A1,...,An) ⊆ [G](A1−λ1IH,...,An−λnIH).

The reverse inclusion follows similarly, and hence the result follows. �

Now we return to the problem of rank computation of S as in Theorem 3.3. From now
on, we will use the setting and notation introduced in § 3. Observe that, by (3.3), we have

F = M1 ⊕ · · · ⊕Mn,

where

Mi = ran

⎛⎝P̃i

∏
j �=i

Q̃j

⎞⎠ .

By defining Mi = PMi
, i = 1, . . . , n, one has (see (3.6))

PF = M1 ⊕ · · · ⊕ Mn.

Recall, by virtue of (3.8), that

PF T̃sPF = M1T̃sM1 ⊕ · · · ⊕ MnT̃sMn, (4.1)

for all s = 1, . . . , n. And, finally, recall that, by Lemma 3.2, PF T̃PF is a commuting tuple
on F . The equality in (4.1) implies that

(PF T̃sPF )Mi ⊆ Mi (s = 1, . . . , n),

that is, Mi is a joint PF T̃PF -invariant subspace of F for all i = 1, . . . , n. Then by virtue
of (3.9), we have

(PF T̃ |F )k =
n⊕

i=1

PMi
T̃ k |Mi

(k ∈ Zn
+).
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Now let G be a minimal generating subset of F with respect to PF T̃ |F . Then

F = span{(PF T̃ |F )k (G) : k ∈ Zn
+} ⊆

n⊕
i=1

(span{PMi
T̃ k |Mi

(G) : k ∈ Zn
+}) ⊆ F ,

and so

F =
n⊕

i=1

(span{PMi
T̃ k |Mi

(G) : k ∈ Zn
+}).

Now assume that the point spectrum σp(T ∗
i |Qi

) �= ∅, Ti|Si
satisfies the generating

wandering subspace property, and

dim(Si � TiSi) < ∞,

for all i = 1, . . . , n. If we then let ᾱi ∈ σp(T ∗
i |Qi

) and T ∗
i vi = ᾱivi for some non-zero

vi ∈ Qi, then

Ei := ran

⎛⎝P̃Si�TiSi

∏
j �=i

P̃Cvj

⎞⎠ ⊆ Mi,

and

dimEi = dim(Si � TiSi) = multTi|Si
(Si),

for all i = 1, . . . , n. Thus, if we set

E = E1 ⊕ · · · ⊕ En,

then E ⊆ F and

dimE =
n∑

i=1

multTi|Si
(Si).

Fix i ∈ {1, . . . , n} and define (λ1, . . . , λn) ∈ Cn by λj = 0 if j = i and λj = αj if j �= i.
From Lemma 4.1, it follows that

[PMi
G]PMi

T̃ |Mi
= [PMi

G](PMi
T̃1|Mi

−λ1IMi
,...,PMi

T̃n|Mi
−λnIMi

).

For simplicity, we denote

Gi = [PMi
G](PMi

T̃1|Mi
−λ1IMi

,...,PMi
T̃n|Mi

−λnIMi
),

in the rest of this section. Also, notice that Cvj ⊥ ran(PQj
Tj |Qj

− αjIQj
) for all

j = 1, . . . , n, and ranTi|Si
⊥ Si � TiSi, so that

PEi
(PMi

T̃j |Mi
− λjIMi

) = 0,

for all j = 1, . . . , n, and hence

PEi
Gi = PEi

(span{G}).

Downloaded from https://www.cambridge.org/core. 20 Jul 2021 at 06:30:25, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


294 A. Chattopadhyay, J. Sarkar and S. Sarkar

On the other hand, since

PE =
n⊕

j=1

PEj
,

and Ej ⊆ Mj for all j = 1, . . . , n, it follows that

PEGi = PEi
Gi.

Hence

E = PEF = PE

(
n⊕

i=1

[PMi
G]PMi

T̃ |Mi

)
=

n⊕
i=1

PEi
[PMi

G]PMi
T̃ |Mi

,

that is

E =
n⊕

i=1

PEi
Gi =

n⊕
i=1

PEi
(span{G}),

and so
E = PE(span{G}).

From this it follows easily that
n∑

i=1

dim(Si � TiSi) =
n∑

i=1

multTi|Si
(Si)

= dimE
≤ dim(span{G})
= dim(span{G})
= multPF T̃ |F (F),

where the last equality follows from the minimality assumption on G. Therefore,
Theorem 3.3 implies the following:

Theorem 4.2. Assume the setting of Theorem 3.3. If Si satisfies the generating
wandering subspace property with respect to Ti|Si

and T ∗
i |Qi

has non-empty point
spectrum for all i = 1, . . . , n, then

multT̃ |S (S) ≥
n∑

i=1

multTi|Si
(Si) =

n∑
i=1

dim(Si � TiSi).

To proceed further, we note, by Lemma 3.1 (or, more specifically (3.2)), that

S =
n∑

i=1

ranP̃i.

In addition, let us assume that multTi
(Hi) = 1, i = 1, . . . , n. Then

multT̃ |S (S) ≤
n∑

i=1

multTi|Si
(Si).

Therefore, by Theorem 4.2, we have the main theorem of this paper as:
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Theorem 4.3. Let H1, . . . ,Hn be Hilbert spaces, let Ti ∈ B(Hi), and let Qi be a T ∗
i -

invariant closed subspace of Hi, i = 1, . . . , n. Assume that Ti|Q⊥
i
∈ B(Q⊥

i ) satisfies the

generating wandering subspace property, T ∗
i |Qi

has non-empty point spectrum and that
multTi

(Hi) = 1 for all i = 1, . . . , n. Then

multT̃ |(Q1⊗···⊗Qn)⊥
(Q1 ⊗ · · · ⊗ Qn)⊥ =

n∑
i=1

multTi|Q⊥
i

(Q⊥
i ).

5. Applications and concluding remarks

In this section, we complement the main theorem, Theorem 4.3, by some concrete
examples and final remarks.

We first explain the notion of zero-based invariant subspaces of reproducing kernel
Hilbert spaces. Let k : D × D → C be a positive definite kernel. For each fixed w ∈ D, let
z �→ k(z, w) is analytic on D. Suppose Hk ⊆ O(D) is the reproducing kernel Hilbert space
corresponding to the kernel k and Mz, the multiplication operator by the coordinate
function z, on Hk is bounded. Let us further assume that

ker(M∗
z − λIHk

) = Ck(·, λ) (λ ∈ D).

Here k(·, λ), for λ ∈ D, denotes the kernel function z �→ k(z, λ) on D.
A reproducing kernel Hilbert space that satisfies all the properties listed above is called

a regular reproducing kernel Hilbert space.
It is easy to see that the Dirichlet space, the Hardy, the unweighted Bergman space

and the weighted Bergman spaces over D are regular reproducing kernel Hilbert spaces.
Suppose Hk is a regular reproducing kernel Hilbert space. A closed subspace S ⊆ Hk is

called zero-based invariant subspace if there exists λ ∈ D such that f(λ) = 0 for all f ∈ S
and zS ⊆ S.

Now let Hk be a regular reproducing kernel Hilbert space, and let Q be an M∗
z -invariant

closed subspace of Hk. Suppose λ ∈ D. Then M∗
z f = λ̄f for some non-zero f ∈ Q if and

only if f = ck(·, λ) for some non-zero scalar c ∈ C. On the other hand, since

〈g, k(·, λ)〉 = g(λ) (g ∈ Hk),

it follows that k(·, λ) ∈ Q if and only if g(λ) = 0 for all g ∈ Q⊥. We have therefore proved
the following:

Proposition 5.1. Let Hk be a regular reproducing kernel Hilbert space, and let Q be
a closed M∗

z -invariant subspace of Hk. Then M∗
z |Q has non-empty point spectrum if and

only if Q⊥ is a zero-based invariant subspace of Hk.

As an immediate corollary of Theorem 4.3, we have now:

Corollary 5.2. Let Hki
be a regular reproducing kernel Hilbert space, multMz

(Hki
) =

1, and let Qi be a proper closed M∗
z -invariant subspace of Hki

, i = 1, . . . , n. If Q⊥
i is a
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zero-based invariant subspace of Hki
such that

dim(Q⊥
i � zQ⊥

i ) < ∞,

for all i = 1, . . . , n, then

multMz|(Q1⊗···⊗Qn)⊥ (Q1 ⊗ · · · ⊗ Qn)⊥ =
n∑

i=1

(multMz|Q⊥
i

(Q⊥
i )) =

n∑
i=1

dim(Q⊥
i � zQ⊥

i ).

Now let Hki
be the Hardy space or the Dirichlet space over D, and let Qi be a non-zero

shift co-invariant (that is, M∗
z -invariant) subspace of Hki

. By [3, 16], Mz|Q⊥
i

satisfies the
generating wandering subspace property and the dimension of the generating wandering
subspace is one, that is

dim(Q⊥
i � zQ⊥

i ) = 1,

for all i = 1, . . . , n. Then, in view of Theorem 4.3 (and [19]) we have the following:

Corollary 5.3. Let Hki
, i = 1, . . . , n, denote either the Hardy space or the Dirichlet

space over D. Suppose Qi is a proper closed M∗
z -invariant subspaces of Hki

, i = 1, . . . , n.
If Q⊥

i is a zero-based Mz-invariant subspace of Hki
, i = 1, . . . , n, then,

multMz|(Q1⊗···⊗Qn)⊥
(Q1 ⊗ · · · ⊗ Qn)⊥ = n.

A similar argument and the generating wandering subspace property of shift invariant
subspaces of the Bergman space [1] yields the following:

Corollary 5.4. Let Hki
, i = 1, . . . , n, be the Dirichlet space, the Bergman space or the

Hardy space over D. Let Qi, i = 1, . . . , n, be proper closed shift co-invariant subspaces of
Hki

. If Q⊥
i is a zero based Mz-invariant subspace of Hki

and

dim(Q⊥
i � zQ⊥

i ) < ∞,

for all i = 1, . . . , n, then

multMz|(Q1⊗···⊗Qn)⊥ (Q1 ⊗ · · · ⊗ Qn)⊥ =
n∑

i=1

(multMz|Q⊥
i

(Q⊥
i )) =

n∑
i=1

dim(Q⊥
i � zQ⊥

i ).

Note that the generating wandering subspace assumption in Corollary 5.4 ensures that
(see Proposition 2.1)

multMz|Q⊥
i

(Q⊥
i ) < ∞,

for all i = 1, . . . , n. At present, it is not very clear whether the generating wandering
subspace assumption can be replaced by finite multiplicity property. Our methods rely
heavily on the assumption that the invariant subspaces are zero-based and satisfies the
generating wandering subspace property.
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